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INTEGRAL FUNCTIONALS OF THE GASSER - MULLER
REGRESSION FUNCTION *

THTETPAJIbHI ®YHKIIOHAJIN ®YHKIIII PETPECII TACCEPA - MIOJIJIEPA

For integral functionals of the Gasser—Muller regression function and its derivatives, the plug-in estimator is considered.
The consistency and asymptotic normality of the estimator are shown.

Jlns inTerpansHuX ¢yHKuioHaniB ¢yHkmii perpecii I'accepa—Mromiepa Ta iX MOXiTHHX PO3TIATAETHCS OILHKA, IO ITiJ-
KITIIOYa€eThcsa. BCTaHOBICHO OOTPYHTOBAHICTh T4 ACHMOTOTHYHY HOPMAJIBHICTD L€l OLIHKH.

1. Introduction. The study of functionals of a probability distribution density function or a regression
function and its derivatives is an interesting task and attracts an active interest on the part of researchers
(see, e.g., [4—9]). There are detailed studies functionals of a probability distribution density function
and its derivatives (see [6 — 8] and the references therein). Investigations of functionals of a regression
function and its derivatives are more modest [4, 5].

In the present paper we investigate the integral functional of a regression function and its deriva-
tives. In our investigation we use the Gasser—Muller regression function introduced and studied in
[1-3].

As it follows from these works consideration of these types of problems are important, particularly,
while choosing asymptotical optimal bandwidth (see formula (5) in [5, p. 2584]). Our approach in
this paper is based on the derivation of a representation theorem which we further use to obtain
the results connected with asymptotic properties, in particular with consistency and the central limit
theorem.

Suppose we have n measurements taken at the points

ti o, otn (0t <t <Ll <t < 1),
where the ¢, k = 1,...,n, depend on n. The model considered is the following:
Y(tk) :a(tk)—i—ek, k=1,...,n,

er, 1.i.d. with E(eg) = 0, D(gg) = 02 < c0.
The estimator of the unknown regression function a(¢) was introduced by Gasser and Muller [1]
and defined by the expression

1 -
() = - / % (th “) du- Y (t:),
81
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where 0 = 51 < s9 < ... <s,=1,¢ < s < tiy1,71=1,2,...,n— 1, and max; |s; — $;-1| =
1 . . . .

=0 < ; {hn, n=1,2,...} is a sequence of positive numbers monotonically tending to zero.
n

W (u) is the function with probability density properties.
In the same paper [1], Gasser and Muller introduced the estimator of the kth derivative of the
regression function a(* (t)

= 1 no t—u
a0 =1y [ W(’“’( h
R P "

) du - Y (t;) (1)

for all k = 0,1,...,m. It was assumed that G, (t) = an(t).

In the works, which we have referred to above, the theorems of consistency and asymptotic
normality of estimators were obtained by imposing certain conditions.

Let ¢: R™"2 — R be a continuous bounded smooth function. Consider an integral functional of
the form

1(a) = /go(t,a(t),a'(t),...,a(m)(t)> dt.

—00

We have the (¢;,Y;),i = 1,2,...,n. This means that
Y, = Y(t@) = a(ti) + &;.

To estimate /(a), we use the plug-in estimator, i.e., consider the functional

oo

(@) = /go(t,&n(t),a'n(t),...,Zi,gm)(t)) dt.

—00

Here @) (t)is defined from (1).

2. Representation theorem. Our consideration is based on the representation theorem which
will lead to obtaining the results we are interested in. Let us list the conditions which the considered
variables are supposed to satisfy:

Conditions on a:

(a1) The function a = a(t) is defined and continuous on [0, 1] and takes its values in the interval
[—k; k.

(a2) The function a(t) has continuous derivatives up to order m inclusive.

Conditions on ¢y,

(1) Random values ¢, k = 1,2, ..., are independent and equally distributed.

(e2) Eep, = 0, D2 = 02 < <.

(e3) The growth condition is P{|ex| > n} < e™™.

In the sequel, for brevity, we will use the notation

dp

67%:@(2) for iZO,l,...,m

and
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2
82(;’;% — oy for 4,j=0,1,...,m

Conditions on ¢:

(1) The function ¢ : R™*2? — R is continuous, bounded, integrable and has bounded continuous
derivatives up to second order, inclusive, in some open convex domain A which contains the domain
R x [-k; k™t

(p2) All first and second derivatives of the function ¢ are uniformly bounded in the domain A
by a constant C;, > 0.

Therefore, by this condition, for the function ¢ we have for all ¢,7 =0,1,...,m:

sup {|g0(z~j)|(s,50,31, ceesSm): (8,80,81,- .., 8m) € A} < C,. 2

Conditions on W :

w1 / W dt_l

(w2) The function W (¢) has continuous derivatives up to order m, m > 1.
(ws) Function W (t) has the compact support [—, 7].

(wg) Forany i =0,1,...,m, W& ¢ Ly([-7,7]).
Denote by a,,(t) the mathematical expectation @, (t):

an(t) = Edy(t) = E— Z/ ( )du Y(t;) = hlzn:/wc};“) du - a(t;).

" oi=1

Then we obtain

Let us ascertain that there also exist expressions I(a), I(ay) and I(a,) and they are finite. Using

the Taylor formula, for any point (s, sg, s1,...,5n) € A and some s, € A we can write
m
lo|(s, 50, 15+, Sm) = ng(i)(s,0,0,.. Z ©(i5) (5,80, 815 - -, 5m)8i5j | -
i=0 1,j=0

Accordingly, there exists a constant C' such that

m m
‘(p‘(sasﬂv 817 R Sm) S C (Z ’SZ’ + Z ‘Si‘z) *
=0 =0

Hence it follows that for any bounded measurable functions fo(¢), fi(t),. .., fm(t) from Li(R) we
have
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/ ] (b o), - fn(8)) d < o0 3)

and therefore I(a) exists.

The conditions which are imposed on the function W ensure its boundedness and membership in
Li(R). Then condition (w4) and (2), (3) imply the finiteness of both variables I(a,,) and I(a,,) for
any n.

By the Taylor formula we can write

I(ay) — I(ayn) = Sp(hyn) + Ry, 4)

where for any h,, > 0, S, (h) is the sum of independent random variables

m 1

Sult) =3 [ o (tan(t) @), ...a0) (30) - ) 1) . (5)
=07
A remainder R,, has the form
1

1 ¢ 7 ~(i i ~(j j

P [ 6 En(®) (@0 - o)) (@90) - o) at, ©)

bI=40

where Em(t) is the straight line connecting the points
(tan(t), ap(t), ..., al™ () and  (t,@,(1), @5 (1), ..., a ™ ().
Let us estimate the remainder R,,. Applying the standard procedure, from (3) and (6) we obtain
L m
. 2
IR,| < qa/z a“ (t)) dt.
o =0

Let C"™[0, 1] denote the space of bounded real functions that are defined and continuous on [0, 1],
having continuous derivatives of at least mth order. In this space we introduce the norm

1/2

£l = fj/(dtJ feomp)
0

1=0

The closure of C™[0, 1] in this norm is defined by WJ" and called the Sobolev space. This is
completer separable Hilbert space with the scalar product

—dt, f,g€ C™[0,1].

Denote

m(m) = |[a, — an”?m
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then we can write
|Rn| < Ct,orn(m)~ 7

Assume

Sk

Uy = Up(t) = hln / W (2“) dulY (ty) — a(te)], k=1,2,...,n,

Sk—1

where a(ty) = EY (t). Then

Svi=p > [w (t; “) dulY (1) — a(te)] = An(t) — an(t)
k=1 " k=15 "

Therefore
" 2
ra(m) = || Y U, (®)
k=1 m
Let us estimate the norm of one of the summands Uy, in (8) for each £k = 1,2,...,n. We obtain
o 1 . t , 1/2
_ (@ (t—U _ _
Ukl = Z/ i / 114 ( W > dulY (ty) —a(ty)]| dt| =
=0 0 Sh_1
tsp_ g 2 1/2
m 1 1 hn
Nft—u t—u 2
= Zh2i+2/ ha / W()< I ) d( I ) |V (tg) — alty)|” dt <
1=0 m 0 t—sp
Fin
1 1/2
Tl t—Sp_1 t— sk
< 2lex|Cw Zh%/‘ | A =
=0 0
ol |5) — Sp_1]|V/1 — ham T2 < o
= ZlexlCw T R2 Rt
1 .
=M, ~O <1> for sufficiently large L > 0. C)
nhmt

To estimate r,(m), we use the McDiarmid’s inequality which we give here for convenience (for
details see [10]).

McDiarmid’s inequality. Let H(t1,...,t;) be a real function such that for eachi = 1,...,k and
some ¢;, the supremum in ¢, ..., tx, t, of the difference
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‘H(tl) v '7ti—17ti7ti+17 cee )tk) - H(t17 s 7ti—1)t7ti+17 cee 7tk) < G-

If Xy,..., X are independent random variables taking values in the domain of the function

H(ty,...,tg), then for every € > 0,
P{\H(Xl,...,xk) —BH(X),..., X)| > s} <2exp | -—2

Let us apply McDiarmid’s inequality for the functions

H(Uy,...,Uy) =

>0

k=1

m

As ¢, we take ¢, = 2M,,, k = 1,...,n. From (9), for any § > 0 we obtain

n n 52 h2m+2
P YUl —E|D Ui |=0p< 26Xp{—2]\;2}.
We substitute here
5 v2logn
and, by the Borel — Cantelli lemma, write
n n
logn

S| =B u +o(SEE)

k=1 m k=1 m n
Using the Jensen’s inequality

5| >0 <B|Su| -
k=1 m k=1 m

2 2 (1 _h72’bm+2) . 2 1
=2CH0° ————"— g Sp—Sp—1) < K -——,
w (1 . h%)h%m—i—Q k:1( k k 1) — nh%m+2

from (7), (8), (10) and (11) we conclude that

logn
R =0 ().

Therefore the following statement is true.

(10)

an
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Theorem 1. Assume that conditions (a1)—(az2), (€1)—(g3), (v1)—(p2) and (w1)—(wy) are
fulfilled. Then representation (4), where the remainder with probability 1 has the order

logn
R,=0 (W) (12)

is valid.

3. Consistency. In this section of the paper we use Theorem 1 to prove that the estimator I(a,,)
is strictly consistent.

Theorem 2. Let the conditions of Theorem 1 be fulfilled. If the positive sequence (hy),-,
0 < h, < 1, is chosen so that

logn
nh2mt2

— 0,
then with probability 1 we have
I(a,) — I(a) as mn — oc.
Proof. By Theorem 1 and formula (4)
I(ay,) — I(an) = Sp(hn) + Rny, R, =o0(1) a.e.,

where

m L
= Z/gp t an(t ,a;l(t),..,ﬂ?(]m)(t)) (a,(f)(t) — aﬁf)(t)) dt.
0

=0

By condition (a1),

{ (t, an(t),a;(t),...,a;W) ctelo, 1]} C [0,1] x [—k; K™

This and condition (¢2) imply that there exists a constant C, > 0, such that

sup { ) (t o, s tm)  (Lito, s tm) € 0,1] x [l K™ | < €

Keeping this in mind, we can write

1
m 1 n
Su €03 [ S /
0

=0

1
% 1
< QC¢CWZ/ Z ekl Isk — sp—1| dt ~ (by (w2))
= Pt

1
~ M W (for some M). 13)
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Hoeffding’s inequality. Suppose X1, Xo, ..., X, are independent real-valued random variables,
such that for each i, X; takes values from the interval [r;, p;].

LetY = Zn ) X;. Then for all ¢t > 0,
i=

22

Zj_l (pi — Ti)z

P{|Y —E[Y|| >t} <2exp{ —

(14)

As X we take

n

szfg/lh;“ /k 'W@) <t;“>’ du- [Y(ty) — alty)] dt.
=0

Sk—1

Analogously to (13), it can be shown that X}, takes its values in the interval

1 1
[_M e M n?hwﬂ] '
Therefore

2M
Z(pi_ri)2: 372mi2
- n3hy

=1
Besides, we take
. 2/ M logn
- n3/2hnm+1 :
Then from (14) we obtain
2v/M logn

by means of which, using the Borel — Cantelli lemma, we can conclude that

.() =0 (2.

HS/Qh?—H

logn

It is obvious that, for condition (12), W,

too, tends to zero. Thus we conclude that S, (h,) —

— 0 asn — oo.
By formula (6) from [2] we can write

nhk

n

Ea®) (1) = / W (w)a® (¢ = uhy) du+ O < ! ) .

Hence we make the following conclusions:

1
(i) for condition (12), A too, tends to zero for any £ = 0,1,...,m;
n n

(i) Eal") (t) = a®)(t) as n — oo.
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Summarizing the above discussion, we ascertain that

1
/g& t an(t (t),...,a;m)(t)) dt —>
0

—>/1gp(t,a(t),a/(t),...,a(m)(t)) dt = I(a) as n — oo.
0

Since I(ay) — I(an) = o(1), we conclude that
I(ap) —I(a) — 0 a.e.

The theorem is proved.
4. Central limit theorem. Using our representation theorem we can obtain the limit distribution
property for the integral functional

1
/(p t n(t (t),...,&,ﬁ]")(t)) dt.
0

Consider the difference (4), where for any h,, > 0, S,,(h) is the sum of independent random variables
(5). R, is a remainder having the form (6). Clearly,

ES,(h,)=0 and ER, -0 as n — oo. (15)
Moreover,
1 2
B(S0(h,))” = 2}3 L/gm (tan(t),a (1), ...l (1)) dt
(16)

and DR, >0 as n — oo.
Using appropriate conditions, we have to prove that the variable
\/ﬁ (I(an) - I(an))

is asymptotically normal and calculate the limiting variance. For this, according to the theorem and
formulas (4), (15) and (16), we have to show the asymptotic normality of the variable \/n S, (h,,).
As follows from (6), in this case it suffices to study this property for the variables

1 s
1 —u
%—thhH// D (522) ot (tsanlt) ool (0)) d

n

0 Sk—1

It can be easily verified that
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m 1 sk
1 N (t—u
Edk:a(tk)zhm/ / W(’)< - )S%) (t,an(t),a;(t),...,a;m(t)) dt du.
i=0 " "

0 sp—1
Thus we consider the sequence of independent random variables
fu(n) = a(n, k)(Y (t) — alty)) = aln, ke,

where

m 1 Sk
1 i t—u m
a(n,k)zzhm/ /W()< . )%) (t,an(t),a;(t),...,ag )(t)> dt du.
- n ) n

Let consider the sum

3

Sn(hn) = a(”? k)gk
k=1
Let Fj, be the probability distribution function of a random variable «(n, k), and F. be

the distribution function of a random variable €. The Lindeberg’s condition is written in the form
limy, 00 L (6) =0 V& > 0, where

n -1 5 n 1/2
Lo(6) = <022a2(n, k)) 3 / 227 | |2 > 60 (Z o2(n, k)> dFjon (),
k=1 j=1 k=1

where J(A) is the indicator function of the set A.
It is easy to see that

L,(9) < L max /m2j(|x| > dov(n,j)) dFy,

02 0<j<n

where

(o) = oD

(Z?ﬂ o*(n, j))

It remains to show that
max v(n,j) =0 as n — oco.

1<j<n
But since
. 1
max |a(n =0 —
1§j§n‘ (n.9) (nhnm“ ’
we have

() = O | ———
R R W

Thus the Lindeberg’s condition is fulfilled and we can conclude that the theorem is valid.
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Theorem 3. Let the conditions of Theorem 1 be fulfilled. Then if
By — 0 and nh™ — 00 as n — oo,

we have

Vi (I(@,) — I(a)) -5 N(0,72),

where
2

m /1
r? = g2 Z /go(z-) (t,a(t),a'(t), e ,a(m)(t)) dt
=0 \}

5. Example. As an example we consider the problem of estimation of total curvature (see
[11, p. 22]) of a regression function a:

We obtain

Then we have

For h,, — 0 and \/n h® — oo, we have the convergence /n(I2(a) — I2(@y,)) LN N(0,7?).

These considerations can be used for checking hypothesis about total curvature of regression
function.

6. Iterated logarithm law. Applying the well-known iterated logarithm law from Kuelbs paper
[12], we ascertain that the following statement is true.

Theorem 4. [f the sequence h,, is chosen so that

ho_ logn 2m
" \Wnloglogn ’
then N
lim sup + \/ﬁ [I(an) — I(an)] —

n—00 v2loglogn

Proof. Note that for this h,, we have

R, :0< lloglogn> ‘
n

It can be easily verified that

Gp) — k)Y (1) — k)a(t
hm sup i\/ﬁ [I((Ln) I(an)] — hm sup :l:\/ﬁ [OZ(TL, ) ( k) a(na )CL( k)] —
n—s00 v2loglogn n—300 V2loglogn
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