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SYSTEMS OF ¢-LAPLACIAN THREE-POINT
BOUNDARY-VALUE PROBLEMS ON THE POSITIVE HALF-LINE

CHUCTEMU TPUTOUKOBUX T'PAHMUHUX 3AIAY
TUISL ¢-JATITIACIAHA HA JOJATHIN MIBOCI

We study the existence of positive solutions to boundary-value problems for two systems of two second-order nonlinear
three-point ¢-Laplacian equations defined on the positive half-line. The nonlinearities may change sign, exhibit time
singularities at the origin, and depend both on the solutions and on their first derivatives. Using the fixed-point theory, we
prove some results on the existence of nontrivial positive solutions on appropriate cones in some weighted Banach spaces.

BuBuaeThcs iCHYBaHHS JOJATHUX PO3B’SA3KIB TPAaHUYHHUX 3a1ad Ui JBOX CHCTEM IBOX HETIHIHHMX TPHUTOYKOBUX ¢-
JIAIUTACOBUX PIBHSHB APYTOTO MOPSKY, 110 BH3HA4YEHI Ha JojaTHiH miBoci. HemiHiHOCTI MOXKYTh 3MiHIOBAaTH 3HAaK, MaTH
4acoBi CHHTYJISIPHOCTI Ha MOYATKy KOOPIMHAT Ta 3aJieKaTH SK BiJ pO3B’A3KiB, Tak 1 BiA 1X mepmux moxigHux. Teopito
HEPYXOMHUX TOYOK 3aCTOCOBAHO JJISI JOBEACHHS JGSKUX Pe3ybTaTiB MI0JI0 iICHYBaHHS HETPHUBIAIBHUX HOJATHUX PO3B’SI3KIiB
Ha BINOBIJIHUX KOHyCaX B JICIKUX 3B)KCHUX OaHAXOBHX MPOCTOPAX.

1. Introduction. In this paper, we first consider the following general system of nonlinear second-
order ¢-Laplacian three-point boundary-value problem posed on the positive half-line:

—(@(1)) (t) = ma () 16, 91(1), 92(8), 91 (8), 95(8)), €T,

—(@(y2))'(t) = ma(t) fo(t, 51(1), w2(1), 11 (1), 95 (1)), tET,

y(0)=ay(n),  lim y(t) =0, -
y2(0) = agz(n),  lim y5(t) =0,

where « > 0 and n > 0 are real parameters. For ¢ = 1,2, the nonlinear functions f;: RT x
x (R*)? x R? — R are nonnegative while m;: I — RT are nonnegative, continuous functions
that are allowed to have a singularity at the origin ¢ = 0. The interval I := (0, +o00) denotes the set
of positive real numbers and R*: = [0, +-00).

The nonlinear operator of derivation ¢: R — R is an increasing homeomorphism such that
#(0) = 0 (¢ is not necessarily odd), satisfies

7 (x)| <o~ (|2]) Ve eR (1.2)

and is submultiplicative on R, i.e.,

¢(af) < p(@)p(B) Va,B R (1.3)
This implies that the inverse ¢! is supermultiplicative:
¢~ (aB) > ¢ (a)¢7(8) Vo, B ERT. (1.4)

¢ extends the usual multiplicative p-Laplacian nonlinear operator ¢(s) = |s|[P~2s, p > 1.
In the second part of the paper, we focus on a system with a particular structure, namely
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—((y) (1) =m@)f(t.2(t), tel,
—(¢(@))'(t) =m(t)g(t,y(t), tel,

/ . ’ (1.5)
y(0) =ay'(n),  lim y'(t) =0,
2(0) = az'(n), lim 2'(t) =0,

where the nonnegative functions f,g: I x R™ — R are continuous but may change sign; the function
m: I — R is continuous with possible singularity at ¢ = 0.

Singular differential systems arise in many branches of applied mathematics and physics such as
gas dynamics, Newtonian fluid mechanics, nuclear physics and have attracted many authors during
the last couple of years (see, e.g., [1, 8, 9, 12, 13]). The unknowns may represent a density, a
temperature, a velocity, . . . hence positivity of solutions is required.

Recently there has been so much work devoted to the investigation of positive solutions to systems
of boundary-value problems on finite intervals of the real line (see [11, 14, 18, 19] and the references
therein). Also, several methods have been employed to deal with boundary-value problems on the
positive half-line; we quote fixed point theorems in special Banach spaces, the fixed point index
theory on positive cones of functional Banach spaces, the upper and lower solutions techniques, and
the monotone iterative techniques [4, 18].

In the particular case of second-order differential equations corresponding to ¢ = I, system (1.1)
has been widely studied in the literature. In 2009, by using the Krasnosel’skii fixed point theorem, Xi,
Jia, and Ji [15] studied the existence of positive solutions to the following boundary-value problem
with integral boundary conditions on the half-line:

() + filt, (), 32(t) =0, tel

Yy () + fa(t,yi(t),12(t) =0,  tel,

+oo

p(0) =0, yj(+o0) = / a1(8)yn (s)ds,
0

+o0

1(0) =0,  yh(+o0) = / 02(5) 12 (5)ds.
0

In the same year, Zhang [17] investigated the existence of positive solutions for a singular multipoint
system of second-order differential equations posed on an infinite interval; he used the Monch fixed
point theorem and a monotone iterative technique; the system considered reads:

2(1) + f(t2(),2 (), (), ¥/ (1) =0, tel,
Y (1) + glt, (), (£), (), ¥ (1) =0, teT,
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m—2
2(0) = Y aiw(&), @'(+00) = Too,
=1

m—2
y(0) =) Bir(&), ¥ (+00) = yeo-

i=1
Motivated by the papers [4, 15, 17] and some related results for singular three-point ¢-Laplacian
boundary-value problems posed on the positive half-line [6], we are first concerned in this paper with
the existence of positive solutions for the singular system (1.1). This system is different from those
considered in [4, 15, 17]. Firstly, the singular system (1.1) is posed on an infinite interval. Secondly,
the nonlinear operator of derivation extends the model case of the p-Laplacian nonlinear operator.
Finally, the function m presents a time-singularity at ¢ = 0.

In this paper, we first prove an existence result of nontrivial nonnegative solutions for system
(1.1) under suitable conditions on the positive functions f; and m;, ¢ = 1,2, and thus we extend
some of the above works. The boundary-value problem is formulated as a fixed point problem of
a nonlinear operator. The index fixed point theory on cones of Banach spaces is then employed.
This is the object of Section 2. Then Section 3 is devoted to investigating the singular system (1.5)
where the nonlinearities are allowed to change sign. We prove the existence of positive solutions on
a translate of a cone in a Banach space. Each existence result is illustrated by means of an example
of application.

2. The general case of system (1.1). Some preliminaries including the main assumptions and
a compactness criterion are presented in Subsection 2.1. We construct a special cone in the Banach
space of continuously differentiable functions with vanishing derivatives at positive infinity; then we
study the properties of a corresponding fixed point operator. Subsection 2.2 is devoted to proving our
main existence theorem. We end this section with an example of application in Subsection 2.3. By a
nonnegative solution, we mean a couple of functions (y1,y2) € C1[0,+00) x C1[0,+00) such that
B(y}) € C1(0,+00) with y;(t) > 0 on [0, +00) for i = 1,2 and such that the equations in (1.1) are
satisfied.

2.1. The general framework. Consider the space

y=(y1,52) | yi € CH(RT,R), 3(0) = ayj(n),

X= . , ,
and t£+mooyi(t) =0, i=1,2

This is a Banach space with the norm
Iyl = llyall + lly2ll, where [lyi|| = sup |y;(¢)], i = 1,2
teRt

In order to transform problem (1.1) into a fixed point problem, the following auxiliary lemma is
needed; the proof which is immediate is skipped.
Lemma 2.1. Letv € L'(I). Then u € C*(I) is a solution of

—(¢())(t) =v(t), tel,
@.1)
u(0) = au'(n), lim «/(t) =0

t—+o00
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if and only if
“+oo

¢
u(t)=C+ [ ¢o7* v(T)dr | ds, t>0, (2.2)
[\/

where C = a¢p~! </+Oo v(7)d7‘>.
U

In order to study the compactness of the fixed point operator, we first recall a classical result.
Given the Banach space

C1([0,400),R) = {x € C([0,+0),R) | lim z(t) exists}

t—+o00
with the norm [|z|; = sup;¢(g 100y |2(t)], we have the following lemma.
Lemma 2.2 [3, p. 62]. 4 set M C C;(RT,R) is relatively compact if the following conditions

hold:

(a) M is uniformly bounded in C;(R™,R).

(b) The functions belonging to M are almost equicontinuous on R™, i.e., equicontinuous on
every compact interval of R™.

(c) The functions from M are equiconvergent, that is, given € > 0, there corresponds T'(€) > 0
such that |x(t) — x(o0)| < g, for all t > T'(€) and x € M.

From this lemma, we derive the following lemma.

Lemma 2.3. Let M C X. Then M is relatively compact in X if the following conditions hold:

(a) M is uniformly bounded in X.

(b) The functions belonging to the set A = {z | z(t) = y'(t), y € M} are almost equicontinuous
on RT,

(¢) The functions from A are equiconvergent at +00.

Now, consider the following hypotheses where ¢ = 1, 2:

(G1) The functions f;: Rt x (RT)? x R? — R™* are continuous and when yi,ys, 21,22 are
bounded f;(¢, (t + @)y1, (t + @)ya, 21, 22) are bounded on [0, +00).

(G») The functions m; : I — R are continuous and do not vanish identically on any subinterval
of I. They may be singular at ¢ = 0 but are integrably bounded, that is

+0o0o
A= / mi(s)ds < oo.
0

2.2. Fixed point formulation. Let P be the nonnegative cone defined by
P={yeX]| y(t) >0 Vt>0}.

By y > 0, it is meant y; > 0 for each ¢ = 1,2. We start with a simple observation:
Remark 2.1. 1If, for i = 1,2, y; € P, then the mean value theorem yields

(t
sup yZ( )

< 1B
up S5 < i
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Now let 2 C X be a bounded subset. Then, there exists M > 0 such that ||y|| < M, for all
y = (y1,92) € Q. According to Assumption (G1), for i = 1,2, let

S = sup {fi(t, (¢ -+ )y, (£ + @)y, 21, 22)

for t >0, (y1,92) €[0,M]*, and (|z1],]22]) € [0, M]*}.
yi(t)

Then for every ¢ > 0, |y;(t)| < M and thus 0 < ta < M, i =1,2. Hence
Q
—+o00
[ )50 (5): 320054 (5): 35 =
0

+o0o
= [ty (s S QR ) )Y as <
0

400
< SJ(\Z) / m;(s)ds < oo, i=1,2.
0
As a consequence, for ¢ = 1, 2, the integrals

+oo
/ mi(5)) fi(5,51(5), y2(8), %45, 4 (5))ds
0

are convergent. From Lemma 2.1, we know that the boundary-value problem (1.1) is equivalent to

t “+o00
yilt) = Ci + / o1 / mi(r)fi (11 (1) ol(7), (), 9 (7)) dr | dis,
0 s

where N
Ci = ad)il / mZ(T>fZ (Ta yl(T)7y2(T)7y,l(T>7yé(T)) dr ) 1= 172
n

Let €2 C X be a bounded subset and define the integral operators

Fi: QNP — CYR',RT),

(2.3)
y = (y1,92) — Fiy(t),
where, for i = 1, 2,
t —+o00
Fuy®) = Cit [ | [ milo)fi (ran()sn(r). (), 5(0) dr | d.
0 s

Next, we study the properties of the fixed point operator F' defined by

Fy(t) = (Fy(t), Fay(t)) .
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Lemma 2.4. Under Assumptions (Gy) and (G,) the operator F maps the set Q NP into P.

Proof. First we show that F': QNP — X is well defined. Let y = (y1,y2) € QN P. Then there
exists M > 0 such that ||y|| < M, for all y = (y1,y2) € Q@ NP. By Assumptions (G;) and (G,), we
have, fori =1, 2,

+oo
/ mi() i (7,91(7), v (), 4 (7), w4 (7)) dr < A8,
0

Hence for every ¢ € [0, +00)

—+00

¢ mi(7) fi (1,917, 02 (7), 0 (1), w(7)) dr | ds < [ 67 (A:SY)) dis < oo
O/ / Y1 Y2 Y1 Y2 0/ ( M) <

s

In addition, we can easily prove that for all y € Q NP,

Fy € C([0,+00),R), Fy(t) >0, t € [0,+00),

+00
Fiy(0) = Ci = a¢™! /mi(T)fi (7, 51(7), 92(7), 91(7),95(7)) | = a(Fiy)'(n),

and

+oo
t£+moo(Fiy)/(t) = tl}gloo ¢! / mi(7) fi (T, 91(7), y2(7), 91 (1), 45(7)) | =¢71(0) =0,
t
ending the proof of the lemma.
The proof of the following lemma is a consequence of Lemma 2.3. The proof is omitted.
Lemma 2.5. Assume that (G1) and (Go) hold. Then, the mapping F: QNP — P is completely
continuous.
2.3. Existence result. Two auxiliary lemmas are needed in this section. More details concerning
the theory of the fixed point index on cones of Banach spaces can be found for instance in [5, 10, 16].
Lemma 2.6. Let Q) be a bounded open subset of a real Banach space E, P a cone of E, 6 € (Q,
and A: QNP — P a completely continuous operator. Suppose that

Az # X Ve edQNP, A >1.

Then the fixed point index i (A,QNP,P)=1.
Lemma 2.7. Let Q) be a bounded open set in a real Banach space E, P be a cone of E, and A :
QNP — P be a completely continuous mapping. Assume that

Az Lz VxeddNP.

Then the fixed point index i (A,QNP,P)=0.
We are now in position to prove the main existence result of this section.
Theorem 2.1. Assume that the following assumptions hold for i = 1,2 :
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0 S fi(t)y17y2321722) S

<alt) (0(725) +o (25) ) 80 660 + o) + o)

t+ «

(93
Sorall (t,y1,y2,21,20) € I x (RT)2 x R2, with

m;a;, mib;, mic; € Ll(R+)

(Gs4) There exists R > 0 such that
¢~ (2 (Imiail 1 + [mibi| 1) ¢(R) + [mici| 1) < R/2. (2.4)

(Gs) There exist 0 < vy < & such that for all (t,y1,ys, 21, 22) € [7,6] x (RT)? x R2, we have

hn Y2
; ta s R1y R > g taiv ’
fz( Y1, Y2, 21 2) gz< f+ o t—|—Oé>

where g; € C([ry,6] x (R1)?) satisfies

(4 Y1 Y2
o I\t ratta
liminf min
Y1520 tE[y,0] (Y1 + y2)

> (2.5)

0
with constants {; satisfying ¢~ (&/ mi(t)dt) > 1/7.
g

Then, problem (1.1) has at least one nonnegative solution y = (y1,y2) such that
O<|lyll<R.

Remark 2.2. Tt is easily seen that Assumption (G3) is a substitution of Assumptions (G1), (G2)
and Lemmas 2.4 and 2.5 still remain valid.
Proof. Define the open ball

Qr ={y € X: |yl < R}.

From Lemma 2.5, F': Qr NP — P is completely continuous.
Claim 1. Fy # \y, for y € 9Qr NP and A > 1. To see this, let y = (y1,y2) € 0Qr NP. By
Assumption (G3) and Remark 2.1, the following estimates hold for positive ¢ and ¢ = 1, 2:

+oo
(Fay) (1) = &7 /m(T)fi(T,yl(T),yz(T),yi(T),yé(T))dT S

o (oo o (o (22) (52
0

+bi(7) (B(1(7)) + ¢(ya(7))) + (7)) dr) <
< ¢~ (fmaailpa [o(lyall) + ely2ID] + fmabil g1 [@(lyall) + e(lly2l)] + fmicil 1) <
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< o7t 2lmiail 1 o(Ilyll) + 2lmibil 1@ ([lyll) + fmaci 1) <

_ R

< ¢ (2 (Imiail g + [mabs| 1) p(R) + [mici| 1) < 35

Taking the least upper bound over ¢ yields | Fiy|| < ||y||/2, for all y € 9Qr NP and all i = 1, 2.
Moreover

1Fyll = [Fuyll + [ Fayll < llyll Vy € 02 OP. (2.6)

As a consequence
Fy#\y VyedQrnNP VA>1. 2.7

If not there would exist some yg € 9Q2r NP and Ay > 1 such that Fyg = Agyop. Hence || Fyo|| =
= Xollwoll = |lwoll, contradicting (2.6). This implies that (2.7) holds. Therefore, Lemma 2.6
guarantees

i (F,Qr NP,P) = 1. (2.8)

Finally (2.8) and the existence property of the fixed point index imply that the operator F' has a fixed
point y = (y1, y2) which belongs to Qr NP with 0 < ||y|| < R.
Claim 2. By (2.5), there exists an rg > 0 such that for ¢ = 1,2, we have

Al Y2
L > ¢ Cfor 0< < dtely,dl 2.9
g < s t—|—a> d(y1 +y2), for 0 <y +y2 <rg and t € [v,0] (2.9)

70

Let0<7“<min(R,
0+«

> and consider the open set

Q= {y e X: |lyll < r}.

We claim that F'y £ y, for every y € 09, NP. Otherwise, let yo = (yo,1,%0,2) € 9§, NP be such
that

Fyo < yo. (2.10)
Then, by virtue of (1.4), (2.9), and (2.10), for all ¢ € [, 0] and i = 1,2, we have the estimates:

t 400
yoilt) = Ci + / o1 / () f3(7 901 (1), 90.2(7). 41 (), (7)) | ds >
0 s
+00

Y
> [0 | [ mih 010 (). ().t | ds >
0
ol é
> [ | [ sitrvon () 0a(r) s (7)ol | ds >
0 ol

Y )
> /(b_l /mi(T)gi(T,y()J(T)/(T—FOé),y()g(’i')/(T—i—Oé))dT ds >
0 Y
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)
>yt / ma(r) (o () + yoo(r))dr | >

te[y,9]

)
>yl (cb(min (yo,l(t)+y0,2(t))> o [ [mitryar | =
v

)
>0t g / my(r)dr | min (yo.1(t) + yoa(t)) >
te(v,6]
/

> min (yo,1(t) + yo,2(t)) > min yo(t),
tely,d] te[y,9]

contradicting the continuity of the functions yo;, ¢ = 1,2, on the compact interval [y, d], where C;
is given by (2.2). Therefore, Lemma 2.7 yields

i(F,QNP,P) = 0. @2.11)

Combining (2.8), (2.11), and the fact that Q, C Qp, we find

i(F,(Qr\ Q) NP,P) = 1. (2.12)
Finally, the fixed point y = (y1,y2) € P satisfies 7 < ||y|| < R.

Theorem 2.1 is proved.

2.4. Example. Let

aj (t) _ e—90t’ ag(t) — e—500t7 by (t) _ 6_200t, bQ(t) — e—SOt,
1 _ —
c(t) = 100" ca(t) = 50, my(t) = e 3, mo(t) = e 10,

and let the increasing homeomorphism ¢ be defined by ¢(x) = 2. In order to check the inequality
(2.4) in Assumption (Gy), take v = 3/2 and n = 10. Then we can choose § = 1 and R = 15 and so

we have
3569 R

¢~ (2 (Jmiar|pr + [mabi|p1) ¢(R) + [maea|pr) = 3 <3

and
4403 R

¢~ (2 (Jmaaz| 1 + |maba|p1) ¢(R) + |maca| 1) = 971 < 5"

Consider the nonlinearities f;, ¢ = 1,2, defined in (R*)?’ x R? by

) = a0 (6 (205) +0 (F2)) + ) 00a1) + 60) + o)

Then for all 0 < v < § and all (, y1,y2, 21, 22) € [7,0] x (RT)? x R?, we have

fi(t7y17y2721722) > az(t) <¢ <t _y’_1a> + (b (tfa)) +Cz(t) =
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SYSTEMS OF ¢-LAPLACIAN THREE-POINT BOUNDARY-VALUE PROBLEMS ... 1635

— g [t Y1 Y2
1 ’t—i-Oé’t-i-Oé Y

. (t Y1 Y2 >
I\t Fat+a - ci(t)
o(y1 + y2) By +y2)

Therefore Assumptions (G3)—(Gs) in Theorem 2.1 are satisfied. All the computations have been
undertaken using Matlab 7.9. As a consequence, we have proved that the problem

where

— 400, as y; +y2— 0.

—93t —3t
1\3y/ € 3 3 —203t//, 1\3 /3 €
((%1)°)(t) i +3/2)3(y1 +yz) + e )"+ (2)7) + 155 >0,
675101‘, 3 3
—((5p)*) (t) = m(sz +3) + e (W) + (15)?) + 50, >0,
3 )
y1(0) = S (10),  lim () =0,
3 )
y2(0) = 5y2(10),  Tim ws(t) =0,

has at least one nontrivial nonnegative solution y = (y1,y2) € X satisfying r < ||ly|| < 15, for some
0<r<15.

3. The particular case of system (1.5). In this section, we prove an existence result of
positive solutions for problem (1.5) under new conditions on the functions f, g, and m. In particular
the nonlinearities f,¢g may change sign but we still obtain existence of positive solutions with
precise information on the lower bounds. By a positive solution we mean a solution (y,z) €
€ C10,+00) x C[0,+00) such that ¢(y') € C1(0,+00) and ¢(z') € C*(0, +o0) with (t) > 0
and y(t) > 0 on [0,400) and the equations in (1.5) are satisfied. Some preliminaries including the
main assumptions, the problem transformation, and a compactness criterion of a fixed point operator
are collected in Subsection 3.1. Then we prove an existence theorem by constructing a special cone
in a weighted Banach space in Subsection 3.2. We end the section with an example of application in
Subsection 3.3.

3.1. Problem setting and main assumptions. For some real parameter 6 > 0, let

v ={y€CO+50.B) | 0 = o/, 1m_e"y(e) =0}
t——+o00
which is a weighted Banach space with the Bielecki-type norm [2]

lyllo = sup e "ly(t)]-
te[0,+00)

Remark 3.1. Notice that if lim;_, » 3/(t) = 0 then y has a sublinear growth at positive infinity
and thus for each positive 6, lim;_, o e y(t) = 0. Thus Y is larger than the space X used in
Section 2. However, we will still obtain existence of positive solutions with vanishing derivatives at
positive infinity.
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The nonlinearities are assumed to satisfy the following hypotheses:
(H)) The functions f: RT xR"™ — Rand g: RT™ xR" — R are continuous and when v, z are bo-

+o00
unded, the function g(t, e?*y) is bounded on [0, +00) and f satisﬁes/ m(s)f(s, k(a+s))ds < oo,
0
o0t

14 £V
(H2) The functionm: I —s R™ is continuous and does not vanish 1dent1cally on any subinterval

of I. It may be singular at ¢ = 0 but is integrably bounded, i.e.,

+oo
= /m(s)ds < 00.
0

«, if fa>1,
1

geea_l, if 0<fa<l,

and, for positive ¢, define the function

t) =ap! /m —I-/tgb_l +/Oom(7')d7' ds. (3.2)
0 5

Remark 3.2. The properties of ¢ and m imply that w is positive. Moreover w is the unique
solution of problem (2.1) for v = m.
This function w is now used to define the translate of the positive natural cone as:

for any positive constant k. For instance, one may take g(t,y) = 1 +

Let

K= 3.1)

K=Pt+w={yeY| y(t) zw(t) Vi =0},

where
P={yeY| y(t)>0 Vt>0}.

In [7], we have proved that the classical fixed point theory for compact mappings defined on
cones of Banach spaces is still valid on translates of cones. In particular, Lemmas 2.6 and 2.7 hold
when the cone P is replaced by its translate X and thus we have the following lemma.

Lemma 3.1 ([7], Proposition 4).  Let ) be a bounded open subset of a real Banach space E,
P a cone of E, K = P + w a translate of P with w € Q. Let A : QN K — K be a completely
continuous mapping satisfying

Az —w # Mz —w) VeedQnk, A>1.

Then the index i (A,QNK,K) =1

Let Q2 = B(w,r) be an open ball centered at w with radius 7 in a real Banach space E.

Lemma 3.2 ([7], Lemma 3). Let P a cone of E, K = P+w a translate of P. Let A: QNK — K
be a completely continuous mapping satisfying

Frx Lz Vo eddnKk.

Then the fixed point index i (A, QNK,K) = 0.
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For 2 C Y a bounded subset, define the nonlinear operator

F:QNK — C([0,+),RT)

t +oo
Fy(t)=C+ /¢_1 / m(7)f (7, Ty(7)) dr | ds, teRT, (3.3)
0 s

where

+o0o
C=ap! / m(r) f(r, Ty(r))dr |
n
T +00
ryr) =D+ [67 | [ mi@)gloy(o)ar | ds
0 s

+o0
D= a¢™ / m(0)9(o, y(0))do

As in Lemma 2.1, it is easy to see that if F' has a fixed point g, then problem (1.5) admits the couple

t +o00o
w0+ [o | [ mngtryyir ) ds
0 s
as a solution. In the following three lemmas, we study some properties of the fixed point operator F'.
Lemma 3.3. Under Assumptions (H1), (H,) and

) {f(tvm) > 1, for t e R,z > D,

3.4
g(t,y) >0, for t € R,y > w(t), G4

F maps the set QN K into K.
Proof. First we show that the mapping F': QN K — Y is well defined. For y € QN K, there
exists M > 0 such that ||yl < M. Using Assumption (H;), let

Sy =sup{g(t,e’y) | t e R,y € [0, M]}.

For any ¢ > 0, we have 0 < y(t)e™% < M, and so Assumption (#;) implies

+00 +o00
[ mngtryenar = [ minyg (reyre ) dr < ASur
0 0

Hence for each fixed ¢ € [0, +00), we have
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t +oo
So/qﬁ_l O/m(T)f(T,¢_1(ASM)(a+T))dT ds < 0.

In addition, it is easily proved that, for all y € Q N K, we obtain
Fy e C([0,+00),R),  Fy(t) >0, tecR", Fy(0)=a(Fy)(n),

and then (see Remark 2.1 in [6])

t+ o
< ot < i "] <
0< lim e™™Fy(t) < lim — sup [(Fy) (1) <

< lim t—l—a /m f(r,Ty(r))dr | =0.

t—+o0 e

Now, we claim that F'y(t) > w(t) on RT. On the contrary we assume

sup {w(t) — Fy(t)} > 0

teRt

and consider two cases:
Case 1. sup;cp+{w(t) — Fy(t)} = lim, 4 oo{w(t) — Fy(t)} > 0. From (3.4), we have

lim {w(t) - Fy(t)} =

t—+00

+o0 +oo 400
= ap! /m(T)dT —I—/gb_l /m(r)dﬂ' ds—
n 0 s

—ap ! /m f(r,Ty(r))dr | —

—+o0
—/gb_l /m f(r, Ty(r))dr | ds <0,
0

leading to a contradiction.
Case 2. There exists a real number ¢; > 0 such that

sup {w(t) — Fy(t)} = w(t1) — Fy(t1) > 0.
teR+
Arguing as in Case 1, we can see that w(t1) — Fy(t1) < 0 which is again a contradiction, ending the

proof of the lemma.
To prove the compactness of the operator F, we need the following result which is a direct

consequence of Lemma 2.2.
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Lemma 3.4. Let M C Y. Then M is relatively compact in Y if the following conditions hold:

(a) M is uniformly bounded in Y.

(b) The functions belonging to the set A = {:1; | z(t) = y(t) /e, y € M} are almost equicon-
tinuous on R .

(c) The functions from A are equiconvergent at +00.

Since m may be singular at the origin, we first consider the regular case; then we argue by
approximation.

Lemma 3.5. Assume that m: (0,400) — [0,400) is continuous and bounded at the origin.
Then, the mapping F: QN K — K is completely continuous.

Proof. Claim 1. F' is continuous on K. Let (y,,), be some sequence converging to some limit
y in IC; then there exists NV > 0 independent of n such that

max{uy\e, sup HZ/nHe} <N
n>1

Letting
Sy =sup {g(t.e"y) | t€[0,+00),y € [0, N]},

we get

400
/ m(5)[9(5,un(s)) — g(s, y(s))]ds < 24Sy.
0

Then, the Lebesgue dominated convergence theorem together with the continuity of f, g, and ¢+
yield the estimates:

e~ |(Fya)(t) — (Fy)(1)| =

+oo
= et | / m(r) (7, Tyn(r))dr | +
n

t +o0o
—/gbl /m(T)f(T,Ty(T)) dr | ds| — 0, as n — +oo.
0 s

Consequently,
|Fyn — Fyllg — 0, as n — +oo,

which proves the claim.
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Claim 2. F is completely continuous, i.e., it maps bounded sets into relatively compact sets. Let
B be a bounded subset of Y; then there exists M > 0 such that ||y|ly < M, forally € BN K. On
one hand, we obtain

IFyllo = sup [e ™ (C+ / ¢! / m(7)f (1, Tya(7))dr | ds | | <

t€]0,400)

<Kg¢! /m(T)f (T,¢71(ASM)(O¢+T)) dr | < oo Vye BNK,

which implies that the set (B N K) is uniformly bounded. On the other hand, for all y € BN K,
B € (0,400) and t1,t2 € [0, ] (t1 < t2), we have the estimates

‘Fy(tz) Fy(t1)|

60t2 - 69t1
to
=|C (e*%’ - 679t1) +e 0t [ g1 m(T (1))dr | ds —
[ (7
t1 “+o00
—e 0 o1 m(7)f(r,Ty(7))dr | ds| <
[\
t1
<le e | C+ [ ¢! m(r “LHASy) (a4 7)) dr | ds | +
/ /
to +oo
femon / 6! / m(r) (7, &~ (ASar) (o + 7) dr | ds| .

t1 0

The terms in the last two lines tend to 0, as |t; — t2| — 0. Hence F(B N K) is equicontinuous.
Finally, Assumption (H;) yields

/ m(s)f (5,6~ (ASyr) (o + 8))ds < oo,
then
i | P50 i T <
+oo
< lim CE g / m(r) f(7,67} (ASur)(a + 7))dr | =0.
0
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This means that F/(B N K) is equiconvergent at +oo. Using Lemma 3.4, we conclude that F/(B N K)
is relatively compact, ending the proof of the lemma.

Lemma 3.6. Let m be singular at t = 0. Then the mapping F given by (3.3) is completely
continuous.

Proof- Let B C Y be a bounded subset. For each n > 1, define the approximating operator £,
on BN K by

:C+/t¢1 /m (r))dr | ds, tel

It suffices to prove that F}, converges uniformly to F on BN K. Foreveryt € T andy € BNK
satisfying ||yl < M, the following estimates follow from (#;) and (H,):

e M| Fay(t) — Fy(t))| =

- / e Otgp1 /m f(r, Ty(r))dr | ds| <

< g / m(r) (7,6~ (ASar) (0 + 7))dr

Consequently, Assumptions (H) and () together with the Cauchy criterion for convergence of
integrals imply that

|Fny — Fyllg — 0, as n — +o0.
Since, from Lemma 3.5, for each n > 1, the operator F,, : BN K — K is completely continuous and
F,, converges to F' uniformly on closed bounded subsets of B N K, the uniform limit operator F is

completely continuous, ending the proof of the lemma.
3.2. Existence result. Let K be defined by (3.1) and for each M > 0

Sy = sup{g(t,e”y) | t e R, y € [0, M]}.

Our main existence result in this section is the following theorem.
Theorem 3.1. Assume that Assumptions (H,), (H2) hold together with
o {fa, ey) < ar(t) (&ly) +y) +br(®),
gt e”y) < az(t) (p(y — w) +y — w) +ba(t),
for all (t,y) € R* x RY, where ma;, mb; belong to L*(I),i =1,2.
(Hs) There exists R > 0 such that

K¢~ {|may|p1 (p(KR) + KR) + [mbi| 11} + |wllo < R, (3.5)

¢~ {|maz|p1 (¢(R) + R) + [mba| 11} < R. (3.6)
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(He)  There exist positive constants ||wl|lg < p < R and v, § (n < v < d) such that, for all
(t,y) € [v,6] x [w(t), ol
g(t,e”y) > (6> (™y),

and for all t € [v,4], y=>p,

ft,y) > Ay,
where
2 e -
e::M, A= fy/m(t)dt ,
[ m(t)dt 5
Y
and

p=(a+7)o /m ;

where A = minye(y 5) yefo,p 9(t, efty)).
Then problem (1.5) has at least one positive solution (y, x) such that

0<|y—wly <R, |zl < K¢ ' (ASR),

and for all t € [0, +00),

—+00

t) > ap! jm(T)dT +/t¢_1 /m(r)dT ds,
5 0

S

)

£(t) > ag™! / m(s)g(s,y(s))ds

~

Proof. Consider the open ball
Qr={yeY:|ly—wly <R}
From Lemma 3.5, the operator F': Qg N XC — K is completely continuous.

Claim 1. Fy—w # ANy —w), forall y € 0QrNK and A > 1. Lety € 9Qr N K. Using (Hs)
and the inequality (3.6), for all positive ¢, the following estimates hold true:

Ty(t) = ap™! /m o))do | +
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+o0
< ag™! ( [ (o) (axto) (o1 (wl0) ~ (o)) +

0

+e % (y(o) — w(a))) + bg(a)) da) +

+e % (y(o) — w(a))) + bz(a)) da) ds <

< (t+ )¢~ (Imag|p (6(ly — wllo) + lly — wllg)) + [mba|11) =
= (t+ )¢~ " (jmaz|r1 (3(R) + R) + |mbs|11) < R(t + o).

Hence ‘4
e MTy(t) < R<KR V>0
(&

Using (3.5), for all positive ¢, we deduce that

e "|(Fy)(t) —w(t)] <

t +o0 +oo
+e‘”/¢1 (/ ¢ / m(T)f(T,Ty(T),)dT) ds +e "l (t)| <
0 s ¢

“+oo
<ae g ( [ () (ar(r) (607 Ty(m) + & Ty() + ba(r) czf) +
0

1643

¢ +oo
+69t/¢1 (/ m(T) (al(T) (@f)(@*eTTy(T)) + eieTTy(T)) T bl(T)> dT) ds +Jlwllo <
0

0

< 86 (marl 1 (BUCR) + KR) + mbi[12)) + wllg <

< K¢~ ((Jmas|pr (9(KR) + KR) + [mbi 1)) + [lwllo < R

ISSN 1027-3190.  Vkp. mam. scypn., 2015, m. 67, Ne 12



1644 S. DJEBALI, K. MEBARKI

Taking the least upper bound over ¢, we get
[1Fy —wllo <lly—wlly  VyedrnkK. 3.7

As a consequence
Fy—w# ANy —w) YVyedrNK YA>1. (3.8)

Indeed, on the contrary there would exist some yy € 0Q2g N K and Ag > 1 such that Fyy —w =
= Mo(yo — w). Hence

[1Eyo — wllo = Aollyo —wllo = [lyo —wllo = R
contradicting (3.7). This implies that (3.8) holds. Therefore, Lemma 3.1 yields
i(F,QrNK,K) =1. (3.9

Finally (3.9) and the existence property of the fixed point index imply that the operator F' has at least
one nonnegative fixed point y which belongs to Q0 N K.
Claim 2. Let 0 < R < p — ||lw||g and consider the open ball

Qp:={yeY:|y—wly <R}

We claim that
Fy £y, forall y € 9QzNK. (3.10)

Otherwise, let yo € 925 N K be such that F'yg < yo. Then, in one hand,
0<ePy(t) <R+ |wlo<p  Vte[r,d].

In the other one, by () and the definition of A, we obtain the estimates

Tyo(t) D+/¢ /m g(o,yo(o))do | ds =

=ap ! /m g(o,yo(o))do | +
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z (@ +7)o /m =

Making use of Assumption (?¢), we have also the following estimates valid for every ¢ € [, d]:

t +o00
t) > C—i—/qﬁl / m(7) f(r, Tyo(T))dr | ds >
0 s

v
0/¢ 1 /m f(r, Tyo(7))dr | ds >

> / 5! +/oom(T)A Tyo(r)dr | ds >
Y

0l +00
2/(;5_1 /m YAy /m g(o,yo(0))do | dr | ds >
0 vy

+o00 +00
>0 Ay [ ([ m(@)eeo(o)do
gl
Using the property (1.4) of ! and the definition of ), £, we find a lower bound for yq:

yol(t) >v¢ ™" ¢~ (¢2(mln Yo(t ) /m >

€[,9]

> min m = min
7 i yolt / in yo(t)

Hence for every t € [v,6], yo(t) > minge|, 5 yo(t), contradicting the continuity of the function yo
on the compact interval [y, §]. This implies that (3.8) holds. As a consequence, Lemma 3.2 yields

i(F,QpaNK,K)=0. (3.11)
To sum up, from (3.10), (3.11), and the fact that ﬁﬁ C Qpg, we conclude that
i(F, (Qpr \ﬁﬁ) NK,K) =
Therefore, there exists at least one positive fixed point y € K satisfying
R<|y—wllp<R and y(t)>w(t), t>0.
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Moreover, for positive ¢,

Hence

-1
< — ¢ (A%4jw,) -
Passing to the least upper bound over ¢ yields

lzllo < K¢~ (ASRyjw),) -

Finally, for all positive ¢,
)
)>ap! / m(o)g(o.y(o)de | > | [mlo)g(u(e)is |,
v

which completes the estimates of the solution (y, x).
Theorem 3.1 is proved.
3.3. Example. Let

: 1
e 5, ifo<t<1, me—moooo, ifo<t<i,
6_5'5’ lft 2 17 WB_ZOOOOOI:’ lft 2 17
~10 if 0 1
1 t 10, <t<1,
bi(t) ==, bo(t)=20, and m(t)={ 15 =
! t~10, ift>1,

and define the increasing homeomorphism ¢ by

1, .
o 9 f >0)
3I 1ITr ~

o(x) =
0, if 2 < 0.

1 1
In order to check the inequality (3.5) in Assumption (?s), choose o = 3 and n = 5 Thus we can

1213 1 10\/ 15
tﬂﬁ&zlamiR:2OSOKE:——fmmw@)ZE\H65— 6 V5 + ——— V19, for t > 0. Then

2000
o] 2267
0~ 849"
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- 3544
K¢~ [[mar| 1 (¢(KR) + KR) + [mbi|a] + [|wllo = 5= < B,
and 1934
¢ llmaz| s ($(R) + R) + [mbalp1] = S5 < R.

Now consider the nonlinearities f, g defined for (t,y) € (RT)? by

Ft.y) = an(t) (ele™"y) +ey) +bi(t) 2 1.

9(t.y) = as(t) (B (y— ) + ey —w)) +ba(t) 2 0.

Then, for every positive constant k, we have
“+o00
/ m(s)f(s,k(a+s))ds < co.
0

2 1
Ifwelet'y:5and5:§,thenv>nand

o 8287
t)dt = ——
/ ®) 1250
5
For ||w|lg < p =3 < R, we obtain
A= min t, e%y) = bo(t) = 20.
- g(t,e™y) = ba(t)
Then
; 1402
-1
p=(a+7)9 /m(t)dt i1
¥
Consequently

_ 399 853

— - > .
1000 2 5560 forall t€[vy,d], y>p

Finally, for all (¢,y) € [y,d] x [w(t), p], we have the estimates

g(t.e™y) _  ba(t) 20 ¢*(1/7) 657

P y) = Py = gy~ 009> T = 3011
m(7)dr

~

Therefore Assumptions (#3)— () in Theorem 3.1 are fulfilled. All the above computations have
been undertaken using Matlab 7.9. Therefore, the singular problem
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2(0) = 2’ (;) Cdim (1) =0,

t—+o0
at least one positive solution (y, z) € Y? satisfying y(t) > w(t) Vt € RT.
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