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ON THE STRONG LAW OF LARGE NUMBERS
FOR ¢-SUB-GAUSSIAN RANDOM VARIABLES

PO MOCUJIEHUI 3AKOH BEJIUKHUX YHUCEJ
JJIA o-CYBIAYCCOBUX BUITAJIKOBUX BEJINYUH

For p > 1 let p,(z) = 2%/2 if |z| < 1 and pp(x) = 1/p|z|’ — 1/p + 1/2 if |z| > 1. For a random variable ¢ let
Tep (§) denote inf{a > 0: Vacg InEexp(A§) < ¢p(ar)}; 7y, is a norm in a space Sub,, = {{: 7,,(§) < oo} of
(p-sub-Gaussian random variables. We prove that if for a sequence (£.) C Suby,, p > 1, there exist positive constants ¢
and « such that for every natural number n the inequality 7, (Zr_:l fl) < en'™® holds, then ! Z’il € converges
almost surely to zero as n — oo. This result is a generalization of the strong law of large numbers for inzlependent sub-

Gaussian random variables [see R. L. Taylor, T.-C. Hu, Sub-Gaussian techniques in proving strong laws of large numbers,
Amer. Math. Monthly, 94, 295 -299 (1987)] to the case of dependent (), -sub-Gaussian random variables.

Hexait misg p > 1 op(x) = 22/2, axmo |z| < 1, i @p(x) = 1/p|lz|P — 1/p + 1/2, sxmo |z| > 1. Jlns BumagkoBoi
BermmuuHu § Hexail 7,, (£) mosnadac inf{a > 0: Vaecr InEexp(AE) < pp(aN)}; 7,, —HOpMA y mpocTopi Sub,, = {¢:
Top(§) < 00} p-cyOrayccoBux BHMIIAJKOBHX BENMYMH. Y Wil po6GOTi JOBEIEHO HACTYNHE: SKIIO JUIA MOCHiZOBHOCTI
(én) C Subg,, p > 1, icaylots opati cTali ¢ i o Taki, Mo MAMA Gyab-GKOTO HATYPAIBHOTO YHCIIA 7. BHKOHYEThCH

S n 1— — n . o o
HEPIBHICTE T, ( E . &) <en' "%, ton Tt g - & 306iraeThcs Maike HaIlleBHO JI0 HyIIs Tpu 1 — oo. Lle# pesynbrar
1= 1=
y3arajbHIO€ TOCHJICHHIT 3aKOH BEJIMKHUX YHCeN IS He3aJeHHUX CcyOrayccoBHMX BHMAIKoBHX BenmuuH [auB. R. L. Taylor,

T.-C. Hu, Sub-Gaussian techniques in proving strong laws of large numbers, Amer. Math. Monthly, 94, 295-299 (1987)]
Y BHITQJIKY, KOJIH PO3IISIIAIOTHCS 3ANIEKHI (pp-CyOrayccoBi BUMAJKOBI BEIHYHHH.

1. Introduction. The classical Kolmogorov strong laws of large numbers are dealt with independent
variables. Investigations of limit theorems for dependent random variables are extensive and episodic.
The strong law of large numbers (SLLN) for various classes of many type associated random variables
one can find for instance in Bulinski and Shashkin [2] (Ch. 4). Most of them are considered in the
spaces of integrable functions. It is also interested to describe general conditions under which the
SLLN holds in other spaces of random variables than L,-spaces. In this paper we investigate
almost sure convergence of the arithmetic mean (but not only) sequences of ¢-sub-Gaussian random
variables.

The notion of sub-Gaussian random variables was introduced by Kahane in [8]. A random
variable £ is sub-Gaussian if its moment generating function is majorized by the moment gene-
rating function of some centered Gaussian random variable with variance o that is Eexp(\¢) <
< Eexp()\g) = exp(a2A?/2), where g ~ N(0,02) (see [4] or [3], Ch. 1). In terms of the cumulant
generating functions this condition takes a form In Eexp(\¢) < a2\?/2.

One can generalize the notion of sub-Gaussian random variables to classes of (-sub-Gaussian
random variables (see [3], Ch. 2). A continuous even convex function ¢(z) (z € R) is called a
N -function, if the following condition holds:

(a) ¢(0) = 0 and () is monotone increasing for x > 0,

(b) limg_,0 ¢(x)/x = 0 and lim, o p(z)/x = 0.
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It is called a quadratic N -function, if in addition ¢(z) = ca? for all |z| < zg with ¢ > 0 and
xg > 0. The quadratic condition is needed to ensure nontriviality for classes of (-sub-Gaussian
random variables (see [3, p. 67]).

Examplel1.1. Letforp > 1

—, if  |z| <1,
2

—|zlP - =+ 2, if |z > 1.
p p 2

The function ¢, is an example of the quadratic NN-function which is some standardization of the
function |z|P (see [10], Lemma 2.5). Let us emphasize that for p = 2 we have the case of sub-
Gaussian random variables.

Let ¢ be a quadratic IV-function. A random variable £ is said to be @-sub-Gaussian if there is
a constant ¢ > 0 such that InEexp(A) < ¢(aX). The p-sub-Gaussian standard (norm) 1,(§) is
defined as

7,(§) = inf {a >0: Vaer InEexp(A) < go(a/\)};

a space Sub, = {£: 7,(§) < oo} with the norm 7, is a Banach space (see [3], Ch. 2, Theorem 4.1)
Let p(z), * € R, be a real-valued function. The function ¢*(y) (y € R) defined by ¢*(y) =
= sup,cr{zy — ¢(z)} is called the Young—Fenchel transform or the convex conjugate of ¢ (in
general, ¢* may take value co). It is known that if ¢ is a quadratic N -function, then ¢* is quadratic
N -function too. For instance, since our ¢, is a differentiable (even at £1) function one can easy
check (see [10], Lemma 2.6) that ¢, = ¢, for p,¢ > 1,if 1/p+1/q = 1.
Remark1.1. One can define the space Sub,,, by using the Luxemburg norm of the form

€]y, =inf {K >0: Eexp|¢/K|? <2}, q=p/(p—1),

and then Sub,, = {¢: [|{]ly, < co and E{ = 0} (compare [10], Theorem 2.7), the space L%q =
= Suby,, ). Note that ||EE||y, = [|],, and we get that if |[£]|,, < oo, then £ — E{ € Sub,, .
Example1.2. The standard normal random variable g belongs to Sub,,, and 7,(g) = 1, since

Eexp(tg) = exp (/2) = exp(2(t)).

Because g2 has x?-distribution with one degree of freedom whose moment generating function is
Eexp(tg) = (1 — 2t)~Y/2 for t < 1/2, then
Eexp (¢?/K?) = (1—2/K?) "/,

which is less or equal 2 if K > /8/3. It gives that |||, = 1/8/3. Let us observe that t2-norm
of |g| is equal to 12-norm of g. It implies that |g| —E|g| € Suby,. Similarly as above one can show
that

H‘Q‘Q/qan =inf {K > 0; Eexp(¢*°/K?) <2} = (8/3)4 < .
Thus we get that \g|2/q — E|g|2/q € Sub,,,, where 1/p +1/¢ = 1.
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Let us recall that the convex conjugate is order-reversing and possesses some scaling property. If
1 > 2, then ¢} < 5. Let for a > 0 and b # 0 ¢(x) = ap(bz), then ¢Y*(y) = ap*(y/(ab)) (see,
e.g., [6], Ch. X, Proposition 1.3.1).

The convex conjugate of the cumulant generating function can be served to estimate of ‘tails’
distribution of a centered random variable. Let E{ = 0 and 1)¢ denote the cumulant generating
function of &, i.e., ¥¢(A) = InEexp(AE), then for e > 0

P(§ = €) < exp(—v(€)).

Let us observe that for £ € Sub,,, by the definition of 7,(£), we have the inequality 1¢(\) <
< ¢(7(£§)A) and, by the order-reversing and the scaling property, we get ¢ (e) > ¢*(e/7,(£)).

Now we can obtain some weaker form of the above estimation but with using the general func-
tion (:

. €
(el > ) < 200( " () m
(see [3], Ch. 2, Lemma 4.3).

2. Results. First we show that if we have some upper estimate for 7, then in (1) we can
substitute this estimate instead of 7.,.
Lemma 2.1. If 7,(§) < C(§) for every & € Suby,, then

(¢ > e) < 2exp<—so*(cf£)>)-

Proof. Since  is even and increasing monotonic for x > 0, we get

P(1p(§)z) = p(1,(z]) < @(C(&)|2]) = p(C(&)).

And again by the order-reversing and the scaling property we obtain

*(wi0) 2# (co):

which combined with (1) establishes the inequality.

With these preliminaries accounted for, we can prove the main result of the paper.
Theorem 2.1. Let (§,) C Suby, for some p > 1. If there exist positive constants c and o

n
such that for every natural number n the condition T¢p(z 51’) < en'™® holds, then the term

. i=1
n~t E - & converges almost surely to zero as n — oco.
1=
Proof. Since p;, = ¢4, by Lemma 2.1 and the condition of the theorem we have

o([35e] ) 2o (7))

i=1
For sufficiently large n (n > (c/e)'/®) we have n®c/c > 1 and, in consequence,

(n%) wlrene 11
Pgl — ] =n 7<7> -——+ -
c qg\c q 2
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Thus, we get the estimate

1 1 1
P( 2n5> §2exp<—) exp<—n‘10‘<€>q>
q 2 qg\c

for every € and n > (c/a)l/ ®. Thus, by the integral test, we obtain convergence of the series

o0 n
anl P(‘ Zizl 52
gence of n-1 Zﬁ_l & to zero.

Remark2.1. Let us emphasize that the above theorem is a generalization of the theorem (SLLN)
(see [9, p. 297]) to the case of ,-sub-Gaussian random variables, not only sub-Gaussian ones.
Moreover, we do not assume their independence. For this reason we used a modified condition for a
behavior of the norm 7, than Taylor and Hu, which describes below.

Since 7, is a norm, we obtain

D&

=1

> ne). It follows the completely and, in consequence, almost sure conver-

If for instance &;, ¢+ = 1,...,n, are copies of the same variable £, then in the above the equality
holds and 7, (Zj_l fi) = n7,(§). Let us observe that in this case the assumption of Theorem 2.1
is not satisfied. Additionally informations about form of dependence (or independence) sometime
allow us to improve this estimate. So, for an independence sequence (&), if there is some 7 € (0, 2]
such that o(|z|'/") is convex, then

7o (Z&) <Y @) @)
=1 =1

(see [3], Sec. 2, Theorem 5.2). If r is bigger then the estimate is better. For the function ¢, we
can always take r = min{p, 2}. In Taylor’s and Hu’s SLLN variables ¢,, were sub-Gaussian and
independent and it was taken p = 2. Let us emphasize that in this case if, in addition, &1,...,&,,
have the same distribution as £ then 7, (Z;l 51-) < y/n7,(€) and the condition of Theorem 2.1 is
satisfied (¢ = 7,(§) and o = 1/2).

Let us emphasize that another assumptions on dependence of &1, ...,&, can give the same es-
timate of the norm of 7, (Z:;l §i>. In the paper Giuliano Antonini et al. [5] (Lemma 3) it was

proved that for @-sub-Gaussian acceptable random variables the inequality (2) holds, if o(|z|"/") is
convex. The definition of acceptability of sequence of random variable one can find therein. For us
it is the most important that these estimates are the same. In this article there is some version of the
Marcinkiewicz — Zygmund law of large numbers for p-sub-Gaussian random variables as a corollary
of much more general theorem. We give an independent proof of this corollary but under modified
assumptions.

Proposition 2.1. Let (&,), p > 1, be a bounded sequence of pp,-sub-Gaussian random variables
and let r = min{p, 2}. If, in addition,

(5] <Soer

=1 =1

n
then n~Y/* E - & — 0 almost surely for any 0 < s <.
1=
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Remark?2.2. Since @, (|2|'/") is convex, the estimate (3) is satisfied by sequences of independent
or acceptable random variables, for instance.

Proof. Let b = sup,>;Ty,(&n), then Z T (&)" < nb" and, in consequence,

Top <Zj:1 &) < nl/Th. For positive number s less than r, by Lemma 2.1, we obtain

IP( > nie) < 2exp (—goq (Zi;ii)) = 26Xp<—qu (n(l/s—l/r)%>)'

For n > (b/e)1/s=1/") ™" we have

(Pq< (1/s- 1/r>2> pa(1/5— 1/r>(1](b) 1,1

> &

=1

and, in consequence,
S exn(-(n5)) <

which, in view of Borel — Cantelli lemma, completes the proof.

Remark2.3. Because we apply the function ¢, () instead of |z|P, then we must not restrict p to
be less or equal 2 to ensure the fulfillment of the quadratic condition for the function |z|P. Moreover,
we use the metric property (3) instead of assumptions on some form of dependence random variables
(compare [5], Corollary 7).

Example2.1. The proof of Hoeffding — Azuma’s inequality for a sequence (&,) of bounded ran-
dom variables such that |£,| < d, a.s. and EE,, = 0 is based on an estimate of the moment generating

function of the partial sum Zn . &;. Under assumptions that £, are independent (Hoeffding) or &,
1=
are martingales increments (Azuma) the following inequality holds:

n MY
Eexp| A Z & | <exp % 4)
=1

(see [7, 1]). Let us emphasize that in [1] Azuma has proved the above estimate under more general
assumptions on (§,,) which satisfy centered bounded martingales increments. The inequality (4)

means that
n n 1/2
w(Sa)<(Se)
i=1 i=1

If we take d, =1 for n = 1,2, ..., then we get the condition

®2 (Z £Z> S \/’Ea

which follows that the sequence (&,,) satisfies the assumptions of Proposition 2.1 with p = r = 2
n

and the norm 7,(&,) < 1 and we get the almost sure convergence n~1/s Z . & to 0 for any
1=

0 < s < 2. Let us note that for s = 1 we obtain SLLN for this sequence.
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