П. П. Барышовец (Нац. авиац. ун-т, Киев)

БЕСКОНЕЧНЫЕ ГРУППЫ С ДОПОЛНЯЕМЫМИ НЕАБЕЛЕВЫМИ ПОДГРУППАМИ

We obtain a description of locally finite A-groups with complemented non-Abelian subgroups.

Наведено опис локально скінченних А-груп з доповнюваними неабелевими підгрупами.

1. Введение. Подгруппа A группы G называется дополняемой в G, если в G существует такая подгруппа B, что G = AB и AB = 1. Конечные группы с дополняемыми подгруппами изучал Φ . Холл [1]. Произвольные (как конечные, так и бесконечные) группы с таким свойством, получившие название вполне факторизуемых, были полностью описаны в [2] (см. также [3, 4]). Сужение системы дополняемых подгрупп от всех подгрупп группы до системы абелевых подгрупп не привело к расширению класса вполне факторизуемых групп [5, 6]. Естественно возник вопрос об изучении неабелевых групп с дополняемыми неабелевыми подгруппами, поставленный C. Н. Черниковым в [7].

В разные годы рассматривалось влияние дополняемости систем подгрупп, близких к системе неабелевых подгрупп, на строение группы, прежде всего нециклических [8], элементарных абелевых нециклических [9] и непримарных [10, 11]. Несмотря на то, что группы указанных классов имели большие различия в строении, некоторые общие подходы при изучении таких групп сохранялись.

В работах автора [12 – 14] изучались конечные группы с дополняемыми неабелевыми подгруппами. Оказалось, в частности, что они разрешимы и их ступень разрешимости не превышает числа 3. Изучены также локально конечные ненильпотентные группы с дополняемыми неабелевыми подгруппами, содержащие неабелевы силовские подгруппы [15]. В настоящей работе рассматриваются локально конечные ненильпотентные группы с дополняемыми неабелевыми подгруппами, не содержащие неабелевых силовских подгрупп. Их строение описано до определяющих соотношений. Таким образом, результаты работы [15] и настоящей статьи дают описание локально конечных неабелевых групп с дополняемыми неабелевыми подгруппами.

Из полученных результатов следует, что среди новых групп наибольшее сходство с вполне факторизуемыми группами сохранили группы с бесконечным абелевым коммутантом: для таких групп необходимым условием дополняемости неабелевых подгрупп является дополняемость цоколя группы и разложимость его в прямое произведение минимальных нормальных делителей группы. Понятие цоколя введено Р. Ремаком и использовалось С. Н. Черниковым при рассмотрении новых характеризаций вполне факторизуемых групп [16]. Отметим, что Б. И. Мищенко [17], не используя строения групп с дополняемыми неабелевыми подгруппами, показал, что в бесконечной локально ступенчатой неабелевой нечерниковской группе G из условия дополняемости в ней бесконечных неабелевых подгрупп следует дополняемость в группе G всех неабелевых подгрупп.

Перспективным в плане дальнейшего исследования влияния дополняемости систем под-© П. П. БАРЫШОВЕЦ, 2015

групп на строение группы, по мнению автора, могло бы быть изучение групп с дополняемыми неметациклическими подгруппами.

2. Предварительные результаты. Пусть G — произвольная неабелева группа, имеющая следующее свойство: любая неабелева подгруппа из G дополняема в G. Тогда все неабелевы подгруппы и неабелевы фактор-группы группы G, а также все прямые произведения вида $G \times H$, где H — абелева вполне факторизуемая группа, имеют то же свойство. Кроме того, фактор-группа группы G по ее неабелевому нормальному делителю вполне факторизуема.

Определение. Следуя Ф. Холлу и Тонту, локально конечные разрешимые группы с абелевыми силовскими подгруппами будем называть А-группами (как и в конечном случае).

Лемма 1. B A -группе пересечение центра c коммутантом тривиально.

Следует из аналогичного утверждения для конечных групп [18].

Лемма 2 [18]. *В конечной А-группе коммутанты нормальных подгрупп дополняемы*. Следующие четыре леммы доказаны в [15].

- **Лемма 4**. Локально конечная неабелева группа G с дополняемыми неабелевыми подгруппами не более, чем трехступенно разрешима. Если G нильпотентна, то G''=1.
- **Лемма 5**. Если в бесконечной неабелевой локально вполне факторизуемой группе G дополняемы все неабелевы подгруппы, то она вполне факторизуема.
- **Лемма 6.** Локально конечная не нильпотентная прямо неразложимая не вполне факторизуемая группа G с бесконечным коммутантом и дополняемыми неабелевыми подгруппами содержит бесконечную максимальную абелеву нормальную подгруппу конечного индекса.
- **3.** Бесконечные ненильпотентные A -группы с дополняемыми неабелевыми подгруппами. Строение локально конечных групп такого вида описывает следующая теорема.
- **Теорема 1**. В локально конечной ненильпотентной A-группе G тогда и только тогда дополняемы все неабелевы подгруппы, когда $G = H \times B$, где B вполне факторизуемая абелева группа, а H группа одного из следующих типов:
 - 1) H неабелева вполне факторизуемая группа;
- 2) $H = K \langle c \rangle$, K aбелева нормальная вполне факторизуемая группа, $|c| = q^m$, $c^q \in Z(H)$, $|K:C_K(\langle c \rangle)| = \infty$, q npocmoe число, $q \notin \pi(K)$, m -натуральное;
- 3) $H = K \leftthreetimes \langle b \rangle$, K разлагается в прямое произведение конечных минимальных нормальных делителей K_{α} группы H, на множителях которого вполне факторизуемая группа $\langle b \rangle$ и ее собственные подгруппы действуют неприводимо и нетождественно, причем среди подгрупп K_{α} по крайней мере одна имеет непростой порядок, а произведение подгрупп K_{α} , имеющих одинаковые порядки, является силовской подгруппой группы H;
 - 4) $H = K \setminus (\langle b \rangle \setminus \langle a \rangle)$, где $b^q = a^r = 1$, $a^{-1}ba = b^{\alpha}$, $\alpha^r \equiv 1 \pmod{q}$, K разлагается

в прямое произведение конечных минимальных нормальных делителей K_{α} группы H, $|K_{\alpha}|$ есть либо простое число, и тогда $[K_{\alpha},b]=1$, $K_{\alpha}\langle a\rangle$ — неабелева группа, либо r-я степень простого числа, отличного от q и r; среди подгрупп K_{α} по крайней мере одна имеет непростой порядок; если $|K_{\alpha}|=p^{r}$, то элементы a и b действуют на K_{α} следующим образом:

$$b = \begin{pmatrix} \alpha_1 & 0 & \cdots & 0 \\ 0 & \alpha_2 & \cdots & 0 \\ & \cdots & & \\ 0 & 0 & \cdots & \alpha_t \end{pmatrix}, \quad a = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ & \cdots & & \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix},$$

 $|\alpha_1| = q$, $\alpha_1^r = \alpha_2, ..., \alpha_t^r = \alpha_1$, причем $p^2 - 1$ делится на q.

Для доказательства теоремы 1 нам потребуются еще две леммы.

Лемма 7. Пусть H — локально конечная ненильпотентная прямо неразложимая не вполне факторизуемая группа с бесконечным коммутантом и дополняемыми неабелевыми подгруппами. Если силовские подгруппы и коммутант H' группы H абелевы, то H — бесконечная группа типа 2 или 3 теоремы 1.

Доказательство. Бесконечность группы H следует из бесконечности ее коммутанта H'.

1. Пусть $C = C_H(H')$. Тогда $C \triangleleft H$ и $H' \subseteq C$. Покажем, что C — абелева группа. Действительно, $C' \subseteq H' \subseteq Z(C_H(H')) = Z(C)$. В силу леммы 1 C' = 1.

Согласно лемме 6 группа H содержит бесконечную максимальную абелеву нормальную подгруппу K конечного индекса в H. Пусть CK=T. Тогда вследствие абелевости нормальных подгрупп C и K коммутант T' содержится в их пересечении: $T'\subseteq K\cap C=K_1$. Но $K_1=(K\cap C)\subseteq Z(T)$ и, значит, $T'\subseteq Z(T)$. В силу леммы 1 T'=1. Итак, централизатор $C=C_H(H')$ абелев и имеет в группе H конечный индекс.

Пусть $x \notin C$. Тогда подгруппа $C\langle x \rangle$ неабелева, причем x можно считать элементом примарного порядка, например p^{α} , $\alpha \geq 1$. Если $C\langle x \rangle = H$, то силовские подгруппы группы C по числам $q \neq p$ элементарные абелевы, а $[C, x^p] = 1$. Следовательно, H — бесконечная группа типа 2 теоремы 1.

Пусть

$$C\langle x \rangle \neq H.$$
 (1)

Тогда подгруппа $C\langle x\rangle$ дополняема в группе H . Если

$$H = (C\langle x \rangle) \times L, \tag{2}$$

то L — вполне факторизуемая абелева группа, $[C,L] \neq 1$. Поскольку в предыдущих рассуждениях, начиная с (1), элемент x можно заменить элементом из подгруппы L, можно считать, что x имеет простой порядок. $\langle L, x \rangle = D$ — конечная A-группа и в силу леммы 2 $D = D' \leftthreetimes M$, где M — абелева группа. При этом произведение подгрупп C и D равно H, $D' \subseteq H' \subseteq C$, значит, H = CD = CD'M = CM. Но согласно (2) индекс |H:C| = |L||x|. Далее, $D' \subseteq C$, $L \cap C = 1$, следовательно, $D' \cap L = 1$. При этом $D'L \neq D$, значит, $D = (D'L)\langle x \rangle$ и |D:D'| = |L||x|. Отсюда следует, что $H = C \leftthreetimes M$.

Если $y \in M$, то подгруппа $C \langle y \rangle$ неабелева и, значит, дополняема в H. Отсюда вытекает, что подгруппа $\langle y \rangle$ дополняема в H, а значит, и в M. Таким образом, M — абелева вполне факторизуемая группа.

Если C — не вполне факторизуемая группа, то пусть R — не элементарная абелева конечная примарная подгруппа из C, t — такой элемент из M, что $\begin{bmatrix} R, t \end{bmatrix} \neq 1$. Из описания конечных A-групп с дополняемыми неабелевыми подгруппами [12, 14] следует, что силовские подгруппы группы $\langle R, t \rangle$ элементарные абелевы. Из полученного противоречия следует, что группа C абелева вполне факторизуемая.

2. Покажем, что если $X \triangleleft H$, $X \subset C$, то (XM)' = X.

Действительно, предположим, что $(XM)' \neq X$. Ясно, что $(XM)' \subseteq X$. Если $x_1 \in (XM)'$, $x_2 \in X$, $x_2 \notin (XM)'$, то в конечной группе $\langle x_1, x_2, M \rangle$ центр нетривиален и содержится в C. Тогда и центр Z(H) группы H нетривиален и содержится в C. Отсюда в силу леммы 1 следует прямая разложимость группы H. Значит, (XM)' = X.

В частности, H' = C.

3. Поскольку группа H предполагается не вполне факторизуемой, она содержит конечную группу Миллера — Морено W с $|W'|=p^a$, где a>1. Рассмотрим конечную подгруппу $U=\langle W',M\rangle$. Так как $N_H(U')\supseteq C$ и $N_H(U')\supseteq M$, то $U' \lhd H$. Тогда из утверждения пункта 2 настоящего доказательства следует, что (U'M)'=U'. Пусть X_α — произвольное конечное множество элементов из C. Подгруппа $U_\alpha=\langle X_\alpha,M\rangle$ конечна, $U_\alpha\cap C=C_\alpha\lhd H$ и, значит, в силу утверждения пункта 2 $C_\alpha=(U_\alpha)'$.

Рассмотрим подгруппу $B=\bigcup_{\alpha} C_{\alpha}$, порожденную всеми подгруппами C_{α} . Она, очевидно, нормальна в H и содержится в C. Поскольку любой элемент из C содержится по крайней мере в одном множестве C_{α} , то $C\subseteq B$. Значит, $C=\bigcup_{\alpha} C_{\alpha}$. Отсюда с помощью трансфинитной индукции и утверждения пункта 2 нетрудно получить разложение подгруппы C в прямое произведение конечных нормальных делителей группы E0. Если E1 — любой из них, то E2 — конечная неабелева группа с дополняемыми неабелевыми подгруппами. Применяя ко всем таким подгруппам теорему из [14], получаем, что E3 — бесконечная группа типа E4 или E3 теоремы 1.

Лемма доказана.

Лемма 8. Пусть H — локально конечная ненильпотентная прямо неразложимая не вполне факторизуемая группа с бесконечным коммутантом и дополняемыми неабелевыми подгруппами. Если силовские подгруппы группы H абелевы, а коммутант H' неабелев, то H — бесконечная группа типа 4 теоремы 1.

Доказательство. Бесконечность группы H следует из бесконечности ее коммутанта H'.

1. Пусть $C = C_{H'}(H'')$. Тогда $C \triangleleft H$ и $H'' \subseteq C$. Покажем, что C — абелева группа. Действительно, $C' \subseteq H'' \subseteq Z(C_{H'}(H'')) = Z(C)$. В силу леммы 1 C' = 1, а в силу леммы 6 группа H содержит бесконечную максимальную абелеву нормальную подгруппу K конечного индекса в H. Пусть CK = T. Тогда вследствие абелевости нормальных подгрупп C и K коммутант T' содержится в их пересечении: $T' \subseteq K \cap C = K_1$. Но $K_1 = (K \cap C) \subseteq Z(T)$ и, значит, $T' \subseteq Z(T)$. Согласно лемме 1 T' = 1. Итак, подгруппа T абелева, содержит коммутант H'' и имеет в группе H конечный индекс. Следовательно, $T \subseteq C_H(H'')$ и, значит, централизатор $N = C_H(H'')$ имеет в группе H конечный индекс. Заметим, что в силу леммы 1 N является абелевой группой. Отсюда и из дополняемости в H неабелевых подгрупп следует, что фактор-группа H/N неабелева вполне факторизуема.

Пусть X_1 — нормальная подгруппа простого порядка p в фактор-группе H/N, а X — ее прообраз в H. Подгруппа X неабелева и дополняема в H. Если $H = X \leftthreetimes Y$, то подгруппа NY имеет простой индекс в H. Пусть $t \in H$, $t \notin (NY)$. Тогда $N \lang Y$, $t \ngeq \supseteq (NY) \lang t \rgroup = H$. Подгруппа $R = \lang Y$, $t \rgroup$ конечна и, очевидно, неабелева. Поскольку $R'' \subseteq \subseteq H'' \subseteq C$ и в силу леммы 2 коммутант R'' дополняем в R, например, подгруппой U, заменив R на U, не теряя общности, можно считать R двуступенно разрешимой группой. Согласно лемме R0, а из описания конечных R1-групп с дополняемыми неабелевыми подгруппами [14] следует, что R'0 — вполне факторизуемая абелева группа.

Далее, R — дисперсивная группа. Пусть $R_i = P_i \leftthreetimes D$, где P_i — силовская p_i -подгруппа группы R'. Используя результаты работы [14], можно разложить P_i в прямое произведение минимальных нормальных делителей группы R. Если P_1 — один из них, то $(N \cap P_1) \lhd R$. Значит, либо $P_1 \subset N$, либо $P_1 \cap N = 1$. Так как фактор-группа H/N вполне факторизуема, отсюда следует, что R' разлагается в прямое произведение нормальных в R подгрупп простых порядков. Не теряя общности, можно считать, что $N \cap R' = 1$.

2. Покажем, что если $X \triangleleft H'$, $X \subset H''$, то $\big(XR'\big)' = X$.

Действительно, предположим, что $(XR')' \neq X$. Ясно, что $(XR')' \subseteq X$. Если $x_1 \in (XR')'$, $x_2 \in X$, $x_2 \notin (XR')'$, то в конечной группе $\langle x_1, x_2, R' \rangle$ центр нетривиален и содержится в X. Тогда и центр Z(H') группы H' нетривиален и содержится в H''. Получили противоречие с леммой 1. Значит, (XR')' = X. Утверждение доказано.

Из него, в частности, следует, что H'' = (H''R')'.

3. Пусть $y \in H''$, $[y, R'] \neq 1$. Тогда $W = \langle y, R \rangle$ — неабелева конечная группа. $1 \neq L =$

 $=(H''\cap W) \triangleleft W$, и, значит, $N_H(L) \supseteq R$. Но $L \subset N$, а N — абелева группа. Поскольку H=NR, L — конечный нормальный делитель группы H, содержащийся в H''. Тогда в силу утверждения пункта 2 настоящего доказательства (LR')'=L. Вследствие выбора подгруппы R пересечение $L\cap R=1$. Рассмотрим подгруппу $M=L \leftthreetimes R$. Нетрудно убедиться, что

$$M = M'' \times (R' \times D),$$

где M'' = L. Подгруппу L можно считать, без потери общности, минимальным нормальным делителем группы H (а значит, и M).

Тогда на основании результатов работы [19] силовские подгруппы группы M, а значит, и D элементарные абелевы. Следовательно, $R=R' \leftthreetimes D$ — вполне факторизуемая группа. Тогда если пересечение $N \cap R \neq 1$, то его дополнение в R дополняет N в H. Не теряя общности, можно считать, что

$$H = N \setminus R$$
.

Как показано в [19], M''R' — вполне факторизуемая группа, |R'| = q, |D| = r, $|M''| = p^r$, где p, q, r — различные простые числа. Таким образом,

$$H = N \times (\langle b \rangle \times \langle c \rangle),$$

где |b| = q, |c| = r.

Пусть X_{α} — произвольное конечное множество элементов из N . Подгруппа $U_{\alpha} = \langle X_{\alpha}, b, c \rangle$ конечна, $U_{\alpha} \cap N = C_{\alpha} \triangleleft H$ и, значит, из утверждения пункта 2 доказательства леммы 7 следует, что $C_{\alpha} = (U_{\alpha})'$.

Рассмотрим подгруппу $B = \bigcup_{\alpha} C_{\alpha}$, порожденную всеми подгруппами C_{α} . Она, очевидно, нормальна в H и содержится в N. Поскольку любой элемент из N содержится по крайней мере в одном множестве X_{α} , то $N \subseteq B$. Значит, $N = \bigcup_{\alpha} C_{\alpha}$. Отсюда с помощью трансфинитной индукции и утверждения пункта 2 настоящего доказательства нетрудно получить разложение подгруппы H'' в прямое произведение конечных минимальных нормальных делителей группы H. Если C_{β} — любой из них, причем $C_{\beta} \subseteq H''$, то $C_{\beta}R$ — конечная неабелева группа $C_{\beta} \subset C_{\beta}R$ — конечная $C_{\beta} \subset C_{\beta}R$ — конечная коммутантом и дополняемыми неабелевыми подгруппами. Если же $C_{\beta} \subset C_{\beta}R$ — тростое число. Применяя ко всем таким подгруппам теорему [14], получаем, что $C_{\beta}R$ — бесконечная группа типа 4 теоремы 1.

Лемма доказана.

Доказательство теоремы 1. Heoбxodumocmb. Пусть G — локально конечная ненильпотентная и, значит, неабелева группа с дополняемыми неабелевыми подгруппами. Если

$$G = H \times B, \tag{3}$$

где обе подгруппы H и B неабелевы вполне факторизуемые, то и группа G такая же и, значит, принадлежит типу 1 доказываемой теоремы. Отсюда вследствие неабелевости группы G следует, что одна из подгрупп, например B, в разложении (3) является абелевой вполне факторизуемой, а вторая, H, — прямо неразложимой неабелевой не вполне факторизуемой группой. Если коммутант H' подгруппы H конечен, то в силу леммы H можно считать конечной группой. Применяя к H теорему из [14], получаем, что H — конечная группа одного из типов H чеоремы H бесконечен, то необходимость следует из лемм H и H можно счинеобходимость следует из лемм H и H

 \mathcal{L} остаточность. 1. Пусть группа G удовлетворяет условию теоремы 1. В силу разложения (3), где B — вполне факторизуемая абелева группа, а H — неабелева группа, достаточно доказать дополняемость в группе H неабелевых подгрупп из H . Действительно, если F — подгруппа группы G, то

$$FB = F((F \cap B)K) = FK = F \times K$$
,

где K — дополнение подгруппы $F \cap B$ в B. С другой стороны, по свойству прямого произведения [20, с. 104] $FB = (H \cap FB) \times B$. Следовательно, если подгруппа $H \cap FB$ дополняема в H, то FB, а значит, и F дополняемы в группе G. Осталось заметить, что группы $H \cap FB$ и F одновременно абелевы или неабелевы.

- 2. Дополняемость неабелевых подгрупп в конечной группе H типа 2-4 теоремы 1 следует из результатов работы [14]. В дальнейшем подгруппу H можно считать бесконечной, а в силу леммы 3 можно считать, что бесконечен и ее коммутант H'. Дополняемость неабелевых подгрупп в бесконечной группе H типа 2 теоремы 1 доказывается аналогично лемме 10 [13].
- 3. Пусть H бесконечная группа типа 3 и R ее неабелева подгруппа. Тогда RL = $L \leftthreetimes (RL \cap P)$ по лемме Черникова [16, с. 151]. Пусть $D = RL \cap P$. Единственной недополняемой подгруппой в группе P является ее коммутант P'. Поскольку $C_P(L) \lhd P$, $1 \ne C_P(L) \ne P$, то $P' \subseteq C_P(L)$. Следовательно, подгруппа RL абелева в случае D = P' и этот случай невозможен. Таким образом, подгруппа P дополняема в группе P. Пусть $P = D \cdot N$, $P \cap N = 1$. Тогда $P \in L(DN) = L(D) \cap R = L(DN) = L(D) \cap R = 1$. Но

$$RL = \big(R(R\cap L)\big)L = R\big((R\cap L)L\big) = R\big((R\cap L)T\big) = \big(R(R\cap L)\big)T = RT = T \times R\,,$$

где T — дополнение к подгруппе $R \cap L$ в L, составленное из множителей некоторого разложения подгруппы L в прямое произведение нормальных в H подгрупп простых порядков. Отсюда следует, что подгруппа TN дополняет подгруппу R в группе H.

4. Пусть H — бесконечная группа типа 4 и R — ее неабелева подгруппа. Тогда имеет место следующее утверждение.

Для любой неабелевой группы R из H и любого минимального нормального делителя K_{α} группы H , содержащегося в K , либо $K_{\alpha} \subset R$, либо $K_{\alpha} \cap R = 1$.

Действительно, предположим, что K_1 — минимальный нормальный делитель группы H ,

содержащийся в K, причем $1 \neq K_1 \cap R = M \neq K_1$. Ясно, что K_1 имеет непростой порядок. Поскольку подгруппа R неабелева, то $R \cap \langle b \rangle = \langle b_1 \rangle \neq 1$. Далее, $M \triangleleft R$, следовательно, $b_1^{-1}Mb_1 = M$, т. е. подгруппа b_1 действует на K_1 приводимо. Из полученного противоречия следует доказываемое утверждение.

Далее, используя утверждение из пункта 4 настоящего доказательства, рассуждаем, как при рассмотрении случая группы типа 3.

5. Пусть H — группа типа 4 и R — ее неабелева подгруппа. Нетрудно заметить, что вместо дополняемости неабелевой подгруппы R в указанной выше группе H достаточно доказать дополняемость в H подгруппы Z(H')R. Поэтому можно считать, что $Z(H') \subseteq R$. Но тогда $R = Z(H') \leftthreetimes L$, где $L = R \cap H'' \langle b, a \rangle$. Итак, достаточно доказать дополняемость подгруппы L в группе $H'' \langle b, a \rangle$.

Поскольку $R = Z(H') \leftthreetimes L$ и R — неабелева группа, то $L \not\subseteq H''$. Если $\pi(L) \supseteq \{q,r\}$, то подгруппа L в группе $H''\langle b,a\rangle$ дополняема, а если $\pi(L) \cap \{q,r\} = \emptyset$, то подгруппа R абелева вопреки ее выбору. Так как множества $\pi(H'')$, $\{q\}$ и $\{r\}$ попарно не пересекаются, осталось рассмотреть два случая: либо $\pi(L) \cap \{q,r\} = \{r\}$, либо $\pi(L) \cap \{q,r\} = \{q\}$. В первом случае в силу полной факторизуемости группы $H''\langle b\rangle$ подгруппа L дополняема в группе $H''\langle b,a\rangle$. Во втором случае вследствие неабелевости группы R пересечение $L \cap H''$ нетривиально. Пусть P_i — силовская p_i -подгруппа коммутанта H''. Если $L \cap P_i \neq 1$, то подгруппа $L \cap P_i \bowtie \langle b' \rangle$, где $\langle b' \rangle$ — силовская $L \cap P_i = 1$, то положим $L \cap P_i = 1$, то полож

^{1.} *Hall Ph.* Complemented groups // J. London Math. Soc. – 1937. – **12**. – P. 201–204.

^{2.} Баева Н. В. Вполне факторизуемые группы // Докл. АН СССР. – 1953. – 92, № 5. – С. 877 – 880.

^{3.} *Черникова Н. В.* Группы с дополняемыми подгруппами // Мат. сб. – 1956. – **39**. – С. 273 – 292.

^{4.} *Черникова Н. В.* К основной теореме о вполне факторизуемых группах // Группы с системами дополняемых подгрупп. – Киев: Ин-т математики АН УССР, 1972. – С. 49 – 58.

^{5.} *Черников С. Н.* Группы с системами дополняемых подгрупп // Mat. cб. – 1954. – **35**. – С. 93 – 128.

^{6.} *Горчаков Ю. М.* Примитивно факторизуемые группы // Учен. зап. Перм. ун-та. – 1960. – **17**, вып. 2. – С. 15 – 31.

Черников С. Н. Исследование групп с заданными свойствами подгрупп // Укр. мат. журн. – 1969. – 21, № 2. – С. 193 – 209.

^{8.} *Зуб О. Н.* Группы, нециклические подгруппы которых дополняемы // Группы с ограничениями для подгрупп. – Киев: Наук. думка, 1971. – С. 134 – 159.

^{9.} Сысак Я. П. Конечные элементарно факторизуемые группы // Укр. мат. журн. – 1977. – 29, № 1. – С. 67 – 76.

^{10.} Алексеева Э. С. Бесконечные непримарно факторизуемые группы // Некоторые вопросы теории групп. – Киев: Ин-т математики АН УССР, 1975. – С. 123 – 140.

- 11. Сучков Н. М. О некоторых линейных группах с дополняемыми подгруппами // Алгебра и логика. 1977. 16, N = 5. С. 603 620.
- 12. *Барьшовец* П. П. О конечных неабелевых группах с дополняемыми неабелевыми подгруппами // Укр. мат. журн. -1977. -29, № 6. C. 733 737.
- 13. Барьшовец П. П. Конечные неабелевы 2-группы с дополняемыми неабелевыми подгруппами // Теоретикогрупповые исследования. Киев: Наук. думка, 1978. С. 34 50.
- 14. *Барьшовец П. П.* Об одном классе конечных групп с дополняемыми неабелевыми подгруппами // Укр. мат. журн. -1981. -33, № 3. C. 291-296.
- 15. *Барышовец П. П.* О бесконечных группах с дополняемыми неабелевыми подгруппами // Укр. мат. журн. 2013. **65**, № 11. C. 1443 1455.
- 16. Черников С. Н. Группы с заданными свойствами системы подгрупп. М.: Наука, 1980. 384 с.
- 17. *Мищенко Б. И.* Локально ступенчатые группы с дополняемыми бесконечными неабелевыми подгруппами // Укр. мат. журн. -1991.-43, № 7-8.- С. 1098-1100.
- 18. *Taunt D*. On *A* -groups // Proc. Cambridge Phil. Soc. 1949. **45**, № 1. P. 24 42.
- 19. *Маланьина Г. А., Хлебутина В. И., Шевцов Г. С.* Конечные минимальные не вполне факторизуемые группы // Мат. заметки. 1972. **12**, № 2. С. 157 162.
- 20. Курош А. Г. Теория групп. 3-е изд. М.: Наука, 1967.

Получено 13.01.14, после доработки — 02.12.14