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INVARIANT SUBMANIFOLDS OF TRANS-SASAKIAN MANIFOLDS
IHBAPIAHTHI IIIZIMHOI'OBU/IU TPAHC-MHOI'OBHU/IIB CACAKSHA

We show the equivalence of totally geodesicity, recurrence, birecurrence, generalized birecurrence, Ricci-generalized
birecurrence, parallelism, biparallelism, pseudoparallelism, bipseudoparallelism of o for the invariant submanifold M of
trans-Sasakian manifold M.

[MokazaHO EeKBIBaJICHTHICTh IMOBHOI T'€OJIE3UYHOCTI, 3BOPOTHOCTI, MOJBIIHOT 3BOPOTHOCTI, y3arajibHEHOI MOJBIHHOI 3BO-
POTHOCTI, y3arajabHEHOI MOABIHHOI 3BOPOTHOCTI Piudi, mapaiernismy, HOIBIHHOTO Mmapaneni3My, ICEBAOMapajieii3My Ta
MO/BIITHOTO IICeBONapanelizMy o JUisl iHBapianTHOTO migMHoroBuny M Tpanc-muoroBuay Cacaxsina M.

1. Introduction. Let M be an almost contact Riemannian manifold with a contact form 7, the
associated vector field &, a (1,1)-tensor field ¢ and the associated Riemannian metric g. Further
an almost contact metric manifold is a contact metric manifold if g(X,¢Y) = dn(X,Y) for all
X,Y € TM. A K-contact manifold is a contact metric manifold while converse is true if the Lie
derivative of ¢ in the character direction £ vanishes. A Sasakian manifold is always a K-contact
manifold. A 3-dimensional K-contact manifold is a Sasakian manifold. A contact metric manifold is
Sasakian if (Vx¢)Y = g(X,Y){ —n(Y)X. Odd dimensional spheres and C* x R are examples of
Sasakian manifolds.

In 1972, K. Kenmotsu [4] studied a class of contact Riemannian manifolds called Kenmotsu
manifolds, which is not Sasakian. In fact Kenmotsu proved that a locally Kenmotsu manifold is a
warped product I X ¢ N of an interval I and a Kahlerian manifold with a warping function f(t) = se’,
where S is a non-zero contact. Hyperbolic space is an example of Kenmotsu manifold.

In the Gray—Hervella classification of almost Hermitian manifolds [10], there appears a class
Wy of Hermitian manifolds which are closely related to locally conformal Kaehler manifolds. An
almost contact metric structure on a manifold M is called a trans-Sasakian structure [11] if the
product manifold M x R belongs to the class Wy. The class C5 @ Cg [13] coincides with the class
of trans-Sasakian structure of (<, ). The monkey saddle is an example of trans-Sasakian manifold.
This class consists of both Sasakian and Kenmotsu structures. If « = 1, 8 = 0, then the class reduces
to Sasakian, where as if & = 0, § = 1 their reduces to Kenmotsu. J. C. Marrero [11] has shown that
trans-Sasakian manifolds for n > 5 do not exist. If a # 0, 8 = 0 then it is a-Sasakian, if & = 0,
B # 0 then it is S-Kenmotsu and if & = § = 0 then it is cosympletic.

The geometry of invariant submanifolds of trans-Sasakian manifolds is carried out by Aysel
Turgut Vanli and Ramazan Sari [3] and they have shown that an invariant submanifold M carries
trans-Sasakian structure and established the equivalence of totally geodesicity of M, o is parallel, o
is 2-parallel, o is semiparallel.

In this paper we extend the study and show that for invariant submanifolds of trans-Sasakian
manifolds the equivalence of M, totally geodesic, when ¢ is recurrent, 2-recurrent, generalized
2-recurrent, 2-semiparallel, pseudoparallel, 2-pseudoparallel, Ricci-generalized pseudoparallel, 2-
Ricci-generalized pseudoparallel their equivalence. Finally it is concluded that the result of Aysel
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Turgut Vanli and Ramazan Sari [3] and the above results proved are all equivalent to one another.
We provide an example of trans-Sasakian manifold which is not totally geodesic.

2. Basic concepts. The covariant differential of the p* order, p > 1 of a (0, k)-tensor field 7,
k > 1 denoted by VPT, defined on a Riemannian manifold (M, g) with the Levi- Civita connection
V. The tensor T is said to be recurrent [15], if the following condition holds on M:

and
(VPT)(Xi,. .. X X, Y)T (Ve Yi) = (VPT) (Vi Vi X, YIT(X5, . X

respectively, where X, Y, X1, Y7,..., X, Yy € T M. From (2.1) it follows that at a point z € M,
if the tensor 7' is non-zero, then there exists a unique 1-form ¢, a (0, 2)-tensor v, defined on a
neighborhood U of z such that

VI =T®¢, ¢=d(log|T]) (2.2)
and
VT =T @ (2.3)

respectively, hold on U, where || T'|| denotes the norm of T" and ||T'||? = g(T, T). The tensor T is said
to be generalized 2-recurrent if

(VPT) (X1, X X,Y) = (VT @ @) (X1, ., X X, Y)T (Y1, .., Vi) =
= ((V2T)(Y1, WY XJY) = (VI @ o) (Y, ..., Y, X, Y)T( Xy, ..., Xk),

holds on M, where ¢ is a 1-form on M. From this it follows that at a point z € M if the tensor 7 is
non-zero, then there exists a unique (0, 2)-tensor v, defined on a neighborhood U of z, such that

VT =VTQ¢+T @1, 24

holds on U.

Let f: (M,g) — (]\7 g) be an isometric immersion from an n-dimensional Riemannian manifold
(M, g) into (n + d)-dimensional Riemannian manifold (M g),n>2,d>1. We denote by V and
V as Levi-Civita connection of M™ and M"+d respectively. Then the formulas of Gauss and
Weingarten are given by

VxY = VxY +0(X,Y), (2.5)

VxN = —AyX + V%N, (2.6)

for any tangent vector fields X, Y and the normal vector field N on M, where o, A and V+ are the
second fundamental form, the shape operator and the normal connection respectively. If the second
fundamental form o is identically zero then the manifold is said to be totallygeodesic. The second
fundamental form o and Ay are related by
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g(o-(X?Y)’N) = g(ANX7 Y)7

for tangent vector fields X, Y. The first and second covariant derivatives of the second fundamental
form o are given by

(Vxo)(Y, Z) = Vx(a(Y, Z)) - o(VxY, Z) — o(Y,Vx Z), 2.7
(V20)(Z,W,X,Y) = (VxVyo)(Z,W) =
= Vx(Vyo)(Z,W)) - (Vyo)(VxZ,W)-

—(Vx0)(Z,VyW) = (Vy,vo)(Z,W) (2.8)

respectively, where V is called the van der Waerden — Bortolotti connection of M [7]. If Vo = 0, then
M is said to have parallel second fundamental form [7]. We next define endomorphisms R(X,Y)
and X AgY of x(M) by

R(X,Y)Z =VxVyZ—-VyVxZ—VixyZ,
(2.9)
(X ApY)Z=B(Y,Z)X — B(X,2)Y

respectively, where X,Y, Z € x(M) and B is a symmetric (0, 2)-tensor.
Now, for a (0, k)-tensor field 7', k > 1 and a (0, 2)-tensor field B on (M, g), we define the tensor

Q(B,T) by
QB T)(X1,..., X X, V) = —~(T(X A Y)Xq,..., Xi) — ...
= T(X1, . X1 (X AR Y)Xp). (2.10)

Putting into the above formula T = o, Vo and B = g, B = S, we obtain the tensors Q(g,0),

Q(S,9), Q(g, Vo) and Q(S, Vo).
Definition 2.1. The immersion f is said to be

semiparallel [9] if R-o= 0, (2.11)
2-semiparallel [14] if R-Vo = 0, (2.12)
pseudoparallel [2]if R-o = Li1Q(g,0), (2.13)
2-pseudoparallel [14] if R-Vo = L1Q(yg, %a) (2.14)
and
Ricci-generalized pseudoparallel [12] if R-oc= L2Q(S,0) (2.15)

respectively, where fiNdertes the curvature tensor with respect to connection V and
R(Xa Y)U(Uv V) = (VXVY - VyVyx — V[X,Y])O-(Uv V) and (R(X7 Y)VO-)(U’ Vvv W) =
= R(X,Y)(Vyo)(V,W). Here L1, Ly are functions depending on o and Vo.
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Now we introduce the definition of 2-Ricci-generalized pseudoparallel.
Definition 2.2. The immersion f is said to be 2-Ricci-generalized pseudoparallel if

R-Vo = LyQ(S, Vo), (2.16)

where Lo is a function depending on Vo.
From the Gauss and Weingarten formulas, we obtain

(RX.Y)Z)" = RX,Y)Z + Asi )Y — Aoy X (2.17)

9(v,z)" "
By (2.11), we have
(E(X, Y)-0)(U,V)=RYX,Y)o(U, V) - o(R(X,Y)U,V) — o(U R(X,Y)V), (2.18)
for all vector fields X, Y, U and V tangent to M, where
RH(X,Y) = [V, Vy] - Vixyy- (2.19)
Similarly, we obtain

(R(X,Y) - Vo)(U,V,W) = R~(X,Y) (Vo) (U, V,W) — (Vo) (R(X,Y)U,V,W)—
—(Vo)(U,R(X,Y)V,W) — (Vo)(U,V, R(X,Y)W), (2.20)

for all vector fields X, Y, U, V, W tangent to M, where (Vo) (U, V, W) = (Vyo)(V, W) [1].

3. Preliminaries. Let M be a n = (2m + 1)-dimensional almost contact metric manifold with
an almost contact metric structure (¢, £, 7, g), where ¢ is a (1, 1)-tensor field, ¢ is a vector field, 7 is
a 1-form and g is the associated Riemannian metric such that [5],

9(¢X,9Y) = g(X,Y) —n(X)n(Y), 9(X,8) =n(X), g(6X,)Y)=—g(X,9Y), (3.2)

for all vector fields X, Y on M.

An almost contact metric structure (¢,&,n,g) on M is called a trans-Sasakian structure [13] if
(M x R, J,G) belongs to the class Wy [10], where J is the almost complex structure on M x R
defined by J(X, Ad/dt) = (¢X — X, n(X)d/dt) for all vector fields X on M and smooth function
Aon M x R and G is the product metric on M x R. This may be expressed by the condition [6]

(Vxo)Y = a(g(X,Y)§ —n(Y)X) + B(g(¢X,Y)E — n(Y)pX), (3.3)

for some smooth functions « and 5 on M and we say that the trans-Sasakian structure is of type

(a, B)-

Let M be a trans-Sasakian manifold. From (3.3), it is easy to see that
Vx§ = —apX + f(X — n(X)§). (3.4)

If a =1, 8 =0 it reduces to Sasakian manifold.
If a =0, 8 =1 it reduces to Kenmotsu manifold.

ISSN 1027-3190.  Yxp. mam. ocypu., 2015, m. 67, Ne 10



INVARIANT SUBMANIFOLDS OF TRANS-SASAKIAN MANIFOLDS 1313

In an n-dimensional trans-Sasakian manifold, we have

R(X,Y)E = (o = %) {n(Y)X = n(X)Y} + 208 {n(Y)$(X) — n(X)o(Y)} +

+{(Ya)oX — (Xa)pY + (YB)§*X — (XB)¢?Y }, (3.5)

R(&,X)Y = (a® = B*) {g(X,Y)§ = n(Y) X} + (£8)n(Y) {—X +n(X)¢} (3.6)
R(§, X)€ = (o = 8% = €8) {n(X)¢ - X}, (3.7)

208 + Ea = 0, (3.8)

S(X,8) = ((n—=1)(a® = %) = £AM(X) — (n —2)X B — (¢ X)a, (3.9)

Q¢ = ((n—1)(a® = B%) = €B)¢ — (n — 2) grad § + p(grad a). (3.10)

Further, in a trans-Sasakian manifold of type («, ), we have

¢(grad o) = (n — 2) grad S. (3.11)

Using (3.11) the equations (3.5)—-(3.7), (3.9) and (3.10) reduce to

R(X,Y)¢ = (o = 8%) {(n(Y)X —n(X)Y}, (3.12)
R X)Y = (o — %) {g(X, V)¢ —n(Y) X}, (3.13)
R(§, X)€ = (o = 8%) {(n(X)€ — X}, (3.14)
S(X,€) = (n - 1)(a® = B*)n(X), (3.15)

Q¢ = (n—1)(a” - f%)¢ (3.16)

respectively.

A submanifold M of a trans-Sasakian manifold M is called an invariant submanifold of M , if
for each x € M, ¢(T, M) C T,M. As a consequence, { becomes tangent to M. In an invariant
submanifold of a trans-Sasakian manifold

o(X,6) =0, (3.17)

for any vector X tangent to M.

4. Recurrent invariant submanifolds of trans-Sasakian manifolds. We consider invariant
submanifold of a trans-Sasakian manifold satisfying the conditions ¢ is recurrent, 2-recurrent, gen-
eralized 2-recurrent and M has parallel third fundamental form. As a result of this we state the
following theorem.

Theorem 4.1. Let M be an invariant submanifold of a trans-Sasakian manifold M. Then o is
recurrent if and only if it is totally geodesic.
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Proof. Let o be recurrent, from (2.2) and we get
(Vxo)(Y.2) = ¢(X)o (Y. Z),
where ¢ is a 1-form on M and in view of (2.7) and taking Z = £ in the above equation, we have
Vxo(Y,§) = o(VxY,§) — oY, Vx&) = 6(X)o (Y, §). (4.1)

Using (3.4), (3.17) in (4.1), we obtain (a? + 3%)o(X,Y) = 0. Since @ and 3 are not simultaneously
zero. Hence (o + 3%) # 0 and o(X,Y) = 0. Thus M is totally geodesic. The converse statement
is trivial.

Theorem 4.1 is proved.

Theorem 4.2. Let M be an invariant submanifold of a trans-Sasakian manifold M. Then M
has parallel third fundamental form if and only if it is totally geodesic.

Proof. Let M has parallel third fundamental form. Then we obtain

(VxVyo)(Z,W) =0.
Taking W = £ and using (2.8) in the above equation, we have
Vx((Vyo)(Z,8) = (Vyo)(VxZ,€) = (Vx0)(Z,VyE) — (Vyyyo)(Z,€) = 0. (4.2)
By virtue of (2.7) in (4.2) and using (3.17), we get
o2V ao(Z,¢Y) — 2V p0(Z,Y) — 2a0(Vx Z,¢Y) +280(VxZ,Y) — 0(Z,VxapY) +

+0(Z,VxBY)—0o(Z,Vxpn(Y)§) —ao(Z,¢VxY)+ Bo(Z,VxY). (4.3)

Putting Y = ¢ and using (3.4), (3.17) in (4.3), we get (a? + 3%)?0(X, Z) = 0. Since (a? + %) # 0,
then (X, Z) = 0. Thus M is totally geodesic. The converse statement is trivial.

Theorem 4.2 is proved. s

Corollary 4.1. Let M be an invariant submanifold of a trans-Sasakian manifold M. Then o is
2-recurrent if and only if it is totally geodesic.

Proof. Let o be 2-recurrent, from (2.3), we have

(VxVyo)(Z,W) = a(Z,W)o(X,Y). (4.4)

Taking W = ¢ in (4.4) and using the proof of the Theorem 4.2, we get (o + 5%)%0(X,Z) = 0.
Since (a? + 82) # 0, then o(X,Z) = 0. Thus M is totally geodesic. The converse statement is
trivial.

Corollary 4.1 is proved.

Theorem 4.3. Let M be an invariant submanifold of a trans-Sasakian manifold M. Then o is
generalized 2-recurrent if and only if it is totally geodesic.

Proof. Let o be generalized 2-recurrent, from (2.4), we obtain

(ﬁXﬁYU)(Z7 W) = w(Xa Y)U(Z7 W) + Qb(X)(%YO-)(Za W)7 (4-5)

where 1 and ¢ are 2-recurrent and 1-form respectively. Taking W = £ in (4.5) and using (3.17), we
get
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(VxVyo)(Z,€) = o(X)(Vyo)(Z,€).
By virtue of (2.7) and (2.8) in above equation and in view of (3.17), we have
WVvao(Z,¢Y) —2V%B0(Z,Y) — 200(VxZ,¢Y) + 260(VxZ,Y)—
—0(Z,VxapY)+o(Z,VxBY)—0o(Z,VxBnY)§) —ac(Z,¢VxY)+ Bo(Z,VxY) =
— {a0(Z,6Y) - Bo(Z,Y)}.
Putting Y = ¢ and using (3.4), (3.17) in the above equation, we obtain (a?+ 32)%20(X, Z) = 0. Since
(a® + %) # 0, then (X, Z) = 0. Thus M is totally geodesic. The converse statement is trivial.

Theorem 4.3 is proved.

5. 2-Semiparallel, pseudoparallel, 2-pseudoparallel, Ricci-generalized pseudoparallel and
2-Ricci-generalized pseudoparallel invariant submanifolds of trans-Sasakian manifolds. We
consider invariant submanifolds of trans-Sasakian manifolds satisfying the conditions R - Vo = 0,
R-0=11Q(g,0), R- Vo =L11Q(9,Vo) R-0 = LyQ(S,0) and R- Vo = L2Q(S, Vo).

Theorem 5.1. Let M be an invariant submanifold of a trans-Sasakian manifold M. Then the

submanifold M is 2-semiparallel if and only if it is totally geodesic.
Proof. Let M be 2-semiparallel R - Vo = 0. Put X =V = ¢ in (2.20), we get

RM&,Y)(Vo) (U6 W) = (Vo) (R(E, YU, & W) —
—~(Vo)(U, R(& Y)E, W) = (Vo) (U,€, R(E, V)W) = 0. (5.1)
In view of (2.7), (3.4), (3.13), (3.14) and (3.17), we have the following equalities:
(Vo) (U,&, W) = (Vuo) (&, W) =
= VEo(&, W) — o (Vu&, W) — o (£, VW) =
= ao(oU, W) — Bo(U, W), (5.2)
(Vo) (R(EY)U,EW) = (VReypo)(§ W) =
= Vieywo & W) = o(Vreyiw& W) — o(&, VireyiwW) =
= —a(a® = B2)n(U)a(¢Y, W) + B(a® = B2)n(U)o (Y, W), (5.3)
(Vo) (U, R(&, Y)E, W) = (Vuo)(R(EY)EW) =
= Vio(R(EY)E, W) — o(VuR(E,Y)EW) — (R, Y)E Vo) =
= Vo (0 =) (n(Y)E =Y}, W) =0 (Vu(a® = 5%) (n(Y)é = Y}, W) +
+(a® = %o (Y, VW) (5.4)
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and

(%O‘)(U, g? R(g’ Y)W) = (ﬁUU)(£7 R(£7 Y)W) =
= V§o(&, R(EY)W) — o(Vy&, R(EY)W) — o(§, VuR(E,Y)W)

= —a(a® —

BnW)o(¢U.Y) + B(a” = B)n(W)o(U,Y). (5.5)
Substituting (5.2)—(5.5) into (5.1), we obtain

RH(&,Y) {ac(pU, W) = Bo(U,W)} + a(a® — B*)n(U)o(¢Y, W)—
—B(a® = B2 nU)o (Y, W) = Vo ((a® = B) {n(Y)E Y}, W) +
+o (Vu(a® = B2 {n(Y)¢ =Y}, W) = (o® = %)oY, VuW)+

+a(a® = B )n(W)a(pU,Y) — B(a? — B)n(W)o(U,Y) =0 (5.6)
Taking W = ¢ and using (3.4), (3.17) in (5.6), we get (a? — 32)(a? + 8%)o(U,Y) = 0. Since
(a? + %) # 0, hence if o # 43 and then o(U,Y) = 0, i.e.,, M is totally geodesic. The converse
statement is trivial.

Theorem 5.1 is proved.

Theorem 5.2. Let M be an invariant submanifold of a trans-Sasakian manifold M. Then the
submanifold M is pseudoparallel if and only if it is totally geodesic.

Proof. Let M be pseudoparallel R - o = LiQ(g,0). Put X =V = ¢ in (2.10), (2.18) and
adding, we get

RY(6,Y)o(U, &) — o(R(E,Y)U. &) — o(U, R(£,Y)E) =

~Li{9(6,90(U.Y) = g(&, U)o (€. Y) + 9(&: V)o (&, U) = g(V, D)o (€. &) ). (5.7)

Using (3.14) and (3.17) in (5.7), we get [(a® — B%) + L1]o(U,Y) = 0. If L1 # —(a? — #?) and

a # £+, then o(U,Y) = 0, i.e., M is totally geodesic. The converse statement is trivial.
Theorem 5.2 is proved.

Theorem 5.3. Let M be an invariant submanifold of a trans-Sasakian manifold M. Then the
submanifold M is 2-pseudoparallel if and only if it is totally geodesic.

Proof. Let M be 2-pseudoparallel R - Vo = L1Q(g, Vo). Put X = V = ¢ in (2.10), (2.20) and
adding, in view of (3.1) and (3.17), we get
R Y)(Vo) (U, &, W) — (Vo) (R(E, YU, &, W)~

—(Vo)(U,R(£,Y)E,W) — (Vo) (U, & R(E,Y)W) =

~La [n(W) {VEo(Y,U) = 0(VeY,U) = (Y, VeU) } -
—Viyo(Y,U) +o(VwY,U) + o(Y, Vi U) — n(Y) {Véa(VV, U)—o(VeW,U) —
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—o(W,VeU)} — n(U) {vga(Y, W) — o(VeY, W) — oY, V§W)H . (5.8)
Substituting (5.2)—(5.5) into (5.8), we obtain
RH(&,Y) {ao(oU, W) = Bo (U, W)} + a(a® — B)n(U)o (oY, W)—

—B(a® = Bm(U)a (Y, W) = Vo (o = 8%) {n(Y)§ = Y}, W) +
o (Vula® =) {n(Y)g =Y}, W) = (a® = B%)o (Y, Vy W)+
+a(a® = B2)n(W)a(eU,Y) — B(a® — B)n(W)o(U,Y) =
S [n(W){vga(Y, U) — o(VeY,U) — o(Y, ng)}—
—Vipo(Y,U) + o(VwY,U) + o(Y, Vi U)—

—n(Y){vga(W, U) — o(VeW,U) — o (W, ng)}—

—n(U){vga(Y, W) — o(VeY, W) — o(Y, VgW)H . (5.9)

Taking W = ¢ and using (3.4), (3.17) in (5.9), we get (a? — 32)(a? + 8%)o(U,Y) = 0. Since
(a® + %) # 0, hence if a # 43 and then o(U,Y) = 0, i.e.,, M is totally geodesic. The converse
statement is trivial.

Theorem 5.3 is proved.

Theorem 5.4. Let M be an invariant submanifold of a trans-Sasakian manifold M. Then the

submanifold M is Ricci-generalized pseudoparallel if and only if it is totally geodesic.
Proof. Let M be Ricci-generalized pseudoparallel R-Vo = LyQ(S,0). Put X =V =¢in
(2.10), (2.18) and adding, we get

R(&,Y)o(U,€) = o(R(E,Y)U,E) — o(U,R(E,Y)E) =

Using (3.14), (3.15) and (3.17) in (5.10), we have (a? — B?)[1 + La(n — 1)]o(U,Y) = 0. If a # +3
and Lo # —ﬁ, then o(U,Y) = 0, i.e., M is totally geodesic. The converse statement is trivial.

Theorem 5.5. Let M be an invariant submanifold of a trans-Sasakian manifold M. Then the

submanifold M is 2-Ricci-generalized pseudoparallel, if and only if it is totally geodesic.
Proof. Let M be 2-Ricci-generalized pseudoparallel R - Vo = LaQ(S, Vo). Put X =V = ¢ in
(2.10), (2.20) and adding, in view of (3.15) and (3.17) we obtain

RJ_ (5’ Y)(%U)(Ua 5’ W) - (60)(R(€7 Y)U’ 57 W)_
~(Vo) (U, R(&,Y)E,W) = (Vo) (U, &, R(§,Y)W) =
= La|(n—1)(a® - 52)17(W){vga(y, U) — o(VeY,U) - o(Y, ng)}—
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—(n—1)(a? — 82 {VJWU(Y, U) - o(ViY,U) — o, vWU)} -
~(n—1)(a? = Bn(V) {TEa(W,U) = o(VeW,U) = o(W, VeU) } -

~(n=1)(a? = B { VLoV, W) = o(VeY, W) = (Y, VeW) }|. (5.11)
Substituting (5.2)—(5.5) into (5.11), we have

R(&,Y) {ao(pU, W) = Bo(U, W)} + a(a® = B*)n(U)o (Y, W)~
—B(a? = BnU)o (Y, W) = Vo (o = B2) {n(Y)§ — Y}, W) +
+o (Vu(a? = B2) (n(Y)E = Y}, W) — (a? = B2)o(Y, Vu W)+
+a(a? = BAn(W)o(sU,Y) — B(a? — F)n(W)a(U,Y) =
= ~Lz[(n = 1)(a* = PIW){TEa(Y,U) = o(VeV,U) = oY, V) b
—(n—1)(a? - 52){VJV-VU(Y, U) - o(ViY,U) - o(Y, VWU)}—
~(n—1)(a? = B)(Y){VE(W.U) = 0(VW,U) = o(W, VeU) -

—(n—1)(a? - 52)n<U){vga(Y, W) — o(VeY, W) — o(Y, v5W>H . (5.12)

Taking W = ¢ and using (3.4), (3.15), (3.17) in (5.12), we get (a? — 32)(a® + B?)o(U,Y) = 0.
Since (a? + B?) # 0, hence if a # £ and then o(U,Y) = 0. i.e., M is totally geodesic. The
converse statement is trivial.

Theorem 5.5 is proved.

Using Theorems 4.1 to 4.3, 5.1 to 5.5, Corollary 4.1 and the result of [3], we have the following
result. s

Corollary 5.1. Let M be an invariant submanifold of a trans-Sasakian manifold M. Then the
following statements are equivalent:

(1) o is parallel,

(2) o is 2-parallel,

(3) o is recurrent,

(4) o is 2-recurrent,;

(5) o is generalized 2-recurrent,

(6) M has parallel third fundamental form;

(7) M is semiparallel;

(8) M is 2-semiparallel, if o« # +3;

(9) M is pseudoparallel, if L1 # —(a® — B?) and o # £53;

(10) M is 2-pseudoparallel, if o # +13;

(11) M is Ricci-generalized pseudoparallel, if Ly # —

and o # +0;

n—1
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(12) M is 2-Ricci-generalized pseudoparallel, if o # +0;

(13) M is totally geodesic.

Example of trans-Sasakian manifold. @ We consider the 3-dimensional manifold M =
= {(z,y,2) € R¥: 2 # 0,y # 0}, where (x,y,2) are the standard coordinates in R3. Let
{E1, Ey, Es} be linearly independent global frame field on M given by

e’ (0 0 e’ 0 0
El:x(&c+yaz“)’ EQ:Z&T/ Ey = .

Let g be the Riemannian metric defined by
9(En, Es) = g(E», E3) = g(E1, E3) =0,
9(E1, Er) = g(E2, Ea) = g(Es, E3) = 1.

The (¢, &, n) is given by

n=do-ydr, E=Fy=o
¢E1 = Es, oEy = —En, $E3 = 0.
The linearity property of ¢ and g yields that
n(Es) =1,  ¢’U=—U+n(U)E;s,
9(oU, oW) = g(U, W) — n(U)n(W),

for any vector fields U, W on M. By definition of Lie bracket, we have

622

eZ
(B, Bo] = y—Esy — —E3, [Eh, B3] = —Ex, [Ea, B3] = —Es.
T Ty
Let V be the Levi- Civita connection with respect to above metric g is given by Koszula formula
29(VxY,Z) = X(g(Y,2)) + Y (9(Z, X)) — Z(9(X,Y))—

—g(X, [Y> Z]) - g(Y, [X7 Z]) +9(Z7 [Xv Y])

Then we get
€2Z 622
Vi Er = Es, Vi Fy = ——FEs3, Vi B3 =—FE + —EF»,
2xy 2zy
e? €2Z e? e2z
Ve, By =—-y—F + E3, Vg,Eo=y—F+FE3, Vg, E3=——F — Es,
T 2xy T 2zy
62Z 622
Vg.BFi1 = —F V. By =— FE Ve.E3=0.
By 1 2y 25 Es L2 2y 1 Es 113
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The tangent vectors X and Y to M are expressed as linear combination of Fy, Fs, F3, i.e., X =

= a1 E1+asEy+azEsand Y = by Ey + by By + b3 E3, where a; and b; are scalars. Clearly (¢, &, 7, 9)
2z

and X, Y satisfy equations (3.1), (3.2), (3.3) and (3.4) with a = —5— and § = —1. Thus M is a
Ty

trans-Sasakian manifold. In particular we consider the example of monkey saddle given by
M = {(z,y,2) € R*: 2 = 2® — 3xy°}.

By the above 2 # 0,y # 0 = z # 0 and M = R3 — {0}. We show that though o # —3, M is
not totally geodesic. For if X is a patch defined by X (u,v) = (u,v,u — 3uv?) then any tangent
vector V to the monkey saddle is given by V = C1 X, + C2X,, where X, = (1,0, 3u — 3v?) and
X, = (0,1, —6uwv). M will not be totally geodesic, if ViV = 0. On verification we can see that
VvV # 0. Hence M is not totally geodesic.

Conclusion. From the above discussion we conclude that oo # £ is only a necessary condition
but not a sufficient condition. Hence it needs further investigation.
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