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CONVERGENCE OF MULTIPLE FOURIER SERIES OF FUNCTIONS
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3BI)KHICTh KPATHUX PSIJIIB ®YP’€ GYHKIINA
3 OBMEXEHOIO Y3AT'AJIBHEHOIO BAPIAINIEIO

The paper introduces a new concept of A-variation of multivariable functions and studies its relationship with the
convergence of multidimensional Fourier series.

Beezneno HOBy koHueniio A-apiamii yHKuili 6ararbox 3MiHHHX Ta BHBYCHO ii 3B’30K 3i 30DKHICTIO GaratoBUMIipHHX
paniB dyp’e.

1. Classes of functions of bounded generalized variation. In 1881 Jordan [11] introduced a class of

functions of bounded variation and applied it to the theory of Fourier series. Hereafter this notion was

generalized by many authors (quadratic variation, ®-variation, A-variation etc., see [2, 12, 15, 17]). In

two-dimensional case the class BV of functions of bounded variation was introduced by Hardy [10].
For an interval T = [a,b] C R we denote by T% = [a, b]? the d-dimensional cube in R
Consider a function f(z) defined on T and a collection of intervals

JE= (T, k=1,2,...,d
For d =1 we set
FUIY) = f(01) = f(ah).
If for any function of d — 1 variables the expression f(J! x ... x J% 1) is already defined, then for
a function of d variables the mixed difference is defined as follows:

f(Jlx...de) ;:f(Jlx...de—l,bd)—f(Jlx...de—l,ad).

Let E = {Iy} be a collection of nonoverlapping intervals from 7" ordered in arbitrary way and
let Q = Q(T) be the set of all such collections E. We denote by Q,, = ,,(T) set of all collections
of n nonoverlapping intervals I, C T

For sequences of positive numbers

A = {N}12 lim M =00, j=1,2,...,d,
n—o0
and for a function f(z), x = (21,...,7q) € T? the (A1, ..., A%)-variation of f with respect to the
index set D := {1,2,...,d} is defined as follows:

|FUIL <o x I
A
1 td

{Al,...,Ad}VD(f,Td) = sup
{I»LJJ}EQ B1yeeyld
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For an index set a = {ji,...,j,} C D and any z = (21,...,24) € R? we set & := D \ « and
denote by x,, the vector of RP consisting of components z;, j € a, i.e.,

o = (2j,...,15,) € RP.
By
(A7, APV (fas, T and f(f}jl X ... % Ig;p,xa)
we denote respectively the (AJL, ..., AJ»)-variation over the p-dimensional cube 7P and mixed

difference of f as a function of variables x;, ,...,x;, with fixed values za of other variables. The
(AL, ..., Ap)-variation of with respect to the index set « is defined as follows:

(A ANRVE(ST) = sup {A L ARMVO(f e, TY).

xg€Td—P

Definition 1. We say that the function f has total bounded (A, ..., A?)-variation on T and
write f € {AY,... A} BV(TY), if

(A ARV TY = (A ATV (f,TY) < oo

aCD

Definition 2. We say that the function f is continuous in (A', ..., A%)-variation on T® and write
f e CLAL . ALYV (TY), if

lim {A7, ... Ade-t Ade Adker ARV (T =0, k=1,2,...,p,

n—o0

forany oo C D, o :={j1,...,Jp}, where AJF = (MR
Definition 3. We say that the function f has bounded partial (A, ..., A?)-variation and write
feP{A, ... ALYBV(T?) if

d
P{A' . ATV TY = AV (£,T7) < oo
i=1
In the case Al = ... = A% = A we set

ABV(T9) := {AY,... A} BV(T?),
CAV(T?) := C{AY, ..., A1 V(TY),

PABV(T%) := P{A!, ..., AT} BV (TY).

fA,=1(rif0<c< A\, <C <oo,n=1,2,...)the classes ABV and PABV coincide with
the Hardy class BV and PBYV respectively. Hence it is reasonable to assume that \,, — co.

When A, = n forall n = 1,2,... we say Harmonic Variation instead of A-variation and write
H instead of A, i.e., HBV, PHBV, CHV, etc.

For two variable functions Dyachenko and Waterman [5] introduced another class of functions of
generalized bounded variation.
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Denoting by I' the the set of finite collections of nonoverlapping rectangles Ay := [ax, S| X
X [, 0] C T2, for a function f(z,y), x,y € T, we set

|/ (ARl

{Ag}el 7 Ak

V(f,T? =

Definition 4 (Dyachenko, Waterman). We say that f € A*BV (T?) if
V(f.T%) = AVA(f, T?) + AVa (£, T?) + AV (£, T?) < o0

In this paper we introduce a new classes of functions of generalized bounded variation and
investigate the convergence of Fourier series of function of that classes.
For the sequence A = {\,,}>2; we denote

A#Vs(f,Td) = sup sup Z |f Z{S} ‘

{zi{s}}cTd-1 {IF}q

where
a'{s} = (2f,...,2L_j, 2l q, ..., 2h) for ' = (2%,...,2}). (1)

Definition 5. We say that the function f belongs to the class A* BV (T?), if

d
AV (f,T7) = AFV(f,T%) < 0
s=1

The notion of A-variation was introduced by Waterman [15] in one-dimensional case, by Sahakian
[14] in two-dimensional case and by Sablin [13] in the case of higher dimensions. The notion of
bounded partial variation (class PBV') was introduced by Goginava in [7]. These classes of functions
of generalized bounded variation play an important role in the theory Fourier series.

Remark 1. Ttis not hard to see that A# BV (T9) ¢ PABV (T?) forany d > 1 and A*BV (T?) C
C A*BV(T?).

We prove that the following theorem is true.

Theorem 1. Letd > 2 and T = (t1,t2) C R. If

A={\.} with /\R:W, n=12,..., )
then
HV (f,T%) < M(Q)A*V (f,T?). 3)
Proof. We have to prove that for any o := {ji,...,j,} C D
w3 S0 o T M) Zd:A#Vs(ﬁ T4, @
{1 36y, e tp s=1

To this end, observe that
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\f([}l X \f([}l --XIZ,UCaﬂ
Z i o Z Z i i ’ ®)
115y Ip Lo o) (1)< <3 o (p) Lee-Pp
where the sum is taken over all rearrangements o = {a(k) Z:I of the set {1,2,...,p}.
Next, we have
|f(IL < ox I X P xg))|
> T = Z y | - ~ (©)
i1<...<ip Lo P i< <ip p=1

Taking into account that for the fixed i,, i1 < ... < i, there exists xif’ Yo € T such that

9 p 1

‘f(.fil1 X ... X Ig;,:ca)‘ < 2d)f([i,mip,...,x;p_l,xa)

from (6) we obtain

FUIL x . x TP ag (I ,...,:cjfll,xa)! 1
Z 17 ...1 : Z Z i...1 =

1
i1 <...<ip p ip i1<...<ip

logd ip+1) i
sM(d)Z—p\f 2wl ag)| <
ip tp
M(d)A*V;, (f,T%) < M(a)A*V (f,T7).
Similarly one can obtain bounds for other summands in the right-hand side of (5), which imply (3).
Theorem 1 is proved.

Corollary 1. If the sequence A is defined by (2), then A* BV (T%) ¢ HBV (T?).
Now, we denote

A={6=(61,...,00): 6; ==+1,i=1,2,...,d} (7)
and
Tes(x) := (21, 1 +€01) X ... X (g, Tg+ €d4),
for x = (r1,...,24) € R? and £ > 0. We set 75(x) := m5(x), if e = 1.
For a function f defined in some neighbourhood of a point x and § € A we set

fo(x) = lim  f(t), @®)

tens(x), t—x

if the last limit exists.
Theorem 2. Suppose f € A# BV (T?) for some sequence A = {\,}.
(a) If the limit f5(x) exists for some x = (x1,...,xq) € T¢ and some § = (61,...,04) € A,
then
lim A*V (f, mo5(z)) = 0. ©)

e—0
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(b) If f is continuous on some compact K C T, then
Hm A#V (f,[v1 — e, 21+ €] X ... X [zg—e,24+¢€]) =0 (10)
e—0

uniformly with respect to © = (x1,...,xq) € K.
Proof. According to Definition 5, we need to prove that

lim APV, (f, 7es(2)) = 0 (1D

for any s = 1,2,...,d. Without loss of generality we can assume that s = 1 and §; = 1 for
1 =1,2,...,d. Assume to the contrary that (11) does not holds:

lim A#Vy (£, mes () # 0.

Then there exists a number « such that

AV (f, mes(2)) > > 0 (12)
for any € > 0.
Using induction on & = 1,2, ..., we construct positive numbers ¢; and the sequences of collec-
tions of nonoverlapping intervals
Iz'l C (x1+€k+17$1+€k)7 i:nk+17“'7nk+17 (13)
and vectors
B =(B,...,8) €mes(x), i=np+1,... 01, (14)

as follows. By (12), for a fixed number €; > 0 we find a collection of nonoverlapping intervals
IZlC(.%'l,.fl—i-El), 1=1,...,n,
and vectors

ﬁi:(ﬁi‘"'wﬁé)gﬂ-éﬁ(x)’ 1=1,...,nq,

such that

YL S TN .

Now, suppose the number ¢, intervals (13) and the vectors (14) for some k£ = 1,2,... are
constructed. Since the limit f5(x) exists, we can choose ¢ satisfying

ng
0 <eéept1 <eg, (x1,21 + €k+1) N (U I}) = (16)
i=1
and
i
Z‘f 1772?"'77d)} <% (17)
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for any collection of nonoverlapping intervals
1 .
J; C(x1,$1-|—€k;+1), 1=1,...,ng,
and for any vectors

= (M%) € Tepr8(@), i=1,00

Further, according to (12) there is a collection of nonoverlapping intervals

Jil C ($1,1’1+€k+1), iZl,...,nk+1, (18)
and vectors
’yi:(PYZZI:?"'?PYzl)€7T€k+15(x)7 Z‘:17"'777’]€Jr17
such that
nk+1 i
Z a727"'77d)‘ > a. (19)
Now, denoting
=J, Bi=~"  for i=ng+1,... 01, (20)

from (17) and (19) we get

Z FUE B 8] @
. Ai 2"

i=ni+1
Intervals (13) and vectors (14) for £k = 1,2,..., are constructed.

By (16), (18) and (20), the intervals I} are nonoverlapping for i = 1,2,..., while according
to (21),

Z’f B277BZZ>‘_

Consequently, A#V;(f, T%) = oco. This contradiction completes proof of the statement (a) of Theo-
rem 2.

To prove statement (b), observe that (a) obviously implies (10) for any point € T, where f is
continuous. Hence, we have to prove that (10) holds uniformly with respect to x € K, provided that
f is continuous on the compact K C T

To this end let us assume to the contrary that (10) does not hold uniformly on K. Then there exist
d > 0 and sequences

x:(xﬁ,...,xZ)EK and >0, i=1,2,..., with & — 0
such that
A#V(f[ —e, i te] X x [zl —eah+e]) >6>0.
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Since K is compact we can assume without loss of generality that z' — 2 for some = =
= (x1,...,z4) € K. Then obviously for each £ > 0 there is a number i(¢) such that

[3 €, T ‘L) Clrj—exj+e], j=1,....d, for i>i(e).
Consequently,
A#V(f;[:cl—a,xl—i—s]x...x[md—a,xd+e])25>0,

for any € > 0, which is a contradiction.
Theorem 2 is proved.
Next, we define

v (fon):= sup  sup Z\f ash)|,  s=1,....d, n=12,...,
{?}r_  CT{I}_ € ;1

where z%{s} is as in (1). The following theorem holds.
Theorem 3. [f the function f(x), x € TY, satisfies the condition

i oF (fm)log™  (n+ 1)

n2

o, s=1,2,...,d,

n=1

then f € {n}#BV(Td)
log?(n +1) ’

Proof. Let s = 1,...,d be fixed. The for any collection of intervals {I?}" , € Q, and a
sequence of vectors {z'}7_ ; € T?, using Abel’s partial summation we obtain

" |f(13, a9 log G+ 1)

J

n—1 Odfl. Od

=1 J
log 1) &
+— o+ Z (3 27 {s}) | <
n—1 d—1/; d—1/; d—1
log" *(j+1) log " (j+2) o logH(n+1)
sZ( Ty )= ). @)
=1

Using the inequality

oM 41) ) < $° <logd-1<j +1) log™ i+ 2))
<> ;

n Vs J+1

v (f.4), (23)
from (22) we get

n # = f n) logd Yn+1)

Theorem 3 is proved.
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2. Convergence of multiple Fourier series. We suppose throughout this section, that 7" =
= [0,27) and T? = [0,27), d > 2, stands for the d-dimensional torus.

We denote by C(T'?%) the space of continuous and 27-periodic with respect to each variable
functions with the norm

Iflle:= sup  [f(z1,...,2q4)].
(21,0, wq)ETY
The Fourier series of the function f € L'(T) with respect to the trigonometric system is the

series
—+o00

Sf(flfl, cey Jﬁd) = Z fA(nl, ey nd)ei("1$1+"'+”dxd)7

ni,...,Ng=—00

where

o~

1 .
f(ni,....,ng) = 2n)d / f(zh, ... ate tmatednaza) go o dr,
Td

are the Fourier coefficients of f.

In this paper we consider convergence of only rectangular partial sums (convergence in the
sense of Pringsheim) of d-dimensional Fourier series. Recall that the rectangular partial sums are
defined as follows:

Ny Ny
~ . 1 d
SNy, N (1, ) = Z Z fln,.... ng)eme Fetnazt),

7’L1:—N1 nd:—Nd

We say that the point = € T is a regular point of a function f, if the limit f5(z) defined by (8)
exists for any § € A (see (7)). For the regular point x we denote

F@) = 55 S Jilo). ©3)

LISTAN

Definition 6. We say that the class of functions V. C L*(T?) is a class of convergence on T?, if
for any function f € V

1) the Fourier series of f converges to f*(x) at any regular point x € T,

2) the convergence is uniform on a compact K C T, if f is continuous on K.

The well known Dirichlet—Jordan theorem (see [18]) states that the Fourier series of a function
f(x), x € T, of bounded variation converges at every point x to the value [f(x 4+ 0) + f(z — 0)]/2.
If f is in addition continuous on 7', then the Fourier series converges uniformly on 7.

Hardy [10] generalized the Dirichlet—Jordan theorem to the double Fourier series and proved that
BV is a class of convergence on T2,

The following theorem was proved by Waterman (for d = 1) and Sahakian (for d = 2).

Theorem WS (Waterman [15], Sahakian [14]). If d = 1 or d = 2, then the class HBV (T%) is
a class of convergence on T°.

In [1] Bakhvalov proved that the class HBV is not a class of convergence on 7¢, if d > 2. On
the other hand, he proved the following theorem.

Theorem B (Bakhvalov [1]). The class CHV (T?) is a class of convergence on T for any
d=1,2,....
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Convergence of spherical and other partial sums of double Fourier series of functions of bounded
A-variation was investigated in deatails by Dyachenko [3, 4].
In [8, 9] Goginava and Sahakian investigated convergence of multiple Fourier series of functions
of bounded partial A-variation. In particular, the following theorem was proved.
Theorem GS. (a) Ifand A = {\,}5° | with
n

Ap = . om=12.., d>1,
n 1Ogd—1+a(n+ 1)

for some € > 0, then the class PABV (T?) is a class of convergence on T°.
(b) I A = {An )32y with

n
M= ———— ' n=1,2,..., d>1,
" logm N (n 4 1)

then the class PABV (TY) is not a class of convergence on T?.
In [5], Dyachenko and Waterman proved that the class A* BV (T?) is a class convergence on T
. n
forA:{)\n}Wlth)\n = m,n: 1727....

The main result of the present paper is the following theorem.
Theorem 4. (a) If A = {\,}°2, with

n

A = i,
log™¥(n+1)

n=12,..., d>1, (26)
then the class A* BV (T?) is a class of convergence on T*.
(b) If A = {\,}°°, with

nén

Ap=d om0, d>1, 27
{logdl(n—i— 1)} @7

where &, — 00 as n — 0o, then there exists a continuous function f € A#* BV (T?) such that the
cubical partial sums of d-dimensional Fourier series of f diverge unboundedly at (0, . ..,0) € T?.

Proof. The proof of the part (a) is based on the following statement, that in the case d = 2 is
proved by Sahakian (see formulaes (33) and (35) in [14]). For an arbitrary d > 2 the proof is similar.

Lemma S. Suppose f € HV(T?) and x € T?. If the limit f5(x) exists for any § € A, then for
anye >0

[Snsrma f (@) = (@) < M(d) S HV(fi75(2)) + 0(1),
0EA

asmn; —+o0,t=1,2,...,d.

Moreover, the quantity o(1) tends to 0 uniformly on a compact K, if f is continuous on K.

Now, if the sequence A = {\,} is defined by (26) and f € A# BV (T?), then Lemma S and
Theorem 1 imply that for any € > 0

|Sr, g f () = [H(@)] < M(d) Y APV (f;725(2)) + o(1), (28)

JEA

which combined with Theorem 2 completes the proof of (a).
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To prove part (b) suppose that A = {\,,} is a sequence defined by (27). It is not hard to see that
the class C(T9) N A# BV (T9) is a Banach space with the norm

Iflla# v = I fllc + AFBV ().

Denoting

A e | kDY e 7(at D)
TN/ N+1/2) T T [N 1/2 N+ 1/2)

we consider the following functions:

N-1 d
gn(z1,...,xq) = Z lag, id(xl,...,acd)Hsin(N—{—1/2)x57
il,...,idil s=1
for N =2,3,..., where 14(x1,...,xq) is the characteristic function of a set A C T,

It is easy to check that

#
nén 'logh (i +1) .
_ )<c¢ g = o(log® N
{logd_l(n+1)} gN ZE ( g )

7
and hence
lgnlla% gy = o(log? N) = ny log” N,
where ny — 0 as N — oco. Now, setting

gN

=———, N=23,...,
In NN logd N
we obtain that fy € A# BV (T?) and
sup [N lla%y < oo (29)
Now, for the cubical partial sums of the d-dimensional Fourier series of fy at (0,...,0) € T we

have that

7Sy Nfn(0,...,0) =

sin?(N + 1/2)x,
>
Z / H 2sin(zs/2) day...dvg 2

o 105—’; N, -

A=A g
c i 1 c
> — — > — = 0 (30)
nn log? N i1,.§:1 11...%4 1NN

as N — oo. Applying the Banach— Steinhaus theorem, from (29) and (30) we conclude that there
exists a continuous function f € A# BV (T?) such that

sup ’SN,,Nf(Ov s 70)’ = o0.
N

Theorem 4 is proved.
The next theorem follows from Theorems 3 and 4.
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Theorem 5. For any d > 1 the class of functions f(x) x € T satisfying the following condition:

S o (n)log (1)

3 <oo, s=1,...,d,
n

n=1

is a class of convergence.
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