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CLASSES OF ANALYTIC FUNCTIONS DEFINED
BY A DIFFERENTIAL OPERATOR RELATED TO CONIC DOMAINS*

KJIACH AHAJTITHYHUX ®YHKIIIH,
O BUBHAYEHI JTU®EPEHIIAJIBHUM OIIEPATOPOM,
BITHECEHUM JIO KOHIYHUX OBJACTEN

Let A be the class of functions f(z) = z+ Z:Q ak zk, which are analytic in the open unit disc A. We use a generalized
linear operator closely related to the multiplier transformation to investigate certain subclasses of A which map A onto the
conic domains. Using the principle of the differential subordination and the techniques of convolution, several properties
of these classes including some inclusion relations, convolution and coefficient bounds are studied. In particular, we derive
many known and new results as special cases.

Hexait A — xnac dymxuiit f(2) = z + 3.5, axz”, ananitmunnx y sinkpuromy omummunomy kpysi A. Jlo BuBYEHHS
nesikux miakiacis A, mo BimoOpaxaoTe A Ha KOHIYHI 00JACTi, 3aCTOCOBAaHO y3araibHEHHH JIHIHHUI Omeparop, TiICHO
OB’ SI3aHUK 3 MEPETBOPCHHSM MHOXXCHHS. 3a JOIOMOTOI MPHHUHUNY AU(EpeHLIaTbHOTO MiAMOPIIKYBAHHS Ta TEXHIKH
3rOPTOK BHBYEHO JICSKI BIACTHBOCTI IIMX KJIACiB, O BKITIOYAIOTH JICSKi CIIBBIIHONICHHS BKJIFOYCHHS Ta 3TOPTOK, & TAKOXK
OILIHKHU 1715 KoedimieHTiB. Hanpukiaa, HU3KY BiIOMHX Ta HOBHX PE3y/IbTaTiB OTPUMAHO SIK YaCTHHHI BUITQIKH.

1. Introduction. Let A be the class of functions of the form
o0
fE) =2+ s, (1.1)
k=2

analytic in the open unit disk A = {z: z € C and |z| < 1}. Let S denote the class of functions
f € A which are univalent in A. If f and ¢ are analytic in A, we say that f is subordinate to g,
written symbolically as f < g or f(z) < g(z) if there exists a Schwarz function w(z), is analytic
in A (with w(0) = 0 and |w(z)| < 1 in A) such that f(z) = g(w(z)), z € A. In particular, if the
function ¢(z) is univalent in A, then f(2) < g(z) if and only if f(0) = g(0) and f(A) C g(A).

A function f € A is said to be in the class of uniformly convex functions of order + and type 3,
denoted by g —UCV(y) [5] if

RES It

where 5 > 0, —1 < v < 1, 84+ > 0 and it is said to be in the corresponding class denoted by

B —SP(y) if
- zf’(Z)}
{f(Z) 0
where 5 >0, —1<y<land S+~ >0.

+7v, z€A, (1.2)

2f'(2)
f(2)

—1'+% 2 €A, (1.3)
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These classes generalize various other classes which are worthy to mention here. For example
the class 5 —UCV(0) = B — UCYV is the known class of S-uniformly convex functions [11]. Using
the Alexander type relation, we can obtain the class § — SP(7) in the following way:

feﬂ—SPWM#i/f@ﬁeB—um%worfeﬁ—U&%ﬁ@zﬁeB—SPh)
0

The class 1 —UCV(0) = UCV of uniformly convex functions was defined by Goodman [9] while
the class 1 — SP(0) = SP was considered by Rgnning [26].

Geometric interpretation. It is known that f € § —UCV(y) and g € § — SP(7) if and only
if the quantities 1 + zf”(2)/f'(z) and z¢'(z)/g(z), respectively, takes its all the values in the conic
domain Rg . which is included in the right half plane R(w) > (5 +v)/(1 + 3) and is given by

R = {w:u+iU€(C:u>ﬁ\/(u—1)2+v2—l—'y, B>0and~ e [—1,1)}. (1.4)

Let ]3/377 =14 Pz + ... denote the function which maps the unit disk conformally onto the
domain Rg given in (1.4). Let OR g be a curve defined by the equality

ORg~ = {w:u+iv€ C:u?= (5,/(u—1)2+u2+7)27 BZOand’yE[—l,l)}. (1.5)

After some calculations we can see that for 8 # 0, 9Rg , represents conic curves symmetric
about the real axis. Thus Rg, is an elliptic domain for 3 > 1, a parabolic domain for § = 1, a
hyperbolic domain for 0 < 8 < 1 and the right half plane R(w) > =, for 5 = 0.

The functions ﬁgﬁ play the role of extremal functions in the classes 73(13577) and were given in
[1] (also see for Taylor series expansion of 13577, [14, 16, 26]) as follows:

14+ (1—2y)z -
T B =0,
O%1+J>’ p=1,
i - - 2 1.6
Ba"/(z) 11—/82C0 {i(al‘ccosﬁ)zlogl—i_é} . f_ﬂz’ 0 </B< 1’ ( )
u(z)
IL—y . ™ Vit dx ﬁQ—fy
52—181“{216<t>/0 VI— /- } o P>h
where u(z) = 1’2_\>/;, te (0,1), z € A and

—Vitz

(1.7)

t)—/ dx
N ) V1 — 221 — 222

is called Legendre’s complete elliptic integral of the first kind and ¢ € (0,1) is such that § =
= cosh K/ (t)/4 K(t).

For functions f,g € A, given by f(z) = z + Z apz® and 9(2) = 2z + Zk
Hadamard product (or convolution) of f and g is deﬁned by -
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(f*xg)(z —Z—{—Zakbkz z € A.
Note that fxge A. Leta € R, c e R, ¢#0,—1,—2,... and let
vla,c;z) ==z + Z )i L 2 e A, (1.8)
where (k), is the Pochhammer symbol (or the shifted factorial) in terms of the gamma function,
given by
(%) [(k+n) L, n=0, keC\{0},
K n-——— < =
(k) k(k+1)...(k+n—-1), neN={1,2,...}, keC.

The Carlson — Shaffer operator [6] L(a, ¢) is defined in terms of Hadamard product by
L(a,c)f(z) =¢(a,c;2)  f(2), z€A, feA (1.9)

Note that £(a,a) is the identity operator and L(a,c) = L(a,b)L(b,c), (b,c # 0,—1,-2,...). We
also need the following definitions of a fractional derivative.

Definition 1.1 [21]. Let the function f be analytic in a simply-connected region of the z-plane
containing the origin. The fractional derivative of fof order « is defined by

NN S B (9 .
sz()-—r(l_a)dzo/(z_o ¢, 0<a<l,

where the multiplicity of (z — ()™ is removed by requiring log(z — () to be real when z — { > 0.
Using D¢ Owa and Srivastava [22] introduced the operator 2%: A — A, a € [0,1), which is
known as an extension of fractional derivative and fractional integral, as follows:

o o o N'k+1DI(2—a) B
N (z2) =T(2— a)z*DI f(z +Z Th+1—a) apz® =
=¢(2,2—a;2)* f(2) = L(2,2 — a)f(z). (1.10)

Note that Q¥ f(2) = f(2).
In [20], Orhan, Deniz and Réaducanu introduced the generalized linear multiplier fractional
differential operator D;‘i f: A— A of functions f € A defined by

DS f(z) = f(2),

Dy f(z) = DS ,uf (2) = M [QF(2)]" + (A = p)z[QF(2)] + (1= A+ p)[Q°f (2)],
(1.11)
DY f(2) = DS, (DYaf(2)
Dyef(z) = DS, (D3 £(2))
where A\ > > 0,0<a<landn e N.
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If f is given by (1.1), then from the definitions of the DT\LE‘ and ¢ it is easy to see that

DYRf(2) =2+ Y Wrn(A p, a)ag2", (1.12)
k=2
where
o JURHOV R Sl )] I (BE)

From (1.10) and (1.13), D;ﬁ f(2) can be written, in terms of convolution as

DY f(2) = (9(2.2 — a5.2) % gau(2)™ = £(2), (1.14)

where fx...% f = fl"l and
——

n times

23 — 22 — — z >
Irau(z) = a /\+M)+(1(_Az)f+2/\u 2+ =24+ > (1+ Ak +A—p)(k—1)) 2"

k=2

It should be remarked that the operator DQZZ is a generalization of many other linear operators
considered earlier. In particular, for f € A we have the following:

@) Di’g f(z) = D™ f(z), the operator investigated by Salagean [32];

(ii) D;f:g f(z) = D} f(2), the operator considered by Al-Oboudi [3];

(iii) Déff f(z) = Q%f(z), the fractional derivative operator studied by Owa and Srivastava [22];

@iv) Df\l”g f(z) = Dy . f (z), the operator investigated by Ridducanu and Orhan [28] (also see
Deniz and Orhan [7]);

v) D;‘:S‘ f(z) = DY f(), the operator considered by Al-Oboudi and Al-Amoudi [4];

(vi) D}\zg‘ f(z) = DS f(z), the operator studied by Noor, Arif and Ul-Haq [19].
Using the operator Df\L:Z‘, authors defined in [20] the classes 3 —UCV?:Z‘ (v) and 5 — 3777;3(7) For a
unified class of k-uniformly convex functions defined by the Dziok — Srivastava linear operator [23].

Definition 1.2. For A> u>0,0<a<1,8>0, -1 <~y <1and B+~ > 0 a function
f € Ais said to be in the class § — LICVK:z () if it satisfies the following condition:

"

(o) | |z (Phese)
—G > B
(Pras) (Phir)

Definition 1.3. For A> >0, 0<a<1,>0, -1 <~y <1land B+~ > 0 a function
f € Ais said to be in the class  — 8737;:3(7) if it satisfies the following condition:

R1+ +v, z€A. (1.15)

2 (Dyep() ol (Dres)

> -7
DYl f(2) Dy f(z)

—1|+7v, zeA. (1.16)
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Note that f € 8 — SPK’E(w) if and only if D;LZ‘ f € B — SP(y). Using the Alexander type
relation, it is clear that

fep —UCV?:;j(’y) sz2f e f— SPKZ‘(’V) (1.17)

Geometric interpretation. From (1.15) and (1.16), f € ﬁ—UCVZ:z(W) and g € 5—8737;:5 (7) if
and only if p(2) = 142Dy f(2))" /(DY f(2)) and q(2) = 2(D}"}9(2))"/ DY} g(2) take all its the
values in the domain R 3, given in (1.4) which is included in the half plane Rw > (84 v)/(1+ ).
Thus we may rewrite the conditions (1.15) and (1.16) in the form

p=<Ps, q=< Py, zeA, (1.18)

where the function ﬁgﬁ given by (1.6).
By virtue of (1.15) and (1.16) and the properties of domain R g -, we have, respectively

"
2 (DY f(2)
M SBEY o sen, (1.19)

R1+ (D;L:zf(z))/ 1+

and

S IC) N .

e > >0, z€A, 1.20
Dy f(2) 1+ 5 (120)
which means that
fep-UCVY(y)= DY feCV B+y ccy (1.21)
Aot Aop 1+8) —
and
n,a n,o 5+’7
fG,B—SP/\yu(’y)éD)MNféST (H—ﬁ C ST, (1.22)

where CV(7), ST (), CV, ST denote the well-known classes of y-convex, 7-starlike, convex and
starlike functions, respectively.

We note that by specializing the parameters n, o, A, p, 3 and y, the class 3 — SPT\L:Z(W) reduces
to several well-known subclasses of analytic functions. These subclasses are:

(@) 0—SPy((0) = 0—S8PY(0) = ST and 0—UCVY(0) = 0-UCV((0) = 0—SP1((0) =
= CV (see [8, p. 40-43]),

(b) 0= SPgo(y) = 0= SPY%(7) = ST(v) and 0 — UCVS (v)
— SP1(7) = CV(y) (see [24]),

(©) 1—8PY5(0) =1—S8Pg(0) = SP (see [27)),

(d) 1—UCVE(0) = 1 —UCV5(0) = 1 — SPy(0) = UCY (see [9, 16]),

() B—S8PY(0) =B —SPyy(0) = B — SP (see [12]),

() B—UCVY(0) = B —UCVy((0) = B — SPy((0) = B — UCY (see [11]),

0—UCVGH(7) = 0 —
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(g) 1— SPg’yz(Zp— H=1- 873(1]:8(2,0— 1)=PS*(p) (0<p<1l)andl —UCV?\”Z@,O— 1) =
=1- UCVézg(Qp -1)=1- S’Ptg(Qp — 1) =UCV(p) (see [2]),

(h) 1= 8PY0(7) =1 - 8Pyo(y) = SP(y) and 1 —UCVYS(y) = 1 —UCVgG(y) = 1 -
— SP1o(v) =UCV(7) (see [26)),

@) B —SPY%(Y) = B—SPyo(7) = B— SP(y) and B — UCVYS(y) = B — UCVy0(7) =
=3 — SPy(v) = B —UCV(7) (see [5),

() 0—SPYF(Y) = ST"(v) (see [32]),

(&) B—SPLH(0) =B — SP" (see [14, 17]),

(1) 0—SPyG(7) = STa(v) (see [33)),

(m) 1—SPyG(0) = SPy (see [34]),

(n) B—SPy(0) =B — SPy, (see [18]),

(©0) B—SPYG(v) =8P (8,7) and 8 —UCVY G (y) =UCVE \(B,7) (see [4]).

For special values of parameters n, a, A, 4, 5 and ~, from the general class 3 — SP;:S (7) and

the class 5 — LICV;Z’;! (7), the following new classes can be obtained which are open questions:

B—SPYI(y)=B—SPL,(7) and B—UCVY. () =B —UCVY ,(v),
0-SPyL(V) =STy,(v) and 0-UCVyYyi(vy) =CVL(Y),

1-— SPt\Lﬁ(O) = SP;L:Z and 1— Z/{CV;L”Z‘(O) = Z/ICVK:;".

B+

By (1.19) and (1.20), respectively, we note that S — UCVK’S(W) - CVK’Z‘ <1 B

)andﬁ—

~sPim st (13)).

In the present paper, basic properties of the classes 5 — UCVK:S('y) and 8 — SP;L:Z‘ () are studied,
such as inclusion relations and coefficient bounds. Some interesting consequences of the main results
and their relevance to known results are also pointed out.

2. Inclusion relations. In this section, we are going to give several inclusion relationships for
the classes 3 — Z/ICV?:Z‘ (v) and B — 3777;:3(7), which are associated with the general linear multiplier
fractional differential operator D;LZ‘ To establish our main results, we shall require the following
lemmas.

Lemma 2.1 [30]. Let f and g be starlike of order 1/2. Then so is f * g.

Lemma 2.2 [29,p. 54]. If f € CV, g € ST or f,g € ST (1/2), then for each function h
analytic in the unit disc A we have

(f = hg)(A)
(f *9)(A)

where o h(A) denotes the closed convex hull of h(A).
Lemma 2.3 [29, p. 60-61]. Suppose that 0 < b <c. Ifc>2o0rb+c> 3, then

p(b,c;z) =
k=0

Ccoh(A),

—

b)kzkH, z € A,
c)

—

ko

belongs to the class CV of convex functions.
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Lemma 2.4. Let Q°f be in the class 3 — 5737;’3(7). Then f is in the class [} — SP;"’Z‘(W).
Proof. Let Q%f c B — 877;1’3(7). Then from (1.22), Dg’zQaf € ST. Using (1.10) and (1.14),
we can write D;Z‘ f in terms of D?’SQO‘ f as follows:

D f(2) = 92 — a, 2 2) DR f(2).

Moreover, ¢(2 — «,2;z) € CV by Lemma 2.3 and so D;;“ f is a starlike function as a convo-
lution of convex and starlike functions (see [29, p. 54]). So z/D;z‘ f(z) # 0 for z € A and
2(Dy5 f(2))' /DY f(2) has no poles in A.

Furthermore, by convolution properties, we get

2Dy f(2)) = (2 = ,2;2) % 2(DYQ% f(2)),
Since (2 — a,2;2) € CV and Df\l’gQaf € ST, using Lemma 2.2 we have
/
z (Df\‘:gf(z)>’ 02— @, 2;2) * {z (fojﬂaf(z» / (D;L:Z‘Qaf(z)>] DYeQe f(2)
- €

Dy f(2) p(2 — a,2;2) * DY RO f(2)

2 (Dypae f)/
(D)

€ co (A) Cecl Rﬁﬁ.

Therefore, f € § — szz(’y)
Lemma 2.4 is proved.
Corollary 2.1. Let Q*f be in the class  — UCVK’Z‘(W). Then f is in the class [ — Z/{CV;L’;Y(W).
Proof. By virtue of (1.17) and Lemma 2.4, we obtain

Qfep— Z/{CV;L:Z‘(’V) s 2(Q%f) e B— 873;17’3(7) &

& Q% f € B-SPY(v) = 2f € B-SPY\L(v) & f€B-UCVYI(Y).

Therefore, f € 8 — UCV;‘:Z‘('V).
Corollary 2.1 is proved.
Lemma 2.5. Suppose that 3 +2y > 1. If f € B — SP;L:z(v), then D;:zf e ST (1/2).
Proof. The result follows immediately from (1.20) whenever (8 +v)/(1+ 5) > 1/2.
Theorem 2.1. If

1++5
2

A
0<A< and O<uand)\—1§u§m or [0=A=upu] or [0=p<A],

then
B—SPYTH(7) C B — SPYA(y). @.1)

Proof. In the proof we will use several convolution results, see for example [29]. In this proof,
for simplicity let us denote p(2,2 — ; 2) = ¢, gx, = g. From (1.18) and (1.14) it is easy to see that
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LG ol Dpitere)]
fGB—S,P)\“u W '<P1377(Z) = (@*g)[ 1 *DnJrl af(z) -<P/37'Y(Z) =
ko) wz [Drlery]
(gl o] Pt o)

(p*g)l-1 % DY f(2)

where the convex function Igﬁﬁ(z) =1+ Pz +...is given by (1.6) and (o * g)[=1 = [~ g[-1]
denotes the convolution inverse with respect to ¢  g. Recall that f[=% is the convolution inverse to
fif £+ fI5U = 2/(1 — 2). Now we will to show that gl=) is convex. If Ay > 0, then we have

> 1
1) — 1] 1] k|
14k 1+k
Y Lk 2 k| _
o) (1+k1)\/ ’Zk+k1 ] (1+k2)\ﬁzk+k2 ]
= ol ()« gl ()« gl Y(2), 2.3)
where
_ _ _ _ 2 _ _
pe= AR At V= = Ap)? — 4l + p N i—1a

2\

Observe that k1, k2 have a positive real under assumptions of Theorem 2.1. For R(z) > 0 or x = 0
the function

B > (14+2z) ,
_;(k+x)z z €A, 24

is convex univalent [30]. So gg_l} and gg_l} in (2.3) are convex when Ay > 0. Otherwise, if

pw=MX=0orif 0 = g < ), then it is easy to see that g{~! has the form of the type (2.4) so it is
convex too. In the famous paper [31] it was proved the Polya— Schoenberg conjecture that the class
of convex univalent functions is preserved under convolution. Under our assumptions on «a, A, i the

-1, =1

function gl = gy '*gs  1isconvex as the convolution of two convex functions and by Lemma 2.3
o0
_ _ 2 —a)i
P = (22— as2) T =24+ ) ( (2),3 2
k=1

is a convex function too. Therefore (¢ * g)[=! is the convex function. Let f € § — SP”H “(7). By
Definition 1.3 we have

(DY F(R)
—iTa s = Paaw(2)), 2.5)
D)\,—;L () By Wiz

where w is an analytic function with w(0) = 0 and |w(z)| < 1 for z € A. From (2.5) we have that
nH “f is a starlike function. Therefore, by (2.3) and by (2.5) we obtain from (2.2)
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(% ) s (D21 £(2)) Py (w(2))

(¢ g) U« DYER £ (2) < Pgq(2). (2.6)

feB-SPY(y) &

The function ﬁgﬁ is univalent so the subordination principle and Lemma 2.2 show that the last
subordination is true and so f € 8 — SPY(7).

Theorem 2.1 is proved.

Corollary 2.2. Let o € [0,1) and n € N. Under the conditions stated in Theorem 2.1 we have
B=S8Pyu(v) € B—SP().

Proof Suppose that f € § — SPY z( ). Then as in the proof of Theorem 2.1 we obtain

2f(e)_ [oxg) @)™ = (DL £(2)) Bos(w(2))
f(z) [(p* )lU(2)]) ™ % DY f(2)

Therefore, f € B — SP(v).

Corollary 2.2 is proved.

By (1.17) and Theorem 2.1, we deduce the next consequences.

Corollary 2.3. Let o € [0,1) and n € N. Under the assumptions in Theorem 2.1 we have
B—UCVS (1) € B —UCVLT (7).

Proof From (1.17) and Theorem 2.1, we get

< Pﬁ»’Y(Z)'

feB—UCVII(y) & 2f € B=SPY(y) & 2f € B—SPYN(y) & [ € B—UCVY(y).

Thus f € S —MCV)\ZM(W).

Corollary 2.3 is proved.

Corollary 2.4. Let a € [0,1) and n € N. Under the conditions stated in Theorem 2.1 we have
B — UCV;LZ;O:('Y) C B —-UCV(y).

Remark 2.1. (1) Taking v = o = = 0 and A = 1 in Theorem 2.1, we get the result by Kanas
and Yaguchi [13].

(2) Taking p = 0 in Theorem 2.1, we get a result due to Al-Oboudi and Al-Amoudi [4].

Remark 2.2. For special values of parameters n, «, 5 and v and for A, p satisfying the assump-
tions of Theorem 2.1 we obtain the following new results:

(1) B—=SPYI(7) € B— 8P}, (7) and B —UCVLHH(y) C B—UCVE ,(7),

(2) ST3,"(7) € STy(v) and CVILH(7) € CVIT(9),

(3) 573”“ @ CSPYY and UCVY LN CUCVYS.

Theorem 2 2. Suppose that 0 < 5 <a<l Then

B—SPY(y) C B —SPY(v),

whenever 5 + 2y > 1.
Proof. Let f € — SPK’/O:(fy). Then by (1.14) and convolution properties, we get

DY f(2) = [p(2,2 — 85 2) * ga u(2)]1 % £(2) = [0(2 — @, 2 — 6 2)]" 5 DO f(2)
and

2DV F(2)) = [p(2 — 0,2 = 6 2)|" % 2(DYE f(2)).
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Also, it is known [15] that p(2 — ,2 — §;2) € ST (1/2). So by applying Lemma 2.1 we have
[p(2 — a,2 — 6;2)]" € ST (1/2). For B+ 2y > 1, we have by Lemma 2.5 Dy f € ST (1/2).
Using Lemma 2.2, we obtain
(Dpg) T2 a2l s (D2r) / (DRs)) | DR )
= S

DY f(2) (2 — a,2 — 6;2)]" « DY f(2)

2 (Dyes)
€co| —(A) | CclRp,.
(P3s7)
Therefore, f € § — 8777;;2(7).

Theorem 2.2 is proved.

Corollary 2.5. Let B+ 2y > 1. Then 3 — 57)2:3(7) CB—8PL (7).

The proof of the following Corollary 2.6 runs parallel to that of Corollary 2.3, and we omit the
details.

Corollary 2.6. Let 0< § < o < 1. Then B —UCVY'%(v) C B — UCVY (7) € B —UCVY (v),
where 0+ 2y > 1.

Remark 2.3. (1) Taking f = A = p = 0 and n = 1 in Theorem 2.2, we get the result of
Srivastava, Mishra and Das [33].

(2) Taking vy = A = pu =0and 8 =n = 1 in Theorem 2.1, we get the result of Srivastava and
Mishra [34].

(3) Taking vy = A = p = 0 and n = 1 in Theorem 2.1 and Corollary 2.6, we get the result by
Mishra and Gochhayat [18].

(4) Taking ¢ = 0 in Theorem 2.1 and Corollary 2.6, we get the result of Al-Oboudi and Al-
Amoudi [4].

Remark 2.4. For special values of parameters n, «, 8 and =y, we arrive the following new results
for0<d<a<l:

(1) 8= SPG{(1) € B = SP;() and § - UCVG(7) € § = UCV () for 6427 > 1,

@) ST (y ) C ST (v) and CVY2(7) CCVM( ) for 1/2 <y < 1,

(3) SPY C SPY and UCYys ucv" o

From (1 15) and (1 16) we dlrectly obtain the following useful Theorem 2.3.

Theorem 2.3. If f1 > Ba, M1 = 72 then B1 — SPY () € B2 — SPY(72) and Bi —
—UCVY () C B2 —UCVY (7).

Remark 2.5. (1) By putting @ = 4 = 0, X = 1 and 71 = <2 = 0 in Theorem 2.3 for the
class 8 — 877;:5(7), we obtain 51 — SP™ C [y — SP™, which was asserted earlier by Kanas and
Yaguchi [13].

(2) Taking p = 0 in Theorem 2.3, we get the result of Al-Oboudi and Al-Amoudi [4].

Corollary 2.7. Under the conditions stated in Theorem 2.1 we have 3 — S?;:z(’y) C B8 -

— SPy5(7) € SPq for B> 1.
Proof. Let f bein 5 — S73na( ). Then f belongs to 5 — 3731 a( ) by applying Theorem 2.1.
By the same steps of the proof of Theorem 2.1 wehave Q%f € §— 377( ) and by using Theorem 2.3,

Q*f e SP for g > 1. Thus f € SP,.
Corollary 2.8. Under the conditions stated in Theorem 2.1 we have 5 — L{CVK’Z‘(W) C B -

—UCV(y) €1 =UCVyE(0) for B > 1.
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Theorem 2.4. Let f €  — 573;“3(7) and h € CV. Then
F(2) h(z) € B — SP().
Proof. Let f € B — SPY7(7). To prove the required result, it is sufficient to prove that

2(h(z) * DY £ (2))
h(=) = Do f ()

Rg,'y, z € A.

Theorem 2.4 is proved.

The remaining part of the proof of Theorem 2.4 is similar to that of Lemma 2.4 and hence we
omit it.

Remark 2.6. Takinga=pu=A=0, y=2p—1,0<p <1, n=11in Theorem 2.4, we get
the result by Ali [2].

3. Coefficient bounds. In the following we give the bounds for the coefficients of series
expansion of functions belonging to the classes § — SP}"/(7) and 3 —UCVY'() and sufficient for

a function to be in these classes.
Let Pg be given in (1.6) and let fg - be defined by

2Dy T84(2))
D/\,ufﬂﬁ() ’

The function fg, is in the class 3 — SPK:Z‘(W) and if we denote

Ps(2) = €A, 3.1)

Ps(2) =14+ Piz+..., fa(2)=2+As2%+ ...,
then in view of (1.12) and (3.1), we have a coefficient relation
k—1
(k= DATpn(Mp0) =Y P A0\ pa), Ay=1, U,(Apa)=1 (32)
j=1

In particular, by a straightforward computation we obtain
1
\112,71 ()‘, M, a)

observe also, that the coefficients A, are nonnegative because Wy (A, 1, ) > 0 and P}, are nonne-

Ay = Py, (3.3)

gative (for Taylor series expansion of ﬁﬁm see [14, 16, 26]).

As simple consequence of the above and the result given in [12], we give sharp bound on the
second coefficient for functions of the class § — SPY" (7).

Theorem 3.1. If a function | of the form (1.1) is in 8 — SPY ( ), then

1 (P1)k—1

S G ma G- PP G4
where
2

e R

8(1 —
Prim Pi(py) = { L0 B-1, (3.5)

(1 —7)
4VE(L 4 1) (B2 — 1)K2(t)’ f>1

The result is sharp for k =2 or 3 = 0.
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For the proof of this theorem, we need the following result by Rogosinski [25].
Rogosinski’s theorem [25]. Let h(z) = 1 + Z crz" be subordinate to H(z) = 1 +

+ Z:l Cw2® in A. If H(z) is univalent in A and H(A) is convex, then |ci| < |Ci| for k > 1.
Proof of Theorem 3.1. Let f € f — SPY%(y), f(z) = 2+ 22‘12 axz*. By (1.18), we obtain

D5, 1) < Ps.(2), zeA
Dy f(z) S '
2(DYf(2)) 0o ~ ~
Define h(z) = W =1+ Zkﬂ 2", The function Py, is univalent in A and P3 ., (A)
A -

is the is convex conic domain so Rogosinski’s theorem applies. Then we have
’Ck‘ S ’Pl‘ = Pl, k‘ Z 1, (36)

where Pi = Pi(3,7) is given by (3.5). Now writing 2(D}"7 f(2))" = h(z) DY’ f(z) and comparing
coefficients of z* on both sides, we get

(k - 1)ak\1’kn )‘ s & ch ]a] j’I’L A y s & )7 ap = 17 \Ill,n(A7N7a) =1 (37)

From (3.6) and (3.7) we get |as| ! le1] < h So the result is true for k = 2

: . ay] = — ¢ —_— = 2.
T, (O gna) = 0 (O 0)

Let k£ > 2 and assume that the inequality (3.4) is true for all j < k& — 1. By using (3.6), (3.7) and
applying the induction hypothesis to |a;|, we get

k—1
1
|ag| < e + D ler—jllaj| Tjn(A o) | <
(k - 1)\I’k’,n()\aﬂ7a) j=2
k—1
< Py LS )i
B (k; - 1)\Pk,n()‘nua O[) j=2 (] - 1)'

By applying mathematical induction another time, we find that

}—‘

1+Z ?_311 _ 1+P1)(2+€3];)_..2.)(!(k—2)+P1).

(3.8)
Jj=

Thus we get the inequality (3.4). In view of (3.3) the result is sharp for £ = 2. If 3 = 0 then
Pi(0,7) = P1(0,7) =2(1 — ), k=1,2,..., and in view of (3.2) we have

1 (P1)r—1
k> 2.
TenOoma) -1 "7

Applying the relation (1.17), we observe that the extremal function of 8 —UCV"(7) denoted by
F3.(z), is given by

A =
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[ 154(©)
Fiae) = Fagle) = 2+ Bos? .. = [ 122080a¢
0

where f3 (%) is defined by (3.1). By (3.3) we get

1

B— -
2 2‘112,71()\7#7@)

Py.
Theorem 3.1 is proved.
Repeating similar consideration as given in the proof of Theorem 3.1 and applying relation (1.17)

we can prove the next two results.
Corollary 3.1. If a function f of the form (1.1) is in B — UCV?’z(Py), then

1 (P1)k—1
\I’k,n()‘vu7a) (k)' ’

where Py := Py(f3,7) is given by (3.5). The result is sharp for k =2 or 3 = 0.
Corollary 3.2. ﬂn:l B =8Py () ={z}.

. oo k . Q0
Proof. Suppose that there exists f(z) = z + Zk:g axz" belonging to § — SPy") () for all

(2—a)n (P1)k—1
2 (k=1
right-hand side is decreasing to 0 with respect to n. Thus a; = 0, for all £ > 2.

lag| < k> 2,

n € N. Then Theorem 3.1 gives |ax| < for all n € N. The sequence on the

Remark 3.1. (1) Putting o« = 4t = A = 3 =0, n =1 in Theorem 3.1 and Corollary 3.1 we get
the results which, in turn, yields the corresponding results given earlier by Robertson [24].

(2) For special values of the parameters (¢« = = =0andA\ = )or A =pu=8=0
and n = 1) in Theorem 3.1, we obtain the results of Sdldgean [32] or Srivastava and Mishra [33],
respectively, which are sharp results.

(3) Takinga=pu=XA=~=0, 8 =n=11in Theorem 3.1, we get the result by Rgnning [27].

(4) Setting « = 4 = A =~ =0, n =1 in Theorem 3.1, we get the result by Kanas and
Wiéniowska [12].

(5) Taking @« = =y =0, A =1 in Theorem 3.1, we get the result by Kanas and Yaguchi [13].

(6) Upon setting « = 4 = A =y =0, n = 1 in Corollary 3.1, we obtain the result which is an
improvement of a result due to Kanas and Wisniowska [10].

(7) For p# = 0 Theorem 3.1 and Corollary 3.1 would lead us, respectively, to the corresponding
results obtained by Al-Oboudi and Al-Amoudi [4].

Remark 3.2. For special values of the parameters n, o, p, A and 8 in Theorem 3.1 and Corollary
3.1, we get the coefficients bounds which is a new result for the classes 3—SPY ,(7), B-UCVY ,(7),
STH (), CVY(7),8 — SPyG (v) and B — UCVG ()

Now for functions in the class g — SPK:Z‘('y), we establish the following result.

Theorem 3.2. A function | of the form (1.1) is in 5 — SP;L:z(’y) whenever

DS EA+B) = B+ lar] Trpn(A pa) <1 -7, (3.9)
k=2
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Proof. From (3.9) we can find that 1 — Z:; Ui n (A, 1, @) lag| > 0. Thus we get

z Dn:af(z) / z Dn:af(z) /
(D§§f<z>> SR (ngff(z)) N R

2 (Do)

n,o -1
D)\:#f(2>

IN

A+ 8) 30 (k= DTn(h ) g 2]
1= Wi a) a2

<

(1 + B) Zk:2(k - 1)\Pk,n()" , O[) |ak|
1-— Zk:Q \I]k,n()\7 H, O[) |ak:|
This last expression is bounded above by (1 — «) if (3.9) is satisfied. Therefore f €5 — SPK’Z‘ (7).

By virtue of (1.17) and Theorem 3.2, we have the following corollary.
Corollary 3.3. A function f of the form (1.1) is in 5 — L{CV?’Z‘ () whenever

Z[k(l + 5) - (ﬁ +’7)]k |ak| \I’k,n(AHu?O‘) <1l- -
k=2

L—v
Corollary 3.4. If |as| < , then f(2) = z 4 az? belongs to the class
ary 34 10al = G T e

Remark 3.3. (1) Ifwe consideraa = =+ =0,5 =1, A =1in Theorem 3.2 and Corollary 3.3,
we obtain the same result by Bharti, Parvatham and Swaminathan [5].
(2) Taking o = 4t =y =0, A = 1 in Theorem 3.2, we get the result by Kanas and Yaguchi [13].
(3) Takinga=p=A=0,v=2p—1,0<p <1, n=1in Theorem 3.2, we get the result by
Ali [2].
For ;4 = 0, Theorem 3.2 and Corollary 3.3 would lead us, respectively, to the corresponding
results obtained by Al-Oboudi and Al-Amoudi [4].
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