UDC 512.5

B. Koşar, C. Nebiyev, N. Sökmez (Ondokuz Mayıs Univ., Turkey)

G-SUPPLEMENTED MODULES

G-ДОПОВНЕНІ МОДУЛІ

Following the concept of generalized small submodule, we define *g*-supplemented modules and characterize some fundamental properties of these modules. Moreover, the generalized radical of a module is defined and the relationship between the generalized radical and radical of a module is investigated. Finally, the definition of amply *g*-supplemented modulec is given with its some basic properties.

Із застосуванням поняття узагальненого малого підмодуля визначено поняття g-доповнених модулів та охарактеризовано деякі фундаментальні властивості цих модулів. Крім того, визначено поняття узагальненого радикала модуля та вивчено співвідношення між узагальненим радикалом та радикалом модуля. Насамкінець наведено визначення поняття рясно g-доповнених модулів та вивчено основні властивості цих модулів.

1. Introduction. Throughout this paper all rings will be associative with identity and all modules will be unital left modules.

Let R be a ring and M be an R-module. We will denote a submodule N of M by $N \leq M$ and a proper submodule K of M by K < M. Let M be an R-module and $N \le M$. If L = M for every submodule L of M such that M = N + L, then N is called a small submodule of M and denoted by $N \ll M$. Let M be an R-module and $N \leq M$. If there exists a submodule K of M such that M=N+K and $N\cap K=0$, then a submodule N of M is called a direct summand of M and it is denoted by $M=N\oplus K$. For any module M, we have $M=M\oplus 0$. Rad M indicates the radical of M. An R-module M is said to be simple if M have no proper submodules with distinct zero. A submodule N of an R-module M is called an essential submodule and denoted by $N \triangleleft M$ in case $K \cap N \neq 0$ for every submodule $K \neq 0$. Let M be an R-module and K be a submodule of M. K is called a generalized small submodule of M if for every essential submodule T of M with the property M = K + T implies that T = M, then we write $K <<_g M$. It is clear that every small submodule is a generalized small submodule but the converse is not true generally. Let M be an R-module. M is called a (generalized) hollow module if every proper submodule of M is (generalized) small in M. Here it is clear that every hollow module is generalized hollow module. The converse of this statement is not always true. M is called local module if M has a largest submodule, i.e., a proper submodule which contains all other proper submodules. Let U and V be submodules of M. If M = U + V and V is minimal with respect to this property, or equivalently, M = U + V and $U \cap V \ll V$, then V is called a supplement of U in M. M is called a supplemented module if every submodule of M has a supplement.

Now we will give some important properties of generalized small submodules.

Lemma 1 [6]. Let M be an R-module and K, $N \leq M$. Consider the following conditions:

(1) If $K \leq N$ and N is generalized small submodule of M, then K is a generalized small submodule of M.

- (2) If K is contained in N and a generalized small submodule of N, then K is a generalized small submodule in submodules of M which contains submodule N.
 - (3) Let $f: M \to N$ be an R-module homomorphism. If $K <<_q M$, then $f(K) <<_q M$.
 - (4) If $K <<_{g} L$ and $N <<_{g} T$, then $K + N <<_{g} L + T$.

Corollary 1. Let M be an R-module and $K \leq N \leq M$. If $N <<_q M$, then $N/K <<_q M/K$.

Corollary 2. Let M be an R-module, $K <<_q M$ and $L \le M$. Then $(K + L)/L <<_q M/L$.

2. G-supplemented modules.

Definition 1. Let M be an R-module and $U, V \leq M$. If M = U + V and M = U + T with $T \leq V$ implies that T = V, then V is called a g-supplement of U in M. If every submodule of M has a g-supplement in M, then M is called a g-supplemented module.

Supplemented modules are g-supplemented.

Lemma 2. Let M be an R-module, $U \leq M$ and $V \leq M$. Then V is a g-supplement of U in M if and only if M = U + V and $U \cap V <<_g V$.

Proof. (\Rightarrow) Let $U \cap V + T = V$ and $T \subseteq V$. Then $M = U + V = U + U \cap V + T = U + T$ and since V is a g-supplement of U in M and $T \subseteq V$, T = V. Hence $U \cap V <<_q V$.

(\Leftarrow) Let M=U+V and $U\cap V<<_gV$. Let M=U+T with $T\unlhd V$. Since M=U+T and $T\le V$, by Modular Law $V=V\cap M=V\cap (U+T)=U\cap V+T$. Then by $U\cap V<<_gV$, T=V. Hence V is a g-supplement of U in M.

Lemma 3. Let M be an R-module, $M_1 \leq M$, $U \leq M$ and M_1 be a g-supplemented module. If $M_1 + U$ has a g-supplement in M, then so does U.

Proof. Let X be a g-supplement of M_1+U in M. Then $M_1+U+X=M$ and $(M_1+U)\cap X<<_g X$. Since M_1 is g-supplemented, $(U+X)\cap M_1$ has a g-supplement Y in M_1 , i.e., $M_1\cap (U+X)+Y=M_1$ and $M_1\cap (U+X)\cap Y<<_g Y$. Following this, we have $M=M_1\cap (U+X)+Y+U+X=U+X+Y$ and $U\cap (X+Y)\leq X\cap (U+Y)+Y\cap (U+X)\leq X\cap (M_1+U)+Y\cap M_1\cap (U+X)<<_g X+Y$. Hence X+Y is a g-supplement of U in M.

Theorem 1. Let $M = M_1 + M_2$. If M_1 and M_2 are g-supplemented modules, then M is a g-supplemented module.

Proof. Clear from Lemma 3.

Corollary 3. Any finite sum of g-supplemented modules are g-supplemented.

Lemma 4. Let M be an R-module, $X \leq U \leq M$ and V be a g-supplement of U. Then (V+X)/X is a g-supplement of U/X in M/X.

Proof. Since V is a g-supplement of U in M, we have M=U+V and $U\cap V<<_g V$. Thus $(U\cap V+X)/X<<_g (V+X)/X$ by Lemma 1. Since M=U+V, it is easy to see that M/X=(U+V)/X=U/X+(V+X)/X and $U/X\cap (V+X)/X=(U\cap V+X)/X<<_g (V+X)/X$. Therefore (V+X)/X is a g-supplement of U/X in M/X.

Theorem 2. If M is a g-supplemented module, then every factor module of M is g-supplemented. **Proof.** Clear from Lemma 4.

Corollary 4. If M is a g-supplemented module, then the homomorphic image of M is g-supplemented.

Theorem 3. Let M be an R-module, K be a direct summand of M and $T \le K$. Then $T <<_g K$ if and only if $T <<_g M$.

Proof. (\Rightarrow) Clear from Lemma 1.

(\Leftarrow) Let $T <<_g M$. Assume that $M = K \oplus Y$. If we consider the canonical map $\pi : M \to K$, then we get $T = \pi (T) <<_g \pi (M) = K$ by Lemma 1.

Definition 2. Let M be an R-module and $T \leq M$. If T is both maximal and essential in M, then T is called a generalized maximal submodule of M. The intersection of all generalized maximal submodules of M is called the generalized radical of M denoted by $\operatorname{Rad}_g M$. If M has not a generalized maximal submodule, then we denote $\operatorname{Rad}_g M = M$.

Lemma 5. Let M be an R-module. If M has at least one generalized maximal submodule, then $\operatorname{Rad}_g M = \sum_{L < <_g M} L$.

Proof. Let $L <<_g M$. If $L \nsubseteq T$ with T is a generalized maximal submodule of M, then we get L+T=M since T is maximal. Thus T=M, which is a contradiction. Therefore L is contained in every generalized maximal submodule of M. Hence $\sum_{L<<_g M} L \subseteq \operatorname{Rad}_g M$.

Let $x \in \operatorname{Rad}_g M$. Suppose that Rx is not generalized small in M and $\Omega = \{T \leq M \mid x \notin f \in T, T \leq M \text{ and } Rx + T = M\}$. Since Rx is not generalized small in M, we get $\Omega \neq \emptyset$. It is clear that every chain has a upper bound by inclusion in Ω . Hence Ω contains a maximal element K by Zorn's lemma. We can easily show that K is a generalized maximal submodule of M. Since $K \in \Omega$, we have $x \notin K$. Since $\operatorname{Rad}_g M \subseteq K$, we get $x \notin \operatorname{Rad}_g M$. This is a contradiction. Therefore $Rx <<_g M$ and then $\operatorname{Rad}_g M \subseteq \sum_{L <<_g M} L$. So we get $\operatorname{Rad}_g M = \sum_{L <<_g M} L$.

Corollary 5. If M has no generalized maximal submodule, then $\operatorname{Rad}_g M = \sum_{L < <_g M} L$.

Proof. Similar to the proof of Lemma 5.

Corollary 6. Let M be an R-module. Then $\operatorname{Rad} M \leq \operatorname{Rad}_q M$.

Example 1. For a non-zero simple R-module M, we have Rad $M = 0 \neq M = \operatorname{Rad}_a M$.

Theorem 4. Let M be an R-module with $\operatorname{Rad}_q M \neq M$. The following conditions are equivalent:

- (i) M is a generalized hollow module,
- (ii) M is a local module,
- (iii) M is a hollow module.

Proof. (i) \Rightarrow (ii) Let M be a generalized hollow module and T be any proper submodule of M. Then $T <<_g M$ and we have $T \leq \operatorname{Rad}_g M$ by Lemma 5. Since $\operatorname{Rad}_g M \neq M$, M is local and so the proof is complete.

- $(ii) \Rightarrow (iii)$ Clear.
- $(iii) \Rightarrow (i)$ Clear.

Theorem 5. If M is a finitely generated R-module and M has a proper essential submodule, then every proper essential submodule of M is contained in a generalized maximal submodule.

Proof. Let K be any proper essential submodule of M. Since M is finitely generated, K is contained in a maximal submodule T and $T \subseteq M$ due to $K \subseteq M$.

Theorem 6. Let M be an R-module and $\operatorname{Rad}_g M \neq M$. If every proper essential submodule of M is contained in a generalized maximal submodule, then $\operatorname{Rad}_g M <<_g M$.

Proof. Clear.

3. Amply G-supplemented modules.

Definition 3. Let M be an R-module and $U \leq M$. If, for every $V \leq M$ with M = U + V, U has a g-supplement T in M such that $T \leq V$, then we say that U has ample g-supplements in M. If every submodule of M has ample g-supplements in M, then M is called an amply g-supplemented module.

Theorem 7. Let M be an R-module, $U_1, U_2 \leq M$ and $M = U_1 + U_2$. If U_1 and U_2 have ample g-supplements in M, then $U_1 \cap U_2$ has also ample g-supplements in M.

Proof. Let $U_1 \cap U_2 + T = M$. Then we have $M = U_1 + U_2 \cap T = U_2 + U_1 \cap T$. Since U_1 and U_2 have ample g-supplements in M, then U_1 has a g-supplement V_1 with $V_1 \leq U_2 \cap T$ and U_2 has a g-supplement V_2 with $V_2 \leq U_1 \cap T$. Since $M = U_1 + V_1$ and $V_1 \leq U_2$, by Modular Law $U_2 = U_2 \cap (U_1 + V_1) = U_1 \cap U_2 + V_1$. Similarly we have $U_1 = U_1 \cap U_2 + V_2$. Then $M = U_1 + U_2 = U_1 \cap U_2 + V_2 + U_1 \cap U_2 + V_1 = U_1 \cap U_2 + V_1 + V_2$ and $U_1 \cap U_2 \cap (V_1 + V_2) = U_1 \cap (V_1 + U_2 \cap V_2) = U_1 \cap V_1 + U_2 \cap V_2 < g$. Hence $V_1 + V_2$ is a g-supplement of $U_1 \cap U_2$ and since $V_1 + V_2 \leq T$, $U_1 \cap U_2$ has ample g-supplements in M.

Theorem 8. If M is an amply g-supplemented module, then every factor module of M is amply g-supplemented.

Proof. Clear.

Corollary 7. If M is an amply g-supplemented module, then the homomorphic image of M is amply g-supplemented.

Proof. Clear from Lemma 4.

Theorem 9. Let M be an R-module. If every submodule of M is g-supplemented, then M is amply g-supplemented.

Proof. Clear.

Lemma 6. If M is a π -projective and g-supplemented module, then M is an amply g-supplemented module.

Proof. Let M=U+V and X be a g-supplement of U. Since M is π -projective and M=U+V, there exists an R-module homomorphism $f:M\to M$ such that $\mathrm{Im}\, f\subset V$ and $\mathrm{Im}(1-f)\subset U$. So, we have M=f(M)+(1-f)(M)=f(U)+f(X)+U=U+f(X). Suppose that $a\in U\cap f(X)$. Since $a\in f(X)$, then there exists $x\in X$ such that a=f(x). Since a=f(x)=f(x)-x+x=x+1 and so $f(X)\in f(U\cap X)$. Therefore we get $U\cap f(X)\leq f(U\cap X)<0$. This means that f(X) is a g-supplement of U in M. Moreover $f(X)\subset V$. Therefore M is amply g-supplemented.

Now the following corollary can be easily written as a consequence of Lemma 6.

Corollary 8. If M is a projective and g-supplemented module, then M is an amply supplemented module.

- 1. Büyükaşik E., Türkmen E. Strongly radical supplemented modules // Ukr. Math. J. − 2011. − 63, № 8. − P. 1140 − 1146.
- 2. *Clark J., Lomp C., Vanaja N., Wisbauer R.* Lifting modules supplements and projectivity in module theory // Front. Math. Basel: Birkhäuser, 2006.
- 3. Kasch F. Modules and rings. Munich: Ludwing-Maximilian Univ., 1982.
- 4. Lomp C. Semilocal modules and rings // Communs Algebra. 1999. P. 1921 1935.
- 5. Sharpe D. W., Vamos P. Injective modules. Cambridge Univ. Press, 1972.
- 6. *Sökmez N., Koşar B., Nebiyev C.* Genelleştirilmiş Küçük Alt Modüller // XXIII Ulusal Mat. Semp. Kayseri: Erciyes Üniv., 2010.
- 7. Zöschinger H. Komplementierte Moduln über Dedekindringen // J. Algebra. 1974. 29. P. 42 56.
- 8. Zöschinger H. Moduln die in jeder Erweiterung ein Komplement haben // Math. Scand. 1974. 35. P. 267 287.
- 9. Zöschinger H. Basis-Untermoduln und Quasi-kotorsions-Moduln über diskrete Bewertungsringen // Bayer. Akad. Wiss. Math.-Nat. Kl. Sitzungsber. 1977. P. 9 16.

Received 02.07.13