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DETERMINATION OF JUMPS IN TERMS OF LINEAR OPERATORS*
BU3HAUEHHS CTPUEBKIB Y TEPMIHAX JIHIHHUX OIIEPATOPIB

A theorem of Lukécs [J. reine und angew. Math. — 1920. — 150. — S. 107 - 112] states that the partial sums of conjugate
Fourier series of a periodic Lebesgue integrable function f diverge with a logarithmic rate at the points of discontinuity of
f of the first kind. Moricz [Acta math. hung. — 2003. — 98. — P. 259-262] proved a similar theorem for the rectangular
partial sums of double conjugate trigonometric Fourier series.

We consider analogs of the Mdricz theorem for generalized Cesaro means and for positive linear means.

In the present paper we prove a similar theorem in terms of linear operators satisfying certain conditions.

Teopema Jlykama [J. reine und angew. Math. — 1920. — 150. — S. 107 -112] cTBepmxKye, 1110 YACTUHHI CYMH CIIPSKEHUX
panis ®yp’e nepioguunoi ¢ynkuii f, iHTerpoBHOi 3a Jleberom, po3GiraroTbest 3 JIOrapu(MIiYHOIO NIBUAKICTIO B TOYKAX
po3puBy nepuioro poxay ¢yskuii f. Mopiu [Acta math. hung. — 2003. — 98. — P. 259 -262] noBiB noxibHy Teopemy st
NPSMOKYTHUX YAaCTHHHHX CyM JIBiUi CIPSDKEHHX TPUTOHOMETPUUHHX psiiB Dyp’e.

PosrnsHyTO Teopemu, 1o aHanmoriuHi Teopemi Mopida Ui y3aranbHEHHX cepeqHix Yesapo Ta A MO3UTUBHUX JIiHIH-
HUX CepeIHiX.

VY wiit craTTi JOBEICHO aHAJIOTIYHY TEOPEMY B TEpMiHAX JIIHIHHUX OIEPaTopiB, IO 3aI0BOJBHSIOTH ICBHI YMOBH.

1. Introduction. Let f be a 27-periodic Lebesgue integrable function. The Fourier trigonometric
series of the function f is defined by

oo

a , o

3+ Llarcosie + bisiniz) (b
-

where
1f | Ll
a; = /f(x) cos ixdx and b; = /f(x) sin ixdx
™ ™

are the Fourier coefficients of f. The conjugate series of (1.1) is defined by

o0

Z(ai sinix — b; cosiz). (1.2)
i=1

Let Sk( f; ) be the k th partial sum of series (1.2). Lukacs [4] proved the following theorem.
Theorem 1.1. If f € L(—mn, x| and for some point x € (—m, |, there exists a number d,(f)
such that

lim 1/\f(x+s)—f(:z:—s)—dx(f)|d3:o,

then

k=400 Ink T
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R. Riad [10] proved an analogous theorem in terms of the conjugate Walsh series.

F. Moricz [5, 6] generalized Lukacs’s theorem in terms of the Abel—Poisson means and proved
estimate of the partial derivative of the Abel —Poisson mean of an integrable function at those points
where it is smooth.

Pinsky [9] generalized Fourier partial sums by using a family of convolusion operators with some
classes of kernels.

Q. Shi and X. Shi [11] discuss about the concentration factor methods for determination of jumps
in terms of spectral data.

Dansheng Yu, P. Zhou and S. Zhou [14] show how jumps can be determined by the higher order
partial derivatives of the of its Abel — Poisson means.

We [17, 18] examine the analogous theorems for the generalized Cesaro means, introduced by
Akhobadze [1-3], as well as positive regular linear means, and consider [19] Lukas theorem for
the functions and series introduced by Taberski [12, 13] as well as generalized Cesaro and positive
regular linear means. Some results of this paper were announced in [17, 18].

P. Zhou and S. P. Zhou [15] proved an analogous theorem in terms of the linear operators which
satisfy some certain conditions.

F. Moricz [ 7] examined Lukacs theorem for double trigonometric series. F. Moricz and W. R. Wade
[8] generalized Lukacs theorem for double Walsh series.

We [21] generalized Moricz’s theorem and we proved that conditions in Méricz’s theorem is the
best option for indices not to be dependent on each other. Also we considered analogues of these
theorems for generalized Cesaro means and positive linear means matrix of which satisfy necessary
conditions of regularity.

2. Determination of jumps in terms of linear operators. Let (m(k)), (n(k)) be a nonnegative
sequences of real numbers such that

lim m(k) = lim n(k) = +o0.
k——+o0 k——+o0

Suppose there are given two sequences of 2m-periodic, odd and Lebesgue integrable functions
G, and Hy, for which the following is true

|Gr(t)] = O(m(k)), |Hi(t)| = O(n(k)) forall ¢, (2.1)
G =0(1/t),  |[He(t)|=0(1/t) te (0;], 2.2)
/G’k(t)dt ~ Inm(k), /Hk(t)dt ~ Inn(k). (2.3)

0 0

Suppose that it is given two variable function f, 2mw-periodic in both variables and Lebesgue

integrable on (—; )%

Let’s consider the following linear operator:

Fii(fizy) = ;//f(u,v)Gk(ux)Hj(vy)dudv. (2.4)

—T =T
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Let

p(r,y,u,v) = flx+uy+v) = fz—uy+v) = flztuy—v)+ f(z—uy—0v)—dy(f)

where d,(f) is a number and

U(z,y,s,t)

O\m

¢
/go z,y,u,v)|dudv.
0

Theorem 2.1. Let f € L(—m;7|? and suppose that for a point (x,y) € (—m; 7]

stlg%Jr\If(x y,s,t)(ts) ™t =0, (2.5)
U(x,y,s,t) = O(min{s,t}), 0<s, t<m. (2.6)

Then for all sequences of convolution type operators Fy; which are defined by (2.4) where kernels
satisfy conditions (2.1)—(2.3) the following equality is valid:

Fri(fizy) dxy(f)‘

= 2.7
k,j—+oo Inm(k) Inn(j) 2 @.7)
Proof. Let us consider Fy;(f;x,y), by changing of variables in the integral we get
Fij(fi2,9) // , Y, u, 0) G (u) Hj(v)dudv+
xy //G v)dudv = Ay (k,j) + Aa(k, 7). (2.8)
By (2.5) for every € > 0 we can choose d such that
U(z,y,0,0)/6% < e. (2.9)

According the definition of m(k) and n(j) we can choose k and j such that 1/m(k), 1/n(j) < 6.
Therefore

1/m(k T 1/n(j) é s

At / [N ])
1/m(k) 0 0 1/n(4) é
3
xo(z,y,u,v)G(u)Hj(v)dudv = Z B,s. (2.10)
r,s=1

Throughout, we use C' to stand for an absolute positive constant, which may have different values
in different occurrences.
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Note that B,s and Bg,, s,r € {1,2,3}, r # s, can be estimated similarly. By (2.1) and (2.9) we

have
o 1)
Bul <« [ ey vlduds = 00, 1)
0

T2
0

Using (2.2) and integration by parts with respect to v we obtain

1/m(k) § )
d
|Byo| < Cm(k) / / Wdudv < Ce+Ce / 7” = O0(lnn(j)). (2.12)
0 1/n(j) 1/n(5)
By (2.1), (2.2), (2.6) and integration by parts with respect to v we get
1/m(k) =
|B13| < Cm(k) / /“O(x’y’u’vﬂdudv <
v
0
m 1/m(k) ™ 1 w 1/m(k)
< Cm(k) / / |<p(:c,y,u,t)dudt+/v2/ / lp(z,y,u, t)|dudtdv | =
0 0 h) 0 0
1 1 dv
= —U _— v — .
5
and
B 5 p p
v U
Bal<c [ | [ lewsuo)| (.14)

1/m(k) \1/n(j)

Furthermore, integration by parts with respect to v gives

)

d
’SD($7 Yy, u, U -
v
1/n(4)

) é v
1
/ x,y,u,t)|dt + / /|<p(a:,y,u,t)]dtdv.
0 0

oq\r—*

V2

1/n(j)

Now by using (2.9) and integration by parts with respect to u we have

0 0 6 v
1 1 du
/ (5/ x,y,u,t)|dt + / v2/|<p(:c,y,u,t)]dtdv " <
1/m(k) 0 1/n(j) 0
6 9 0

1 1 1

< 2// x,y, s, t)|dsdt + 5/ / 1)2/|<p x,y, s, t)|dtdvds+
0 0 0 1/n(j) 0
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0 0

+ / / 5 //|<,0 x,y, s, t)|dsdtdudv <
v2u

1/m(k) 1/n(j) 00
) ) 0
/ dv / / dudv
<ete — +¢ .
v VU
1/n(j) 1/m(k) 1/n(j)
By (2.14) and the last estimations we get

| Baa| < Celnm(k)Inn(j), (2.15)

where C' is a fixed positive constant.
Analogously, using once more integration by parts with respect to « and (2.6) we obtain

1) T
uv
1/m(k) &
c (7] d
<5 [ | [ ) 5 <
1/m(k) \O
o 6 m o 1) . u
< 2// T,Y, 8,V |dsdv+g / u2//|<p(x,y,s,v)|dsdvdu:
00 1/m(k) 0 0
Wy dm) O [ ey
z,Y,0,T x,Y,u,m
1/m(k)
and
4
| Bss| < //|g0 x,y,u,v)|dudv = O(1). (2.17)
442
Finally by (2.10)—(2.17) we have
lim Ai(k,j)/(Inm(k)Inn(k)) = 0. (2.18)
k,j—+oc0
Now consider Az (k, 7). By (2.3) we get
Ly(k) = my //G v)dudv = da gf) /Gk(u)du/Hj(v)dv ~
v
0 0
day (f ,
~ ;(2 )lnm(k)lnn(j).

If we combine (2.18) and the last estimation it completes the proof of theorem.
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3. Applications. The question arises naturally: which kind of kernel satisfies conditions (2.1)—
(2.3)?

First of all let us note that the conjugate Dirichlet kernel satisfies above mentioned conditions.
Indeed assume that m(k) = k and n(j) = j. We know that |Dy(t)| < k for all t, | Dy(t)] < 2/t,
0 <t <m, (see [16], Chap. I, (5.11)) and

/f)k(u)du ~Ink, k— 400,
0

where D, (t) denotes the conjugate Dirichlet kernel. In this case get Moricz’s [6] result.

Analogously generalized Cesaro mean of the conjugate Dirichlet kernel satisfies (2.1)—(2.3)
conditions (see proof of Theorem 2.1 in [20] or proof of Theorem 2.2 in [21]). Thus we get the
author’s result [21].

In [21] we generalized Moricz’s theorem in case of matrix summability. It is easy to see that in
the case if 4th dimensional matrix can be represented as a product of two dimensional matrixes, then
Theorem 2.1 generalizes our [21] result.

Even more we can make sure that generalized de la Vallée Poussin mean of the conjugate Dirichlet
kernel satisfies conditions (2.1)—(2.3). In [15] by authors’ was obtained Lukacs type theorem where
kernel satisfies conditions (2.1)—(2.4) from [15]. Authors also have shown that generalized de
la Vallée Poussin mean of the conjugate Dirichlet kernel satisfies (2.1)—(2.4) conditions in [15].
But (2.1)—(2.3) conditions are different from (2.1)—(2.4) and we introduced different, self-contained
proof.

Let S'kj( f;x,y) be a rectangular partial sum of the double conjugate trigonometric Fourier series
and let

1 m n 5
me,,k:,s(f; r,y) = m Z Z Sz‘j(fS r,y),

i=m—k j=n—s

be generalized de la Vallée Poussin mean of the rectangular partial sum of the double conjugate
trigonometric Fourier series where 0 < k <m and 0 < s < n.
It is easy to verify that

Vm,n,O,O(f; €, y) = gmn(f; €, y)7 Vm,n,m,n(f; €, y) = &mn(f, €, y)v

where &, (f; x,y) denotes (C,1,1) means of the rectangular partial sums of conjugate trigonometric
Fourier series.
By definition of the generalized de la Vallée Poussin sums we get

Vol fiz) = 2 [ [ £ 0)Ronlu = 2)Ro(o — y)dude

—T =T
where

Fonl) = 5 D2 Dilt)

i=m—k
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Corollary 3.1. Let f € L(—m;7|? and suppose that for a point (z,y) € (—m;7]? (2.5) and (2.6)

hold. Then
1' Vm>n7k73(f; w’ y) _ dxy(f)
im = .
mmn—+oo  Inmlnn 2

Proof. We will show that (2.1), (2.2) and (2.3) conditions are true for generalized de la Vallée
Poussin mean of the conjugate Dirichlet kernel.

Suppose that Gy, () = K (t) and Hy(t) = Ky(t) then by the definition of generalized de la
Vallée Poussin mean of the conjugate Dirichlet kernel and the following estimation | Dy (¢)| < k for
all ¢ (see [16], Chap. II, (5.11)) and by the formula for the sum of the terms of an arithmetic sequence
we have

N 1 m N 1 m
K <—— Y D)< —— > i=

t=m—

1 m—-k+m 2m — k
frng — — 1 —
) 5 (m—(m—Fk)+1)

for all £ € [0; 7], and condition (2.1) holds.
By the estimation |D;(t)| < 2/t, t € (0;7] (see [16], Chap. II, (5.11)) we obtain

Thus condition (2.2) holds.
Now consider

s B 1 m ™ B 1 m
RKop(u)du = —— Di(u)du = ——
/ (u)du k+1,zk/ (w)du k+1,ZkU
0 =m-— 0 =m-—

It is well known that for any € > 0 there exists number N = N(¢) such that, for all i > N we get

1—5<2i,<1+£. 3.1)
Ing
Consider following sum:
1 m 1 N m
UZ' = — Ui Ui =1 I.

It is easy to see that
Il < maX\Ui| - N.
i<N

Also by the right-hand side inequality of (3.1) we have

1+¢ Z 1n,<(1—i-£)lnm(

I, <
2= '= E+1

m—N)<(1+¢)lnm.

Therefore we get
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1

lim ——
m—+oo Inm

/ Kp(u)du < 1. (3.2)
0

If for the same £ we choose M such that 2/M < e, then we get following lower estimation of I :

m m/M

1 1 1 -
IQZmZUZ‘ZmZUZ‘—Fm Z Uy=J1+ Js.

i=N+1 i=N+1 i=m/M+1
By the left-hand side inequality of (3.1) we obtain

1—¢ 1—¢ 1—e¢
> Ini > In N > InN = O(1).
Jl—k+1i;vm—k+1n Z,;V—Iwrln o)

Reasoning analogously as in previous estimation we get

m/M

l—e & N > =
JQZk—i—l, Z lnzzk+1(lnm—lnM) Z —‘Z =L, — Lo.
i=m/M+1 i=m—k i=m—k

It is easy to see that
Li=(1-¢)(Inm—1InM).

On the other hand Ly = o(Inm), indeed

1—¢
k+1

Ly, <

(lnm—lnM)-Z-(%—(m—k:))g k (Inm—-InM)— <

<e(lnm—InM) = o(lnm).

Thus we obtain i
1 -
lim K (u)du > 1.
m—too INM ;

From the (3.2) and last estimation we conclude that K, (u) satisfies condition (2.3).

Corollary 3.1 is proved.

In all above examined examples kernels G,,, and H,, are the same type, and it’s integrals have
the same order (logarithmic). Advantage of above considered integral operator and general kernel is
that we can consider kernels with different order.

Consider matrices (by;) and (cjs):

1 if = [kl/lnlnk] ’

bri =
0 if ’L?é [kl/lnlnk] ’
and
1 if s=yj,
Cjs =
0 if s#j.
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We construct matrix (ayj;s) where ayjis = by; - ¢js. Let cite an example.

Consider
+o00 400 B
ori(fiz,y) = Z Z akjisSis(fr2,y) =
i=0 s=0
1 T too ~ oo )
== / / f(u,v) Z beiDi(u — x) Z cjsDs(v — y)dudv =
i=0 5=0

—T =T

1 T 7 ) )
= ﬁ / / f(u, ’U)D[k,l/lnlnk](u - JZ)D](U - y)dudv

—T —T

It is easy to see that in this case G, (t) = D[kl/lnlnk} and m(k) = [k'/ 010k,
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