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TWO-TERM DIFFERENTIAL EQUATIONS
WITH MATRIX DISTRIBUTIONAL COEFFICIENTS

JABOYIEHHI JTUPEPEHIIAJIBHI PIBHAHHSA
3 MATPUYHUMU KOEPINIEHTAMU-PO3NIOAIJIAMU

We propose a regularization of the formal differential expression

I(y) ="y () + q()y(t), t € (a,b),

of order m > 2 with matrix distribution g. It is assumed that ¢ = Q{[™/?) where Q = (Qi,5)i j=1 is a matrix function with
entries Qi ; € La[a, b] if m is even and Q;,; € Li1[a, b, otherwise. In the case of Hermitian matrix ¢, we describe self-
adjoint, maximal dissipative, and maximal accumulative extensions of the associated minimal operator and its generalized
resolvents.

3anponoHOBaHO Peryisipu3aLiio GopManbHOTO AU(EPEeHIiaTbHOTO BUpasy MOPSIKY m > 2

l(y) ="y () + a(y(t), t€ (a,b),

3 MATPHUYHOK y3aranbHeHow QyHkiiew ¢. Ipumyckaerses, wo g = QU2 ne Q = (Qi,5); j=1 — marpuuna QyHKIis
3 enemeHTaMu Q;; € Lo[a,b] y Bunanky mapHoro m i Q;; € Li[a,b] mis HenapHoro m. Y BUIaaky epMiToBoi
MaTpHIli ¢ OMKMCAHO CAMOCTIPSHKEH] MAKCUMAIIbHI IMCUIIATHBHI Ta MAKCUMAJIbHI aKyMYJIATHBHI PO3LIMPEHHS aCOLiHOBAHOIO
MiHIMaJBHOTO OIlepaTopa Ta HOro y3arajbHEeHi pe30JIbBEHTH.

1. Introduction. In [1] (see also [2]) it was proposed a regularization with the help of quasi-
derivatives of the two-term formal differential expression

U(y) =i"y"™ +qy, m =3, (1)
with distributional potential ¢ = Q(™/2)| where Q € Ly[a,b] if m is even and Q € L1[a, ]
otherwise. Note that the case m = 2 was considered earlier in [3] which started a new development
in the theory of Schrodinger operators with distributional potentials. We mention here only papers
[4, 5] and references therein. In particular in [5] (see also [6]) spectral properties of Schrodinger
operators with matrix distributional potentials were studied.

The main purpose of this paper is the extension of the results of [1] to the case of matrix differential
operators of the form (1), acting in the Hilbert space Ls([a, b], C*) = (La([a, b])®, s € N. In the case
of formally self-adjoint quasidifferential expression we apply the boundary triple technique to give
the explicit description of the various classes of extensions of the corresponding minimal operator.

The paper is organized as follows. In Section 1 we recall basic definitions and known facts
concerning the matrix quasidifferential operators. Section 2 presents the regularization of the formal
differential expression (1) using the quasiderivatives. In Section 3 the boundary triplets for the
minimal symmetric operators are constructed and maximal dissipative, maximal accumulative and
self-adjoint extensions of these operators are explicitly described in terms of boundary conditions.
Section 4 deals with the formally self-adjoint quasidifferential operators with real-valued coefficients.
In this case we prove that every maximal dissipative (or accumulative) extension of the minimal
operator is self-adjoint and describe all such extensions. In Section 5 the extensions with separated
boundary conditions are considered. Section 6 deals with generalized resolvents of the minimal
operator.
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2. Matrix quasidifferential expressions. In this section we recall some basic facts concerning
the matrix quasidifferential operators on a finite interval. For a more detailed discussion of quasi-
differential equations the reader is referred to [7, 8] in the scalar coefficients case and to [9, 10] for
general case with matrix coefficients.

Let m, s € N and a finite (closed) interval [a, b] be given. For a given set T, M(T") denotes the
set of (s x s)-matrices with entries in 7. Denote by Z,, ([a, b]) the set of the (m x m)-matrix-valued
functions A with entries ay, ; satisfy

1) ayj € My(Li[a,b]), k,j=1,2,...,m,

2)ag; =0,7 > k+2, agp1 is invertible a. e.on J fork=1,2,...,m — 1.

Such matrices will be referred to as Shin — Zettl matrices of order m. Define inductively the associated
quasiderivatives of orders & < m of a (vector) function y € Dom (A) in the following way:

Dlly .=y,
k
D[k}y::a;}ﬁl(t) Dlk— 1] Za D= 1] , k=1,2,....m—1,
7j=1
where @y, m+1 := I, the identity (s X s)-matrix, and the associated domain Dom (A) is defined by

Dom(A) := {y ’D[k]y € AC([a,b],C%), k=0,m —1 } .

The above yields D™y € L1 ([a, b], C*). The quasidifferential expression [(y) of order m associated
with A is defined by

I(y) := ™ DMy, (2)
It gives rise to the associated maximal quasidifferential operator
Linax: y = U(y),
Dotn(Lnax) = {y € Dom(A) ‘ DMy € Ly([a,b], (CS)}

in the Hilbert space La([a, b], C?), and the associated minimal quasidifferential operator is defined as
the restriction of L, onto the set

Dom(Lyip) := {y € Dom(Lyax)

DWy(a) = DHy(b) = 0, k = m} .

If the matrix functions ay , are sufficiently smooth, then all the brackets in the definition of the
quasiderivatives can be expanded, and we come to the usual ordinary differential operators.

Let us recall the definition of the formally adjoint quasidifferential expression [ ™ (y). The formally
adjoint (also called the Lagrange adjoint) matrix A™ for A € Z,, 5([a, b]) is defined by

At = —AGTAT A,
where AT is the conjugate transposed matrix to A and
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0 0 e 0 =14

0 0 R

A = : : : : :
0 (-nym™1ir, ... 0 0

(—1)™I, 0 .0 0

One can easily see that A ! = (—1)""1A,,. In the similar way one can define the Shin-Zettl
quasiderivatives associated with A which will be denoted by DOy DUy .. Dimly, acting on
the domain

Dom(A*) := {y ’D{k}y € AC([a,b],C*), k=0,m — 1 } .

The formally adjoint quasidifferential expression is defined as [ (y) := im D™}y, Denote the
associated maximal and minimal operators by L. . and L. respectively. The following results are
proved in [9] (see also [10]).

Lemma 1 (Green’s formula). For any y € Dom(Lyax), 2 € Dom(L;

max

) there holds

b

/ (D[m}y‘z_y , D{m}z> dt = 3 (= 1)k LDty DT [i=h

o k=1

Lemma 2. For any (ap, a1, .., Qm—1), (80,81, -+ Bm—1) € C™ there exists a function y €
€ Dom(Lyax) such that

DWy(a) = ap, DWyb) =By, k=0,1,...,m—1.

Theorem 1. The operators Ly, L;;in? Limax, L. are closed and densely defined in
Lo ([a,b],C®), and satisfy
:Knin = L$axv Ljnax = Lrtlin‘

If U(y) = Ut (y), then the operator Ly, = L. is symmetric with the deficiency indices (ms, ms) ,
and
*

_ *
min — LmaXa Lmax

= Lmin.
3. Regularizations by quasiderivatives. Consider the formal matrix differential expression
Uy) ="y () + q(ty(t), m>2,
assuming that

m
2

q:@m,n:[],

M;(La[a,b]), m = 2n, 3
Q €
My(Ly[a,b]), m=2n+1,

where the derivatives of () are understood in the sense of distributions. Introduce the quasiderivatives
as follows:
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D[T]y:y(r)’ T:O,17...,m_n_17

Dlm=ntHly — (plm=nth=1lyy/ 4 j=m(—1) (Z> QDMy, k=0,1,....n-1,
“4)

i (DI=Uy) +i=m(—1)" (Z) QDMy, m=2n+1,
y =

(Dm=ly) + @Dy + (—1)"*+1Q%y, m = 2n,

where ( > are the binomial coefficients. It is easy to verify that for sufficiently smooth matrix
J

functions () we have [(y) = im Dy The Shin- Zett]l matrix corresponding to (4) has the form

0 I, 0 ... 0 .0 0
0 0 I, ... 0 .0 0
i <g> Q 0 0 0 0 0
A= 0 i ?) Q 0 0 o o |
0 0 0 0 0 I
(—1)%5%,”@2 0 0 i—m(—1)"H (Z) Q 0 0

)

where 9;; is the Kronecker symbol. Note that under assumptions (3), all the coefficients of the Shin -
Zettl matrix (5) are integrable matrix functions. The regularization of the initial formal differential
expression (1) is defined by (2) and generates the corresponding quasidifferential operators L,i, and
Lmax-

Remark 1. For m —n < r < m the quasiderivatives D"} depend on the choice of the an-
tiderivative () of order n of the (matrix) distribution ¢ which is defined up to a a polynomial of
order < n — 1. Nevertheless in the sense of distributions ™ DMy = l[y] does not depend on this
polynomial. Morever, it is easy to see that the corresponding maximal and minimal operators also do
not depend on the choice of antiderivative (cf. [2]).

In the case s = 1, m = 2 the above regularization was proposed in [3]. The extension to arbitrary
even m was announced in [11]. The case of general m > 3 was considered in [1, 2]. Here we extend
this approach on the arbitrary s > 1.

4. Extensions of symmetric quasidifferential operators. Throughout the rest of the paper
we assume that the matrix distribution ¢ is Hermitian (due to Remark 1 one can suppose that ) is
Hermitian). It follows from Theorem 1 that the minimal quasidifferential operator L,,;, is symmetric
with deficiency indices (ms, ms). Therefore it is interesting to describe various classes of extensions
of Lyin in Lo([a, b], C?). For this purpose we will exploit the theory of boundary triplets [12].

Definition 1. Let T be a closed densely defined symmetric operator in a Hilbert space H with
equal (finite or infinite) deficiency indices. The triplet (H,T'1,T's), where H is an auxiliary Hilbert
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space and T'1, 'y are the linear maps from Dom (T™) to H, is called a boundary triplet for T, if the
following two conditions are satisfied:
(1) for any f,g € Dom (L*) there holds

(T f,9)y = (f;T79)3y = T1f, Tag) g — (T2 f, Tag)

(2) for any g1, go € H there is a vector f € Dom (T*) such that T'1f = g1 and Taf = go.

The above definition implies that f € Dom (7) if and only if I'; f = I's f = 0. A boundary triplet
(H,T'1,T'9) with dim H = k exists for any symmetric operator 7' with equal non-zero deficiency
indices (k, k) (k < 00), but it is not unique [12—14].

The following result is crucial for the rest of the paper.

Lemma 3. Let n be a positive integer. Define linear maps Ty}, T from Dom(Lmpayx) to C™*
as follows: for m = 2n we set

— DBy (a) D%(a)
on | (=1)"Dl"ly(a) DI*=y(a)
Ty =i , Ty = (6)
(1] D[Qn—l}y(b) (2] D[O]y(b)
(=11 D"y (b) DIr=1y(p)
and for m = 2n + 1 and we set
—DErly(a) DOy (a)
(—=1)"DIHy(a) DI~y (a)
[y o= 2" DErly(b) ;o Ty:= DOy (b) ,
(=11 DIty (b) DI~y (b)
aDly(b) + BDIMy(a) ¥DI"ly(b) + 6Dy (a)
where "
a=1, B=1, 7:(_21) + 4, 5:(_12>+¢.

Then (C™*,T'y),T'jg)) is a boundary triplet for Lyin.
Remark 2. The values of the coefficients «, 3, v, d may be replaced by an arbitrary quadruple
of numbers satisfying the conditions

oy +ay=(-1)", Bo+pB6=(—1)"", ad+py=0,

By +a@ =0, «ad—pBy#D0.

Proof of Lemma 3. The proof follows from Lemmas 1 and 2. It repeats the arguments of [1, 2]
in the case of scalar differential operators (s = 1).

For any bounded operator K in C™® denote by Ly the restriction of L, onto the set of the
functions y € Dom (Lyax) satisfying the homogeneous boundary condition in the canonical form
(see [12])
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(K — )Ty +i (K +I) Ty = 0. (7)

Similarly, denote by L¥ the restriction of Ly, onto the set of the functions y € Dom (Lmax)
satisfying the boundary condition

Recall that a densely defined linear operator 7" on a complex Hilbert space H is called dissipative
(resp. accumulative) if

S (Tx,x)y >0 (resp. <0), forall € Dom(T)

and it is called maximal dissipative (resp. maximal accumulative) if, in addition, T" has no nontrivial
dissipative (resp. accumulative) extensions in /. Every symmetric operator is both dissipative and
accumulative, and every self-adjoint operator is a maximal dissipative and maximal accumulative
one. According to Phillips’ theorem (see [12, p. 154]) every maximal dissipative or accumulative
extension of a symmetric operator is a restriction of its adjoint operator. Abstract results of [12] and
Lemma 3 lead to the following description of dissipative, accumulative and self-adjoint extensions of
Lmin-

Theorem 2. Every Li with K being a contracting operator in C™*, is a maximal dissipative
extension of Luiy. Similarly every L™ with K being a contracting operator in C™* is a maximal
accumulative extension of the operator Lyy,. Conversely, for any maximal dissipative (respectively,
maximal accumulative) extension L of the operator Ly, there exists a contracting operator K such
that L = L (respectively, L= LK), The extensions Ly and L™ are self-adjoint if and only if K is
a unitary operator on C™*. These correspondences between operators { K} and the extensions {E}
are all bijective.

Remark 3. 1t follows from [10] (Theorem 7.2) that in the case of even m L, and therefore all
its extensions are bounded below. Otherwise, for odd m the operator L, is unbounded below and
above (see, e.g., [10], Theorem 10.3).

Remark 4. Analogously to [2] one can prove that the mapping K — L is not only bijective but
also continuous. More accurately, if unitary operators K, strongly converge to an operator K, then

H(LK—)\)_I—(LK"—)\)_IH—>0, n— oo, ImA#0.

The converse is also true, because the set of unitary operators in the space C™* is a compact set.
This means that the mapping
K= (Lg—A)"", ImA#0,

is a homeomorphism for any fixed A € C \ R.

5. Real extensions. Recall that a linear operator L acting in Lo([a, b], C*) is called real if for
every function y € Dom(L) the complex conjugate function 7 also lies in Dom(L) and L(7) = L(y).

If the minimal quasidifferential operator is real, one arrives at the natural question on how to
describe its real extensions. The following theorem is valid.

Theorem 3. Let m = 2n, and let the entries of the Hermitian matrix distribution q be real-
valued, then the maximal and minimal quasi-differential operators Ly.x and Ly, generated by
Shin— Zettle matrix (5) are real. All real maximal dissipative and maximal accumulative extensions
of Liin are self-adjoint. The self-adjoint extensions L or L are real if and only if the unitary
matrix K is symmetric.
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Proof. By Remark 1 one can assume that () is real all the coefficients of the quasi-derivatives
are real matrix functions. Therefore

D[Z}y:m, i:1,2,...,m,

which implies [(7) = I(y). Thus for any y € Dom (Lyax) we have § € Dom(Lpyax) and Liyax(7) =
= Lmax(y). It follows that the operator Ly, is real. Analogously, the operator Ly, is a also real.
Let Lk be an arbitrary real maximal dissipative extension given by the boundary conditions (7), then
for any y € Dom(Lj) the complex conjugate 7 satisfies (7) too, that is

(K—-1) Fmﬂ—l—i(K—i—I) Iy =0.
Due to the real-valuedness of the coefficients of the quasiderivatives, the equalities (6) imply

Py =Ty, TI'gy=Tpy.

By taking the complex conjugates we obtain
(K=1) Ty =i (K+1)Tpy =0,

and L C L¥ due to Theorem 2. Thus, the dissipative extension Ly is also accumulative, which
means that it is symmetric. As Lx is a maximal dissipative extension of L, we have that the
operator Ly = L is self-adjoint. It follows that K is a unitary operator. In this case the boundary
condition (7) is equivalent to

(Kil —I) F[l]y—i(Kil +I) F[z}y:O.

It follows that L = L ~. On the other hand K= LXK and therefore K—! = K. As K is unitary,
we have K1 = KT which gives K = KT Here K7 is the transpose of the matrix K. In a similar
way one can show that a maximal accumulative extension L¥ is real if and only if it is self-adjoint
and K = KT

Theorem 3 is proved.

6. Separated boundary conditions. In this section we discuss the extensions of L,;, defined
by the so-called separated boundary conditions. Denote by f, the germ of a continuous function f
at the point a. We recall that the boundary conditions that define an operator L C L.y are called
separated if for any y € Dom(L) and any g, h € Dom(Lyax) with

8a = Ya, gn =0, h, =0, hy, = yp

we have g, h € Dom(L).

The following theorem gives a description of the operators Ly and L* with separated boundary
conditions in the case of an even order m = 2n .

Theorem 4. The boundary conditions (1) and (8) defining Ly and L respectively are separated
if and only if the matrix K has the block form

<Ka O )
K = , )
0 K,

where K, and Ky, are (ns x ns)-matrices.
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Proof. We consider the operators Ly only, the case of L can be considered in a similar way.
Denote

11[1} = (Pla,rlb) ) Fm =: (Fga, sz) ,

where

Fiay = 2" (=DE"y(a), ..., (~1)"Dy(a) )
Puy = 2 (D2 Uy (v), ..., (~1)" "' Dly(v))
Loy = (Dy(a), .., D" y(a))

Topy = <D[O]y(b), . ,D“"”y(b)) .

Let y, g € Dom (Lyay). Clearly, for any ¢ € [a, b] the equality y. = g implies that DIy, = DIFl g,
k=0,1,...,m — 1. In particular, the equality y, = g, implies I'1,y = I'1,9 and I'sy = I'9, g, and
the equality yp, = hy, implies T'1py = I'1ph and Doy = Toph.

If K has the form (9), then the boundary condition (7) can be rewritten as a system

(Ko — D)T1ay +i(Ka + D)Dagy = 0,
— (Kb — I)Flby + ’L(Kb + I)FZby = 07

and these boundary conditions are obviously separated. Conversely, let the boundary conditions (7)
be separated. The matrix K € C2"$*2"5 can be written in the block form

K K
with ns x ns blocks K ;.. We need to show that K15 = K31 = 0. Let us rewrite boundary conditions
(7) in the form of the system
(K11 — DT1ay + Ki2lpy + i(K11 + Il2qy + iK12l2y = 0,
KoiT1ay + (Kag — DTy + iKo1Toqy + (Ko + 1)y = 0.

As the boundary conditions are separated, any function g with g, = y, and g, = 0 also satisfies this
system, which gives

K1 [T1ay + il2qy] = Tay — il2qy,
Ko T1ay +iT2,y] = 0.
This means that

Dy + i2qy € Ker(K21), y € Dom(Lg). (10)
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For any z = (z1,22) € C?™ consider the vectors —i (K + I)z and (K — I) z. Due to Lemma 3
there is a function y, € Dom(Ly,ax) such that

—i (K + 1)z =Ty,

(D
(K - I) z = F[Q]yz.

A simple calculation shows that y, satisfies the boundary conditions (7) and, therefore, y, € Dom (L ).
We can rewrite (11) as a system

—i(K11 + I)z1 — iK1220 = 1492,
—iK9121 — i(Kag + I)zo = T'1pys,
(K11 — I)z1 + K222 = T'aays,
Koz + (Ko — I)22 = Tapys.
It follows from the first and the third equations of the system above that
Thay: + il2qy. = —2iz1

for any z = (z1,22) € C?". By (10) we have that Ker(Ks;) = C™ or equivalently Ko = 0.
Similarly one can prove that K75 = 0.

Theorem 4 is proved.

7. Generalized resolvents. Let us recall [15] that a generalized resolvent of a closed symmetric
operator L in a Hilbert space # is an operator-valued function A — R) defined on C \ R which can
be represented as

Ryt = P (LY =AM 'z, ze,

where LT is a self-adjoint extension L which acts in a certain Hilbert space H™ containing H as a
subspace, I is the identity operator on H ", and P is the orthogonal projection operator from H ™
onto H. It is known [15] that an operator-valued function Ry (Im A # 0) is a generalized resolvent
of a symmetric operator L if and only if it can be represented as

+oo

(Raz,y)y = /

—0o0

d(Fﬂx,y), ey e,
w—A
where F), is a generalized spectral function of the operator L, i.e., u + F}, is an operator-valued
function £}, defined on R and taking values in the space of continuous linear operators in H with the
following properties:

(1) for po > pu1, the difference F),, — F},, is a bounded nonnegative operator;

(2) F,4+ = F,, for any real y;

(3) for any « € H there holds

n—
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The following theorem provides a description of all generalized resolvents of the operator Ly .
Theorem 5. 1. Every generalized resolvent Ry of the operator Ly, in the half-plane Im A < 0
acts by the rule Ryh =y, where y is the solution of the boundary-value problem

I(y) =Xy +h,

(K(X) — I)F[l}f—Fi(K()\) +1) F[Q]f = 0.

Here h(z) € La([a,b],C®) and K (M) is an (ms x ms)-matrix-valued function which is holomorph
in the lower half-plane and satisfy || K (\)|| < 1.

2. In the half-plane Im \ > 0, every generalized resolvent of Ly acts by Ryh =y, where y is
the solution of the boundary-value problem

I(y) =Xy +h,

(KQA) =D Ty f =i (KA) + 1) Ty f = 0.

Here h(z) € Lo([a,b],C®) and K(\) and K(\) is an (ms x ms)-matrix-valued function which is
holomorph in the upper half-plane and satisfy || K (\)|| < 1.
The parametrization of the generalized resolvents by the matrix-valued functions K is bijective.
Proof. The result directly follows from Lemma 3 and [14] (Theorem 1) which prove a description
of generalized resolvents in terms of boundary triplets. We need only to take as an auxiliary Hilbert
space C™* and as the operator vy := {me, F[Q]y}.
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