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THE FIRST PASSAGE TIME AND AN ESTIMATE OF THE NUMBER
OF LEVEL-CROSSINGS FOR A TELEGRAPH PROCESS

YAC HEPHIOI'O JOCATHEHHA TA OHIHKA YUCJIA IEPETUHIB PIBHSA
JJIsA TEJIET'PAOHUX ITPOLECIB

It is a well-known result that almost all sample paths of Brownian motion or Wiener process {W (¢)} have infinitely many
zero-crossings in the interval (0,d) for 6 > 0. Under the Kac condition, the telegraph process weakly converges to the
Wiener process. We estimate the number of intersections of a level or the number of level-crossings for the telegraph
process. Passing to the limit under the Kac condition, we also obtain an estimate for the level-crossings for the Wiener
process.

Binomo, o maiixe Bci BUOGIPKOBI TpaexTopii OpoyHIBChKOro pyxy um BinepiBcbkoro npouecy { W (¢)} marorh HecKiHUEHHO
Garato HynpOBHX meperuHiB B inTepsami (0,9) mpu 6 > 0. 3a ymoBu Kama tenerpaduuii mpouec cmabko 30iraerscs
JI0 BiHEPIBCHKOTO Mporecy. B poOOTi OMIHIOETHCS YMCIO MEPETUHIB PiBHS [T TenerpadHoro mporecy. Ilepexomsuu 1o
rpaHumi 3a ymoBu Kara, MU TakoXk OTpUMYEMO OLIIHKY MEPETHHIB PiBHS LIS BIHEPIBCHKOTO MPOIIECY.

1. Introduction. Let us set the probability space (€2, F, P). On the phase space T = {0, 1} consider
an alternating Markov stochastic process {£(t), t > t}, having the sojourn time 7; corresponding to
the state x = ¢ € T, and generating matrix

-1 1
Q= .
1 —1
Denote by {z(t), t > 0} the associated telegraph process. Then

— 2(t) = v(=1)®), v = constant > 0,

and z(0) = x.

2. Distribution of the first passage time. In this section we will find the explicit mathematical
form for the distribution of the first passage time of a specific level L of a telegraph process on the
real line.

Let assume a fixed level L, then let us define A(t) = L — x(¢). Furthermore, we assume that
z=L-—x9>0.

Suppose £(0) = k and define

Tp(z) =inf{t >0: A(t) =0}, ke{0,1},
i.e., Ti(z) is the first passage time of the level L by the telegraph process {z(¢)} after assuming

£0) = k.
Now, let us denote as f(t, z) dt = P(Tj(z) € dt) the probability density function (pdf) of T} (z).
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Theorem 1. Fort > il
v
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s I | =022 — 22
=Mt _ AZ v
fO(tv z) =e 5(2 Ut) + 02 V22 _ 2 )

A
n(a(t-2 LA =)D SVeRE =2
fit,z) = e 1<t<_2))+)\z/ (tu)\/§2u2722 >

z/v

dul ,

where I1(+) is the modified Bessel function of the first kind.
Proof. Consider the Laplace transform of T (z), k € {0,1},

vr(s,z) = E [e_ST’“(Z)} , §>0,

and by using renewal theory concepts we can obtain the following system of integral equations for
these Laplace transforms, i.e.,

s+ by s+
wo(s,z) =e v Z+/e v ugpl(s,z—u)du:
v

0
2
_e—st z 1+)\/est/\uap1(s,u)du ,
“a
o0
v1(s,2) = 26#1)\2/6_8—1’;)\“(,00(8,11) du.

z

We then differentiate these two equations to obtain the following system:

0 s+ A A

o e0(s:2) = =2 (s,2) + 5 (),
0 s+ A A
—1l5,2) = 2 i(s,2) -  pols, )

It is well-known, Pogorui and Rodriguez-Dagnino [1], that this set of equations relating ¢ (s, u)
and @1 (s,u) can be represented as

Mf=0,
where
2 s+ A _i
M- 0z v v
A g_s#—)\
0z v
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Then f(z) satisfies the following equation:
(Det(M))f =0,

where Det(M) is the determinant of the matrix M.
By calculating the determinant, we have

9? 242\
) - T ) =

The solution of this equation has the form

f(Z) — Cl 6\/52+2/\S% + CQ e*\/ 52+2)\8%.

v

The constants C'; and C5 are obtained from the conditions imposed on the system of integral equations,
and we can obtain the solutions

(,00(5,2) — 6—6\/5(54—2)\) (1)
and
p1(s,2) = shA- ‘)\8(8+2/\) e u Vst 2)

The inverse Laplace transform of (g (s, z) with respect to s yields the following (generalized) pdf
(see [2, p. 239], formula 88):

t> 2. 3)
v

Hence,

I < 242 _ z2>
z
P(Ty(z) € dt) = e M6(z — vt) dt + zhe M —" dt, t>°>
0242 _ 52 v
Similarly, the inverse Laplace transform of the first term of 1 (s, 2) can be obtained from Bateman
and Erdélyi [3, p. 237] and [4, p. 284] (formula (11))

—At

£_1<3+A—¢Am’t>:1£ (s+2- VaG o)1) =S niw). @

A

The inverse Laplace transform of ¢4 (s, z) is just the convolution of Egs. (3) and (4). Thus, the
pdf f1(t,z) is given by

F o At—u) L (2\/@21&2 - 22>
filt,z) = / ) LAt —w)) |e (2 — vu) + zAe ™ o= du =
z/v
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A
Iy t (Nt —u)) v2u? — 22
= ¢ I ()\ (t — E)) + z)\e_)‘t/ du
t—Z v ) (t—u)\/v2u2—z2
v z/v

fort > z

The(q)}rem 1 is proved.

3. Estimation of the number of level-crossings for a telegraph process. We denote as Cj (¢, z)
the number of intersections of level z made by the particle z(¢) during the time interval (0,¢), ¢ > 0,
assuming that £(0) = k € {0, 1}. We consider the renewal function Hy(t,z) = E[C(t, 2)].

Now, let us consider the so-called Kac’s condition (or the hydrzodynamic limit), i.e., let A = 2,

v
v=ce !, thenas e — 0 (or A — oo and v — oo) we have that 5N — 2.

It was proved in [5] that, under Kac’s condition, the telegraph process z(t) weakly converges to
the Wiener process W (¢) which is normal distributed as N (0, ct).
Theorem 2. Under Kac's condition we have

H, H,
lim — k(8,0) _ lim cHi(t,0) _ lim ec Hy,(t,0) —C\/7\/
A—00 Na\ v—00 v —0

Proof. The Laplace transform of the general renewal function will be used in this proof, see the
seminal book on this subject Cox [6]. It follows from (2) that the Laplace transform H;(s,0) =
= L(H(t,0),t) of Hi(t,0) with respect to ¢ has the form

k
~ Ie=[s5+X—/s(s+2)) A
Hl(s,O):SZ< A ) T s(s +2X\) — 82

k=0

It is not hard to verify that

E[C1(t,0)] = £~ (ﬁ/ﬁ 52> -
_ % + ((; + At) To(2)¢) + wl(w)) M, t>0.

B0 [2
Ji, === = \/; vi.

Theorem 2 is proved.
Taking into account A = =2, v = ce !, we have

Hence,

Hi(t,0) :ﬁi\/izc\/z\/iv

as v — 0.

Therefore, for a fixed ¢ > 0 the number of crossings of level 0 by the telegraph process, under
Kac’s condition, goes to oo as the velocity v.

We should notice that the result of Theorem 2 is in correspondence with results of M. 1. Portenko [7].
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Now, let us denote as

Fy(z) = / Fu(t,0) dt = / L dt.
0 0
Theorem 3.
Az
p 1_/”1(u)du Ci(2,0) > ==\ Gy a()
/ W 1 1\¢Ly = \/g 1/2

as A — oo. The cumulative distribution function (cdf) G1/(y) is the one-sided stable distribution
satisfying the condition y'/?[1 — Gi/o(y)] — 3 asy — oo [8].
Proof. 1t is easily seen that

Yot

A
lim v/a(1 - Fi(2) = lim v 1—/6 .

T—00
0

L(2M\)dt | =

=2 lim e 222121 (202) =

1
T—00 VT ’
Therefore, L(x) = /(1 — Fi(x)) is slowly varying and
1— Fi(z) =2 Y2L(z).

—Uu

T =t Az
Since Fi(x) = / eTll(At) dt = / e—ll(u) du and A — oo we have Fi(z) = F(s) =
0 o U

= 5‘1/2L(s), where for a fixed x > 0, s = Az — co. By using a result in [8, p. 373] (Chapter XL.5),
we obtain

Az
e 3
_ - > —
Pl O/UI1(U)du C1($,0)_\/§ — G1/2(y)

as A — oo, where the cdf Gy/p(y) is the one-sided stable distribution satisfying the condition
y'/2[1 = Gy ja(y)] = 3as y — oo.

Theorem 3 is proved.

Therefore, under Kac’s condition the number of crossing of a level by the telegraph process, i.c.,
Ci(z,0), is of the order of magnitude v\ = v.

4. Estimation of the number of level-crossings in higher dimensions. Firstly, let us consider
the following modification of a telegraph process. Suppose {6y, k > 1} is a sequence of independent
identically distributed exponential random variables with common rate A > 0 and 7,, = Z:_l O,
n > 1. A particle starts its motion on a line from the origin and moves in one of two directions with
probability 1/2 during the random time 6,. At epoch 7,, n > 1, the particle chooses one of two
directions on the line with probability 1/2, and keeps moving along this direction with velocity v.
By using the notation stated in Section 1, for this process we have
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stA
wo(s,2) =e v +/ v cposz—u)+c,01(sz—u)]du:

st A s+A
—e v ? 1+/€ v “lpo(s,u) + p1(s,u)] du |,
v

A siA, [ _stA,
01(s,2) = 2—6 v /e v "lpo(s,u) + ¢1(s, )] du.

We then differentiate these two equations to obtain the following system:

0 s+ A/2 A

%900(572) = - v 800(8’2)4_%@1(5’”)7
0 s+ A/2 A
& 901(87 Z) - v (Pl(svz) - 2% @0(&“)'

Much in the same manner as we obtained Egs. (1), (2)

(,00(8,2) _ 6_% s(s-i-)\)’

and

901(5’ Z) =

2 -2 z
s+ A ):/s(s+)\) o EVAEN)

Similarly to the developments in Section 3, we obtain

E[C4(t,0)] = £ ( ( A2 ) _

s(s+ ) —s?

(1 + At) Io(A\t) + M (M) e M2 ¢ > 0. (5)

_1+1
22

Remark 1. We should note that E[C} (¢, 0)] does not depend on the particle’s velocity v.

It follows from Eq. (5) that
A—00 \/X ™

In Kac’s condition we have A = ¢72, v = ¢!, then

E[C(t,0)] \/7\/&} as € —0.

Let {v(t),t > 0} be a renewal process such that v(t) = max{m > 0: 7, < t}, where
m
Tm = Zk:l O, 0o =0and 6 >0,k =1,2,..., are nonnegative iid random variables denoting the
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interarrival times. We assume that these random variables have a cdf G(¢) and that there exists the

d
pdf g(t) = 7 G(t). In most of this paper, we have considered exponentially distributed interrenewal

times, i.e., g(t) = Ae M5y

We will study the random motion of a particle that starts from the coordinate origin 0 =
= (0,0,...,0) of the space R", at time ¢ = 0, and continues its motion with a velocity v > 0
along the direction n[()n), where nz-(n) = (Ti1, T2y - -+, Tin) = (T1, T2, ..., 2y), 1 =0,1,2,..., are iid
random n-dimensional vectors uniformly distributed on the unit sphere Q?‘l = {(x1,m2,...,2p):
24zl 22 =1}

At instant 7; the particle changes its direction to n§”) = (x11,212,...,%1n), and the particle

continues its motion with a velocity v > 0 along the direction of n§"). Then, at instant 75 the particle

changes its direction to nén) = (221,92, ...,T2,), and continues its motion with a velocity v along

(n)

the direction of 7]2n , and so on.
Denote by X(™)(t), t > 0, the particle position at time ¢. We have that

v(t)
X (1) = 0> "0 (75— 751) + oml) (6= Tuge)- (6)
=1

Basically, Eq. (6) determines the random evolution in the semi-Markov (or renewal) medium v(t).
Thus, v(t) denotes the number of velocity alternations occurred in the interval (0, ).
The probabilistic properties of the random vector X (") (¢) are completely determined by those of
(n)

its projection X (™) (t) = v Py n§7i)1(7'j —7j-1) + 01, (t = Ty()) on a fixed line, where n§n) is the
(n)

projection of m; ~ on the line.

Indeed, let us consider the cdf Fx(y) = P (X™(t) <y). Then, the characteristic function
(Fourier transform) H (t,a) = H(t) of X (t), where a = ||ae|| = v/aF + a3 + ... + a2, is given
by

H(t) = E [exp {i (e, X (1)) }] = B |exp {i ]| (e,X™(1)) }| =

_E [exp {iaX(”)(t)H - /eXp {i oy} dFx(y),

0

where X (") (t) is the projection of X (™) (t) onto the unit vector e and it has a cdf Fi (y).

Let us denote by f, ) (z) the pdf of the projection n§n)
shown in [9] that f, ) (z) is of the following form:

r(3)

fym (@) = \/aT <n21>

0, if zéd[-1,1].

of the vector n§n) onto a fixed line. It is

(1—ax2)=3/2 if zel-1,1],

Hence, it is not hard to verify that the cdf G,,(t) = P [m)i(n)Hi < t] is of the form
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n
T(— 1
1 At
Lt (§> [ e i e,
ﬁr( 5 ) 0
Gn(t):
n
(- 1
1 At
2_(2>_1 Xeve (1 — 22)"=3)/2 gy, if t<O0.
ﬁr<n2 ) 0

Denote by C(t,0) the number of crossing the hyperplane H = {x; = ¢ = constant} of the

space R" = {(x1,2z2,...,2,)}, z; € R, under the condition that the stochastic process starts from
the hyperplane H. The number C(¢,0) is also equal to the number of crossing of the level 1 = ¢
by the projection X (™) (t) of X(™(t) on the line £ = {(t,0,...,0)} such that t € R.

In accordance with Remark 1 the mean value E[C)(t,0)] does not depend on the particle’s

velocity v.

Therefore,

1 1
E[Ck(t,0)] = =+ =
Under Kac’s condition we have A = 72, v = £~ !, then

(1 + M) Io(At) + Xt I1(\t)) 2",

E[C(t,0)] ~ \/z\/%v as e —0.

It is well-known that under Kac’s condition X (™) (t) weakly converges to an n-dimensional Wiener

process W (t) [10].

® =N W

10.
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