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Y3ATAJIBHEHHSI HEPIBHOCTI CTE®®EHCEHA
JUISI TIOTEHIIAJIB JIIJICTOYHA

We obtain generalizations of Steffensen’s inequality by using Lidstone’s polynomial. Furthermore, the functionals associated
with the obtained generalizations are used to generate n-exponentially and exponentially convex functions, as well as the
new Stolarsky-type means.

Otpumano y3aranpHeHHS HepiBHOCTI Creddencena 3a qonomororo norennianis Jlincroyna. Kpim toro, dyHkiionany, mo
BIINMOBIAIOTh OTPUMAHHUM y3arajJbHEHHSIM, TAKOX 3aCTOCOBYIOTBCS [UISl OACPXKAHHS K 7 -SKCIIOHEHIIAIbHO Ta EKCIIOHeH-
HiabHO OMyKJIMX (PyHKIIH, Tak 1 HOBHX cepenHiXx CTOISIpChKOTro.

1. Introduction. Since its appearance in 1918 Steffensen’s inequality is still the subject of the
investigation and generalization by many mathematicians. The well-known Steffensen inequality
reads [10]:

Theorem 1.1. Suppose that f is decreasing and g is integrable on [a,b] with 0 < g < 1 and
b
A= / g(t)dt. Then we have
a

b b a-+A
/f ﬁ</f ﬁ</fmﬁ
-\ a
The inequalities are reversed for f increasing.

In 1929 G. J. Lidstone [5] introduced a generalization of Taylor’s series, today known as Lidstone
series. It approximates a given function in the neighborhood of two points instead of one. Such
series have been studied by H. Poritsky [8], J. M. Wittaker [13], L. J. Schoenberg [9], R. P. Boas [3]
and others.

Definition 1.1. Let f € C°([0,1]), then Lidstone series has the form

> (FE A~ 2) + FE (1) Ar(@)),
k=0
where Ay, is Lidstone polynomial of degree 2n + 1 defined by the relations
Ao(t) =
Ay (t) = Apa(B),
An(0)=A,(1)=0, n>1.
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Another explicit representations of Lidstone polynomial are given in [1] and [13]. Some of those
representations are given by

Ant) = (—1)"—2 i COM okt n> 1
n - 2n+l Je2n+1 ) =
k=1

1 6t2n+1 t?n—l
Aa(t) =5 [(2n T @no 1)!} -

n—2 2(22k+3 ~1) 42n—2k—3

B
2k + 41 P on — 2k —3)I’

n=12,...,
k=0

22+l 1+t
A,(t) = —+B - =1,2,...
n() (2n+1)‘ 27’L+1< 2 )7 n 3 4y )

1+¢
where Boy.t4 is the (2k + 4)th Bernoulli number and Ba,, 41 ;) is a Bernoulli polynomial.

In [12] Widder proved the following fundamental lemma:
Lemma 1.1. If f € C?"([0,1]), then

1
L

1
f(t) = UWWWMG—ﬂ+meUM@ﬂ+/GML$ﬂM$M&
0

0

B
Il

where
(t—1)s, if s<t,
Gi(t,s) =G(t,s) =
(s—=1)t, if t<s,
2
is the homogeneous Green's function of the differential operator 722 " [0, 1], and with the successive

52
iterates of G(t, s)

1
@mﬁz/@mmaH@@@,nzz
0

The aim of this paper is to generalize Steffensen’s inequality using Lidstone’s polynomial. In
Section 2 we obtain difference of integrals on two intervals from which we obtain some general
inequality. This general inequality is used in Section 3 to obtain new generalizations of Steffensen’s
inequality for (2n)-convex functions. In Section 4 we give estimation of the difference of the left-
hand and right-hand sides of obtained generalizations. In Section 5 we consider three functionals
associated with new generalizations and use them to generate n-exponentially and exponentially
convex functions. In Section 6 we apply results from Section 5 to some families of functions to
obtain new Stolarsky-type means related to these functionals.

2. Difference of integrals on two intervals. If [a,b] N [c,d] # @ we have four possible cases
for two intervals [a, b] and [c, d]. First case is [c,d] C [a, b], second case is [a,b] N [¢, d] = [¢, b] and
other two cases are obtained by changing a <> ¢, b <+ d. Hence, in the following theorem we will
only observe first two ca?es.

In this paper by TL[&’TIZ we will denote
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Inﬂzfib—@%jwu»Pm%@m<2jj>+fWWMA(ﬁ_ )]

k=0

Theorem 2.1. Let f: [a,b]U[c,d] — R be of class C*" on [a,b] U [c, d] for some n > 1. Let w:
[a,b] — [0,00) and w: [c,d] — [0,00). Then if [a,b] N [c,d] # @ we have

max{b,d}

b d
/w@mw—/mwmﬁ—mw+ﬁﬂ: /m@ﬂm@@, @.1)

where, in case [c,d] C [a,b],
b
a1 r—a s—a
/w (b—a’b—a)dx’ s € [a, c],

Kn(s) = (2.2)
_(d = o2 /u(x)Gn<H H) d, s€ (cd),

(b— a)2n—1 /bw(x)Gn <H H) dz, s € (d,b],

and, in case [a,b] N [c,d] = [c,b],

b
(b—a)2"1/w(x)G"(i:Z’z:Z> dx, s € [a, (],
ab
on—1 r—a S—a B
(b—a) /w(fn)Gn<b_a,b—a>dm
Kn(s) = a 4 (2.3)
—(d — )21 r-esze
(-0 /UWX%<d_dd_f>mm se et
d C
(d— opnt /u(:p)Gn (Z’:Z ;:Z) da, s € (b, d.

Proof. From Widder’s lemma for f € C?"([a,b]) we have the following identity:

n—1

f(x) = Z(b—a)% [f(%)(a)Ak <2:2) + R (B)A, <z:;‘)] i

k=0

o 1/(; < —G,S—a> £ (5)ds. (2.4)
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Multiplying identity (2.4) by w(x), then integrating from a to b and using Fubini’s theorem we obtain

/b W) e)tr = 50 - /b wle) |0 @2 ) + 1 2 ) dot
a k a

=0

b b
—|—(b—a)2"1/f(2n)(5) /w(x)Gn<:Z_—Z,z:Z)da: ds. (2.5)

Now subtracting identities (2.5) for interval [a, b] and [c, d] we get (2.1).
Theorem 2.2. Let f: [a,b]U[c,d] — R be (2n)-convex on [a,b]U|[c,d], w: [a,b] — [0,00), u:
[c,d] — [0,00). Then if [a,b] N [c,d] # & and

Ka(s) >0, (2.6)
we have
b d
/ w(t)f(t)dt — T > / w(t) f(t)dt — T, @.7)

where, in case [c,d] C [a,b], K,(s) is defined by (2.2) and, in case [a,b] N [c,d] = [c,b], K,(s) is
defined by (2.3).
Proof. Since f is (2n)-convex, withouth loss of generality we can assume that f is (2n)-times
differentiable and f(2®) > 0 see [7, p. 16 and 293]. Now we can apply Theorem 2.1 to obtain (2.7).
3. Generalization of Steffensen’s inequality by Lidstone’s polynomial. For a special choice
of weights and intervals in previous section we obtain a generalization of Steffensen’s inequality.
Theorem 3.1. Let f: [a,b] U [a,a+ A] — R be (2n)-convex on [a,b] U [a,a + A and w:
[a,b] — [0, 00). Then if

Kou(s) > 0, 3.1)
we have
b a+A
Juwsa -1 = [ foa-1f (32)

where, in case a < a+ X < b,

Ky (s) = — 2l / Gﬂ(m—a)s—a) dz, s € la,a+ A, (3.3)

(b— a)2n1 /w(x)Gn <z_z, Z_Z> dr, sé€{a+\Db,
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and, in case a < b < a+ A,

(

b
r—a S—a
(b—a)2 l/w(:c)Gn<M,M> dp—
aa+A
Kn(s) = —)\2”1/Gn<w_a,8_a> da, s € [a,b], (3.4)
PP
a+A “
—AQ”‘l/Gn<$;a7S;a>dx, s€ (byat .

a

Proof. We take c = a,d = a+ A and u(t) = 1 in Theorem 2.2.
Theorem 3.2. Let f: [a,b]U[b— \,b] — R be (2n)-convex on [a,b]U[b— \,b] and w: [a,b] —
— [0, 00). Then if

Kn(s) >0, (3.5)
we have
b b
[ swa-1i2 = [wswa - i, (3.6)
where, in case a < b— X < b,
( b
_(b_a)in/w(:):)G <§:;‘Z:Z> dz, s € lab— A,
. bt X s—btA
Ko (s) = A%—l/Gn TTOEASTORAN g 3.7)
) )
b—\
b
(b _ o)2n—1 r—a s—a _
(b—a) /w(;v)Gn(b_a,b_a>da:, selb—Ab,

and, in case b — A < a < b,

b
)\Qn_l/Gn<m—b+)\ s—b+)\

3 >d:c, s € [b— A al,
b—A

/ b+ A b—i—)\
Kn(S) — )\anl / Gﬂ(l’ )\"‘ S )

dr — (3.8)

R /W)Gn(g_—g, b:) dr, s € ().

Proof. First we change a <> ¢, b <> d and w <> u in Theorem 2.2 and then we take c = b — A,
d=band u(t) =1.
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4. Estimation of the difference.

Theorem 4.1. Suppose that all assumptions of Theorem 2.1 hold. Assume (p,q) is a pair of
conjugate exponents, that is 1 < p,q < oo, 1/p+1/q = 1. Let ‘f@”)‘p : [a,b] U [e,d] — R be an
R-integrable function for some n > 1. Then we have

b d

/ /u Tl 1 Tled| <

a

Q=

max{b d}

<o,

(s)|%ds | . 4.1)

max{b,d}
The constant / | Ky (s )\qd5> in the inequality (4.1) is sharp for 1 < p < oo and the

best possible for p = 1.
Proof. Using inequality (2.1) and applying Hoélder’s inequality we obtain

b d
/ w(t) £ (t)dt — / w(t)f(t)dt — T 1 Tled| =
1
max{b,d} max{b,d} q

= [ R s < g
p

a

| i as

a

max{b,d} 1/q
For the proof of the sharpness of the constant / | K ()] ds) we will find a function f

for which the equality in (4.1) is obtained.
For 1 < p < oo take f to be such that
1
FP(s) = sgn Ko (s) [Kn(s)| 7T
For p = oo take f(*")(s) = sgn K,,(s).
For p = 1 we will prove that
max{b,d} max{b,d}

Kas)f @ ()ds| < max K(s) [ [ [1 )]s (42)
s€la,max{b,d}]

a a

is the best possible inequality. Suppose that | K, (s)| attains its maximum at sy € [a, max{b,d}].
First we assume that K,(sg) > 0. For € small enough we define f.(s) by
(

0, CLSSSSD,
1 2n
fo(s) = 5(2n)!(8—80) , S0 <s<sote,
1
@ )‘(s —59)?" 1, 59+ < s < max{b,d}.
L (2n)!
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Then for £ small enough

max{b,d} so+e so+e

/ Kon(s) £@) (s)ds| = / Kn(s)éds :é / Ko (s) ds.

S0

Now from inequality (4.2) we have

1 sote 80+61
R / K, (s)ds < Ky(s0) / gds = K,(s0).
S0 S0
Since
1 so+e
lim — K, (s)ds = Kp(s0)
e—=0¢

S0

the statement follows. In case K, (so) < 0 we define

(1
@ ),(8*80*6)2"_1, a < s < sp,
n)!
_ 1
fe(s) = _5(271)'(8_80_8)2”’ s0 <5< sp+e,
0, so + & < s < max{b,d},

and the rest of the proof is the same as above.

Theorem 4.2. Suppose that all assumptions of Theorem 3.1 hold. Assume (p,q) is a pair of
conjugate exponents, thatis 1 < p,q < oo, 1/p+1/q=1. Let ‘f@")‘p a,b]U[a,a+ A] — R be
an R-integrable function for some n > 1. Let K, (s) be defined by (3.3) in case a < a + X\ < b and
by (3.4) in case a < b < a+ A. Then we have

b at+A
/Uj(t) dt /f T[ab TI[TL;L(Z—F)\] <

1
max{b,a+\} q

/ |Kn(s)|%ds | . 4.3)

a

<f

max{b,a+\} 1/q
The constant / |Kn(s)|?ds in the inequality (4.3) is sharp for 1 < p < co and the
a

best possible for p = 1.

Proof. We take ¢ = a, d = a + X and u(t) = 1 in Theorem 4.1.

Theorem 4.3. Suppose that all assumptions of Theorem 3.2 hold. Assume (p,q) is a pair of
conjugate exponents, thatis 1 < p,q < oo, 1/p+1/q = 1. Let ‘f@”)’p a, b U [b— A, b] — R be
an R-integrable function for some n > 1. Let K, (s) be defined by (3.7) in case a < b— \ < b and
by (3.8) in case b — X\ < a < b. Then we have
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b b
/ F(t)dt — / w(t) f(ydt — TP 4 7l | <
7A a

b 7
/ |Kn(s)|7ds | . (4.4)

min{a,b—\}

<fm

b

1/q
The constant / | K (s)]? ds) in the inequality (4.4) is sharp for 1 < p < oo and the

min{a,b—\}
best possible for p = 1.

Proof. First we change a <> ¢, b <> d and w <> u in Theorem 2.1 and then we take ¢ = b — A,
d = b and u(t) = 1. The rest of the proof is similar to the proof of Theorem 4.1.

5. Mean value theorems and exponential convexity. Motivated by inequalities (2.7), (3.2)
and (3.6) under assumptions of Theorems 2.2, 3.1 and 3.2, respectively, we define following linear
functionals:

d

Li(f) = / / w(t) f(£)dt—

—Z(b—a)%/bw(x)[f@k Ak@ z>+f (Z:Z)]dx—i-

k=0 a

n—1 d i .
+kzz(](d—c)2kc/u(x) [f(% (c)Ay, <d ; + fl (d—c)] dz, (5.1)

atA
La(f) = / t)dt — / F(t)dt—

5 b b

_ kzzo(b— a)2ka/w(a:) [f@k)(a)Ak (b:z> + FR) (B) A, <2:2)] det
a+A

+Z,\2k / [f(zk) a)Ay (W) + O (g4 VA <x;a)] oo, 52

/bf dt—/ () f(t)dt—
A

a

b—
B / o0 e (52) + 90 (202)] s
A
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n—1

+3 (b a) /b w(z) [f(%) (a)Ay <Z — z> + FR (p)A, (9; - Z)] dz. (5.3)

k=0

a

Also, we define I = [a,b] U [¢,d], I2 = [a,b] U [a,a + A], and I3 = [a,b] U [b — A, b].

Remark 5.1. Under assumptions of Theorems 2.2, 3.1 and 3.2 respectively, it holds L;(f) > 0,
i =1,2,3, for all (2n)-convex functions f.

First we will state and prove mean value theorems for defined functionals.

Theorem 5.1. Let f: I; — R, i = 1,2,3, be such that f € C?"(I;). If inequalities in (2.6),
1=1,3.1),1 =2, and (3.5), i = 3, hold, then there exist & € I; such that

Li(f) = f®N(&)Li(y), i=1,2,3, (5.4)

2n

(2n)!"
Proof. Let us denote m = min f(?®) and M = max (™). For a given function f € C?(I;) we
define functions Fy, F5 : I; — R with

where p(x) =

M x2n ma2"

Fi(z) = ol f(zx) and Fy(x) = f(x) — )

Now F1(2n)(x) = M—f®)(x) >0, x € I;, so we conclude L;(F}) > 0 and then L;(f) < M-L;(¢).

Similarly, from F2(2”) (z) = @ (x) —m > 0 we conclude m - L;(p) < L;i(f).
If Li(p) = 0, (5.4) holds for all & € I;. Otherwise, m < ilf) < M. Since f®")(z) is

continuous on I; there exist ; € I; such that (5.4) holds. i@

Theorem 5.2. Let f,g: I; — R, i = 1,2,3, be such that f,g € C*"(I;) and g™ (z) # 0 for
every x € I;. If inequalities in (2.6), i = 1, (3.1), ¢ = 2, and (3.5), i = 3, hold, then there exist
& € I; such that

h

h

Li(f) _ f(2n)(£z) i=1.2.3. (5.5)

Li(g)  g®(&)’

Proof. We define functions ¢;(z) = f(z)Li(g9) — g(z)Li(f), i = 1,2,3. Applying Theo-
rem 5.1 on ¢;, there exist {; € I; such that L;(¢;) = qﬁl@”) (&)Li(p). Since L;(¢;) = 0 it follows
FC(ENLi(g) — g™ (&) Li(f) = 0 and (5.5) is proved.

Now we will use previously defined functionals to construct exponentially convex functions. We
will start this part of the section with some definitions and properties which are used in our results

(see [6]).

Definition 5.1. A4 function 1 : I — R is n-exponentially convex in the Jensen sense on I if

> g (M5 20

ij=1

holds for all choices &1,...,&, € R and all choices x1,...,x, € I. A function ¥: I — R is
n-exponentially convex if it is n-exponentially convex in the Jensen sense and continuous on 1.
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Remark 5.2. 1t is clear from the definition that 1-exponentially convex functions in the Jensen
sense are in fact nonnegative functions. Also, n-exponentially convex functions in the Jensen sense
are k-exponentially convex in the Jensen sense for every k € N, k£ < n.

Definition 5.2. A4 function ¢¥: I — R is exponentially convex in the Jensen sense on I if it is
n-exponentially convex in the Jensen sense for all n € N.

A function v : I — R is exponentially convex if it is exponentially convex in the Jensen sense and
continuous.

Remark 5.3. 1t is known that ¢ : I — R is log-convex in the Jensen sense if and only if

(o) + 2000 (5) + 6870(0) 2 0,

holds for every o, 8 € R and x,y € I. It follows that a positive function is log-convex in the Jensen
sense if and only if it is 2-exponentially convex in the Jensen sense.

A positive function is log-convex if and only if it is 2-exponentially convex.

Proposition 5.1. If f is a convex function on I and if x1 < y1, T2 < Yo, 1 # T3, Y1 F Yo, then
the following inequality is valid:

flaz) = flz1) _ fly2) = f(y1)

T9 — I o Y2 —

If the function f is concave, the inequality is reversed.

Lemma 5.1. A function ® is log-convex on an interval I if and only if, for all a,b,c € I,
a < b <c, it holds
[@(B)]* < [@(a) P [@(c))

Definition 5.3. Let f be a real-valued function defined on the segment [a,b]. The divided dif-

ference of order n of the function f at distinct points xg, ..., T, € [a,b], is defined recursively (see
(2, 7]) by
f[xl]:f(xl)a i1=0,...,n,
and
Flios . an] = flz1, - xn] — f[xo,...,xn_l]‘
Tp — TQ
The value f[xg,...,x,)] is independent of the order of the points xy, . .., xy.

The definition may be extended to include the case in which some (or all) of the points coincide.
Assuming that fU=)(z) exists, we define

B fUD(x)
f[x,...,x]—i(j_l)! . (5.6)

An elegant method of producing n-exponentially convex and exponentially convex functions is
given in [4]. We use this method to prove the n-exponential convexity for above defined functionals.
In the sequel the notion log denotes the natural logarithm function.
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Theorem 5.3. Let Q2 = {f,: p € J}, where J is an interval in R, be a family of functions defined
on an interval I;, i = 1,2,3, in R such that the function p — fy|xo,...,Tom] is n-exponentially
convex in the Jensen sense on J for every (2m + 1) mutually different points xq, ..., xom € I,
i =1,2,3. Let L;, 1 = 1,2,3, be linear functionals defined by (5.1)—(5.3). Then p — L;(fp) is
n-exponentially convex function in the Jensen sense on J.

If the function p — L;(fp) is continuous on J, then it is n-exponentially convex on J.

Proof. For§; € R, j=1,...,n,andp; € J, j = 1,...,n, we define the function

glz) = fjﬁkf%(x)-

Jk=1

Using the assumption that the function p — fp[zo, ..., 2m] is n-exponentially convex in the Jensen
sense, we have

n
g[x(]v o 7x2m] = Z fjé.kfp,j+l’k ['ZUOa cee 7$2m] > 07
jk=1 2

which in turn implies that g is a (2m)-convex function on J, so L;(g) > 0, i = 1,2, 3. Hence

Z i€k Li <fpj+2pk> > 0.

J.k=1

We conclude that the function p — L;(fp) is n-exponentially convex on .J in the Jensen sense.

If the function p — L;(f,) is also continuous on J, then p — L;(f,) is n-exponentially convex
by definition.

The following corollaries are an immediate consequences of the above theorem:

Corollary 5.1. Let Q = {f,: p € J}, where J is an interval in R, be a family of functions defined
on aninterval I;, 1 = 1,2,3, in R, such that the function p — fp[zo, ..., xam] is exponentially convex
in the Jensen sense on J for every (2m + 1) mutually different points x, ..., Tom € I;, i = 1,2, 3.
Let L;, i = 1,2,3, be linear functionals defined by (5.1)—(5.3). Then p — L;(fy,) is exponentially
convex function in the Jensen sense on J. If the function p — L;(fp) is continuous on J, then it is
exponentially convex on J.

Corollary 5.2. LetQ) = {f,: p € J}, where J is an interval in R, be a family of functions defined
on an interval I;, i = 1,2,3, in R, such that the function p — fplxo,...,Tom| is 2-exponentially
convex in the Jensen sense on J for every (2m + 1) mutually different points xo, ..., Tom € I;,
i =1,2,3. Let L;, © = 1,2,3, be linear functionals defined by (5.1)—(5.3). Then the following
statements hold:

(i) If the function p — L;i(fp) is continuous on J, then it is 2-exponentially convex function on
J. If p — Li(fp) is additionally strictly positive, then it is also log-convex on J. Furthermore, the
following inequality holds true:

[La(f )" < (L) [La( ) (5.7)
for every choice r,s,t € J, such that r < s < t.
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(i) Ifthe function p — L;(fp) is strictly positive and differentiable on J, then for every p, q,u,v €
€ J, such that p < u and q < v, we have

MP,q(Lia Q) S MU,U(L% Q)) (58)

where

1

()7 oo

tip,q(Li, ) = iL (5.9)
fae)
Li(fp) ’ 7

Sor fp, fq € Q.

Proof- (i) This is an immediate consequence of Theorem 5.3, Remark 5.3 and Lemma 5.1.

(if) Since p — L;(fp) is continuous and strictly positive, by (i) we have that p — L;(fp) is
log-convex on J, that is, the function p — log L;(f,) is convex on .J. Applying Proposition 5.1 we
get

log Li(f,) — log Li(fy) _ log Li(f.) — log Li(f,)
pP—q B uU—v

(5.10)

for p < u,q <v,p # q,u # v. Hence, we conclude that
MPJ](LZH Q) < M?L,U(Liv Q)

Cases p = g and u© = v follow from (5.10) as limit cases.

Remark 5.4. Note that the results from above theorem and corollaries still hold when two of
the points xzq,...,z2,m € I;, © = 1,2,3, coincide, say x1 = xg, for a family of differentiable
functions f,, such that the function p — fy[zo,...,z2n] is n-exponentially convex in the Jensen
sense (exponentially convex in the Jensen sense, log-convex in the Jensen sense), and furthermore,
they still hold when all 2m + 1 points coincide for a family of 2m differentiable functions with the
same property. The proofs use (5.6) and suitable characterization of convexity.

6. Applications to Stolarsky type means. In this section we will apply general results from
previous section to several families of functions which fulfil conditions of obtained general results to
get other exponentially convex functions and Stolarsky means.

Example 6.1. Consider a family of functions

Q ={fp: R—1[0,00): peR}

defined by
epP*
]ﬁ) p ?é 07
fp(z) = om
° ~0
e P~
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d2n fp
den

2n
D > 1 2{5) (x) is exponentially convex by definition. Using analogous arguing as in the proof of
x

Here,

(x) = e’ > 0 which shows that f, is (2n)-convex on R for every p € R and

Theorem 5.3 we also have that p — f,[xo, ..., Z2y] is exponentially convex (and so exponentially
convex in the Jensen sense). Using Corollary 5.1 we conclude that p — L;(fp), i = 1,2,3, are
exponentially convex in the Jensen sense. It is easy to verify that this mapping is continuous
(although mapping p — f,, is not continuous for p = 0), so it is exponentially convex. For this family
of functions, 1, 4(Li, 1), i = 1,2, 3, from (5.9), becomes

1
Li(fp)>p_q
()™ 7
pp,g(Li, 1) = exp (Llézc(lf J)Cp) — 2;), p=q#0,
ilJp
1 Li(id- fo) o
eXp<2n+1 Li(fo) ) p=4=0

where id is the identity function. Also, by Corollary 5.2 it is monotonic function in parameters p
and q.
Theorem 5.2 applied on functions f,, f; € 11 and functionals L;, i = 1,2, 3, implies that there
exist &; € I; such that
(P& — Li(fp)
Li(f. q)

so it follows that:
MP:‘I(Lth) = IOgUp,q(Liugl)a Z = 172737

satisfies
min{a,b — X\, ¢} < M, 4(L;, 1) <max{a+ \,b,d}, i=1,2,3.

So, M, 4(L;,€2) is monotonic mean.
Example 6.2. Consider a family of functions

Qo ={gp: (0,00) > R:peR}

defined by

il 0,1 2 1

plp—1)...(p—2n+1) pE{0 L. =1,

() = 27 log x

. =7 0,1,...,2n —1}.

(_1)2n—1—jj!(2n 1 _j)!’ p=J€ { ) Ly y 4T }

d2ng 2ng
Here, d:cQ:) (z) = 2P~2" > 0 which shows that g, is (2n)-convex for z > 0 and p — x27f (x) is

exponentially convex by definition. Arguing as in Example 6.1 we get that the mappings p — L;(g;),
i = 1,2,3, are exponentially convex. For this family of functions p,, ;j(L;,Q2), i = 1,2,3, from
(5.9), is now equal to
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1
L; p—q
(Li&);) ’ P#q
2n—1 Li(909p) R |
fipa(Li, Q2) = exp <(—1) (Qn—l)!m—l- ; i—p)’ p=q¢{0,1,...,2n — 1},
exp (—1)%_1(271—1)!M+2n_ ! p=qe{0,1,...,2n—1}.
2L;(gp) 1;2 i—p|’ 1

Again, using Theorem 5.2 we conclude that

1

L; p—q

min{a, b — A\, ¢} < ( (gp)>p <max{a+ A b,d}, i=1,2,3.
Li(gq)

So, fip,q(Li,2),i=1,2,3 is mean.
Example 6.3. Consider a family of functions

Q3 = {¢p: (0,00) = (0,00): p € (0,00)}

defined by
p—$
— 1
(log p)2n7 p # Y
Pp(z) = on
=z =1
e PTo
2n¢p

Since 72 (x) = p~* is the Laplace transform of a nonnegative function (see [11]) it is exponentially

convex. Obviously ¢, are (2n)-convex functions for every p > 0. For this family of functions,
tpq(Li, Q3), 1 =1,2,3, from (5.9) is equal to

1

(pr))p q
(L@Q ; p#4q,
tp,q(Li, Q3) = exp < i(id fp — p1207;p>’ p=q#1,
»)
ex i(id- 1) =qg=1
p 2n + 1 L ¢1) 9 p - q -

where 7d is the identity function. This is monotone function in parameters p and g by (5.8). Using
Theorem 5.2 it follows that

MP#](Lin?)) = _L(p7 Q) logup,q(LiaQ3)7 i = 172a37

satisfies
min{a,b — A, ¢} < M, 4(L;, Q3) < max{a + A, b, d}.

So My, 4(L;, 23) is monotonic mean. L(p, ¢) is logarithmic mean defined by
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P—q
L(p,q) = { logp —logg’
P, p=aq.

p#q,

Example 6.4. Consider a family of functions

Q= {1¢p: (0,00) = (0,00): p € (0,00)}

defined by
e~TVP
Yp(T) = o
d2n77[)
Since 7 2np () = e~*VP is the Laplace transform of a nonnegative function (see [11]) it is exponen-
x

tially convex. Obviously 1, are (2n)-convex functions for every p > 0. For this family of functions,
tpq(Li, Q4), 1 =1,2,3, from (5.9) is equal to

%q
tipg(Li, Q4) = <§EZZ;>p ’

exp (_ Li(id ) wp) _ n) p=gq
2pLi(Yp)  p)’ ’

p#q,

where 7d is the identity function. This is monotone function in parameters p and g by (5.8). Using
Theorem 5.2 it follows that

My o(Liy ) = =(VB+ ) g palLis ), i =1,2,3,

satisfies min{a,b — A, ¢} < M, ,(L;, ) < max{a + A, b,d}, so M, 4(L;,€4) is monotonic mean.
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