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ULTRAFILTERS ON BALLEANS
YIBTPA®LIBTPU HA BOJIEAHAX

A ballean (equivalently, a coarse structure) is an asymptotic counterpart of a uniform space. We introduce three ultrafilter
satellites of a ballean (namely, corona, companion, and corona companion), evaluate the basic cardinal invariants of the
corona and characterize the subsets of balleans in terms of companions.

Bonean (abo rpyba cTpykTypa) — Iie aCHMOTOTHYHUI aHAJOT PIBHOMIPHOTO IPOCTOPY. 3a JONOMOTOI0 YIBTpadiIsTpiB
BH3HAYCHO TPH CYMYTHHKH OoJieaHiB (a came, KOPOHY, KOMIIAaHBHOH 1 KOPOHHUI KOMIIAHBIHOH), 3HAWICHO OLIHKA OCHOBHHUX
Kap/aJIbHAX 1HBAapiaHTIiB KOPOHH Ta OXapaKTePH30BaHO ITiIMHOXHHU 0O0JIEaHiB 3a JOIIOMOTOI0 KOMITAaHBIOHIB.

1. Introduction. A ball structure is a triple B = (X, P, B), where X, P are nonempty sets, B :
X x P — Px,x € B(X,a) for each x € X and o € P, Px denotes the family of all subsets of
X. The set X is called the support of B, P is called the set of radii and B(x, «) is called a ball of
radius o around .

Givenany x € X, A C X, a € P, we set

B*(z,0) = {y € X: 2z € B(y,a)}, B(4,a) = | B(a,a).
acA
A ball structure B = (X, P, B) is called a ballean if
for any «, 3 € P, there exist o/, 8’ such that, for every z € X,

B(z,a) C B*(z,d/), B*(x,8) C B(z,8);
for any «, 8 € P, there exists v € P such that, for every € X,
B(B(:c,a),ﬂ) - B(xaf)/);

for any x,y € X, there exists & € P such that y € B(z, a).

A ballean B on X can also be defined in terms of entourages of the diagonal Ax of X x X (in
this case it is called a coarse structure [1]), and can be considered as an asymptotic counterpart of a
uniform space. For our goals, we prefer the ball language from [2, 3].

LetB=(X,P,B),B = (X', P, B") be balleans. A mapping f: X — X' is called a <-mapping
if, for every a € P, there exists o' € P’ such that, for every z € X, f(B(z,a)) C B'(f(x),d).
If there exists a bijection f: X — X’ such that f and f~! are <-mappings, B and B’ are called
asymorphic and f is called an asymorphism.

For a ballean B = (X, P,B), a subset Y C X is called large if there is o € P such that
X = B(Y,«). A subset V of X is called bounded if V' C B(x, «) for some x € X and o € P. Each
nonempty subset Y C X determines a subballean By = (Y, P, By ), where By (y,a) = YNB(y, o).

We say that B and B’ are coarsely equivalent if there exist large subset Y C X and Y/ C X'
such that the subballeans By and B, are asymorphic.

Given a ballean B = (X, P, B), z,y € X and a € P, we say that x and y are a-path connected if
there exists a finite sequence zo, . . ., Ty, To = T, Ty, = y such that z; 1 € B(x;, a), z; € B(zit1, @)
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ULTRAFILTERS ON BALLEANS 1699

for each i € {0,...,n — 1}. For any z € X and a € P, we denote
B(z,a) = {y € X : x,y are a-path connected}.

The ballean B~ = (X, P, BY) is called a cellularization of B. A ballean B is called cellular if the
identity mapping id: X — X is an asymorphism between B and B”. By [3] (Theorem 3.1.3), B is
cellular if and only if B is asymptotically zero-dimensional.

For a ballean B = (X, P, B), we use a natural preordering on P defined by the rule: o < g if
and only if B(z,a) C B(x, 8) for each x € X. A subset P/ C P is called cofinal if for every a € P,
there is o/ € P’ such that @ < /. The minimal cardinality cfB of cofinal subsets of P is called
cofinality of B.

A ballean B is called ordinal if there exists a cofinal subset of P well-ordered by < . Up to
asymorphism, we can replace P with some segment [0, ) of ordinals and, moreover, we can assume
that ~ is a regular cardinal. It is easy to see that every ordinal ballean of uncountable cofinality is
cellular. More on cellular balleans can be found in [3] (Chapter 3).

Let B = (X, P, B) be a ballean. We say that two subsets Y, Z of X are asymptotically disjoint if,
for every a € P, there exists a bounded subset V,, of X such that B(Y \ V,,,a) N B(Z\ V,, o) = @.
The subsets Y, Z are called asymptotically separated if to each o € P one can assign a bounded
subset V,, of X such that

( U B(Y\Va,a)> N ( U B(Z\Va,a)> =2,

acP aeP

A ballean B is called normal if any two asymptotically disjoint subsets of X are asymptotically
separated. For normal balleans see [4] and [3] (Chapter 4). According to [3] (Chapter 4), every
ordinal ballean is normal.

In Section 2 we give some examples of cellular and ordinal balleans. In Section 3 we introduce
three ultrafilter satellites of a ballean: corona, ultracompanion and corona companion. In Section 4
we evaluate the basic cardinal invariants of coronas of ordinal balleans. In Section 5 we characterize
the subsets of a ballean in terms of its ultracompanions and corona companions.

2. Examples.

Example 2.1. Each metric space (X, d) defines a metric ballean (X, R™, By), where By(x,r) =
= {y € X:d(z,y) < r}. By [3] (Theorem 2.1.1), for a ballean 5, the following conditions are
equivalent:

B is asymorphic to some metric ballean;

B is coarsely equivalent to some metric ballean;

CfB < NQ.

Clearly, each metric ballean is ordinal. By [3] (Theorem 3.1.1), a metric ballean B is cellular if
and only if B is asymorphic to a ballean of some ultrametric space.

Example 2.2. Every infinite cardinal « defines the cardinal ballean K= (K, K, ?), where

—
B(z,a)={yer:z<y<z+aor y<z<y+a}l

For cardinal ballean see [5]. In particular [5] (Theorem 3), if £ > Ry then % is cellular, Clearly,
each cardinal ballean is ordinal.
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1700 1. V.PROTASOV, S. V. SLOBODIANIUK

Example 2.3. Let v be a limit ordinal, {, : o < 7} be a family of cardinals. A direct product
®a<~la is a set of all y-sequences = (x4)a<~ such that x, € i and z, = 0 for all but finitely
many a < . We consider a ballean

B = (®04<VMCH [077)7B)7

where B(z,8) = {y € ®a<rylla: Yo = T for every o > [}. Evidently, B is ordinal and cellular.
For decompositions of balleans into direct products see [6] and [7].

Example 2.4. Let G be a group. An ideal J in the Boolean algebra Pg of all subsets of G is
called a group ideal if .J contains all finite subsets of G and if A, B € J then AB~! € J.

Now let X be a transitive G-space with the action G x X — X, (g,z) — gz, and let J be a
group ideal in G. We define a ballean B(G, X, J) as a triple (X, J, B), where B(z, A) = Az U {z}
forall z € X, A € J. By [8] (Theorem 1), every ballean B with the support X is asymorphic to the
ballean B(G, X, J) for some group G of permutations of X and some ideal J of G. By [8] (Theorem
3), every cellular ballean B with the support X is asymorphic to B(G, X, J) for some group G of
permutations of X and some ideal J which has a base consisting of subgroups.

In the case X = G, and the left regular action of G on X, we write (G, J) instead B(G, X, J).

3. Ultrafilters. Let B = (X, P, B) be an unbounded ballean. We endow X with the discrete
topology and consider the Stone — Cech compactification 3X of X. We take the points of 5X to be the
ultrafilters on X with the points of X identified with the principal ultrafilters on X. For every subset
AC X, weput A= {q€ BX: Ac q}. The topology of 3X can be defined by stating that the family
{A: A C X} is a base for the open sets. Let Y be a compact Hausdorff space. For a mapping f :
X — Y, fP denotes the Stone — Cech extension of f onto 5X.

We denote by X g the set of all ultrafilters on X whose members are unbounded in B, and note
that X g is a closed subset of S.X.

Given any 7,q € X fg, we say that 7, g are parallel (and write r||q) if there exists & € P such
that B(R, «) € g for every R € r. By [4] (Lemma 4.1), || is an equivalence on X g. We denote by ~
the minimal (by inclusion) closed (in X % x X %) equivalence on X* such that || C~ . The quotient
X g / ~ is a compact Hausdorff space. It is called the corona of B and is denoted by X5. Let (X, d)
be a metric space such that each closed ball in X is compact, B = B(X,d). Then Xz coincides with
the Higson’s corona of (X, d) (see [9, p. 154]).

For every p € X g, we denote by p the class of the equivalence ~, and say that two ultrafilters
p,q € X zi;’ are corona equivalent if p = §. To detect whether two ultrafilters p,q € X g are corona
equivalent we use the slowly oscillation functions.

A function h: X — [0, 1] is called B-slowly oscillating if, for every & > 0 and every o € P,
there exists a bounded subset V' of X such that

diam h(B(z,a)) < &

foreachz € X \ V.

Proposition 3.1. Let B = (X, P, B) be an unbounded ballean, q,r € X% Then ¢ = 7 if and
only if h?(p) = hP(q) for every B-slowly oscillating function h: X — [0, 1].

Proof. See [9] (Proposition 1).

Proposition 3.2. Let B = (X, P, B) be an unbounded normal ballean, q,r € Xg. Then ¢ =7 if
and only if for any () € q and R € r, there exists o € P such that B(Q, o) N B(R, &) is unbounded.
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Proof. See [4] (Lemma 4.2).
Proposition 3.3. Let B = (X, P, B) be an unbounded normal ballean and let ¢ € X*. Then the
family of subsets of the form

Fe Xg: U B(Q\Vy,a)er
a€eqQ)

where Q € q and each subset V,, is bounded, is a base of the neighborhoods of the point § in Xg.

Proof. See [4, p. 15].

Proposition 3.4. Let B = (X, P,B) be a ballean, Y C X, o € P, q € X*. If B(Y, a) € q, then
there is v € Y* such that q||r.

Proof. For each () € ¢, we denote Sg = B(Q,a) NY and note that the family {Sq: @ € ¢} is
contained in some ultrafilter » € Y*. Clearly, r||q.

Proposition 3.4 is proved.

We note that, for a cellular ballean B = (X, P, B), corona Xp coincides with its binary corona
(see [3], Chapter 8) and hence Xp is zero-dimensional.

Let B = (X, P,B) be a ballean, A C X, p € X% and p = {q € X*: p||¢}. A subset

Ap(A) =pn A

is called an ultracompanion of A. For ultracompanions of subsets of metric spaces, groups and
G-spaces see [10-13].

Given a ballean B = (X, P, B) and a subset A of X, we say that the subset p N Af is a corona
companion of A.

4. Cardinal invariants. Given a ballean B = (X, P, B), a subset A of X is called

large it X = B(A, «) for some o € P;

small if X \ B(A, ) is large for every a € P;

thick if, for every o € P, there exists a € A such that B(a, ) C A;

thin if, for every o € P, there exists a bounded subset V' of X such that B(a,«) N B(d/, ) = @
for all distinct a,a’ € A\ V.

We note that large, small, thick and thin subsets can be considered as asymptotic counterparts
of dense, nowhere dense, open and discrete subsets of a uniform topological space. We use the
following cardinal invariants of BB : asymptotic density, thickness and spread defined by

asden B = min{|L|: L is a large subset of X},

thick B = sup{|F|: F is a family of pairwise disjoint thick subsets of X},

spread B = sup{|Y|s: Y is a thin subset of X}, where |Y'|g = min{|Y \ V|: V is a bounded
subset of X }.

Theorem 4.1. For every unbounded ordinal ballean B with the support X, we have

asden B = thick B = spread B,
and there exists a thin subset Y of X and a disjoint family F of thick subsets of X such that
Y| = |Y|=asden B = |F|.
Proof. See [14] (Theorem 3.1) and [15] (Theorem 2.3).
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Theorem 4.2. Let B = (X, P, B) be an unbounded ordinal ballean and let k = asdens B. Then
| X5 =2%.

Proof. Let Z be a large subset of X such that | Z| = . By Proposition 3.4, 5N Z* # & for each
p € X' Hence, | X5| < |Zf| < pZ = 2%".

To verify the inequality |X 5| > 22", we use Theorem 4.1 to find a thin subset Y of X such that
|Y|p = |Y| = k. Since Y is thin and B is normal, by Proposition 3.2, p # ¢ for any two distinct
ultrafilters p, ¢ from Y*. So it suffices to prove that |Y*| = 22", We fix some yo € Y and consider
two cases.

Case 1. There exists a cofinal subset C' = {co: @ < A} in P such that |Y N (B(yo, cat1) \
B(yo,cq))| and choose some ultrafilter p on C' such that {cz: o < f < A} € p for each a < A. If
q,q € Bk and q # ¢’ then

p-limfa(q) # p-limfa(q),
so |Y¥ > Br = 22",

Case 2. There exists 5 € P such that |Y N (B(yo, @) \ B(yo, 5))| < k for each o > /3. We put
7 =Y \ B(yo, B) and note that | Z| = k. By the choice of 3, Z* coincides with the set of all uniform
ultrafilters on Z so | Z¥| = 2%".

Theorem 4.2 is proved.

Let x be an infinite cardinal, ¢ be a uniform ultrafilter on x. We consider a ballean B = (&, ¢, B),
where, for any F' € ¢, B(x,F) = {z} ifx € F and B(z,F) = X \ F'if x ¢ F. Clearly, B is normal
but k¥ = {¢} so ip is a singleton. On the other hand asdens B = . So Theorem 4.2 does not hold
for B.

Recall that the Souslin number s(X) of a topological space X is the supremum of cardinalities
of disjoint families of open subsets of X.

Let x be an infinite cardinal. A family F of subsets of « is called almost disjoint if |F| = k for
every F' € F, and |F' N F| < k for all distinct F, F’ € F. For k = Y, there is an almost disjoint
family of cardinality c. Baumgartner [16] proved that, for each «, there is an almost disjoint family of
cardinality xT, and it is independent of ZFC that if x = N; then there is no almost disjoint families
of cardinality 2.

Proposition 4.1. Let x be an infinite cardinal, B = (X, k, P) be an unbounded ordinal ballean.
Assume that there exists a subset Y = {yo: o < k} of X such that

B(B(Ya, @), a) N B(B(ys, #), B) = &
for all o < B < k. If F is an almost disjoint family of subsets of k, then
s(Xg) > | F).
Proof. For each ' € F, we put
Yr = | B(ya,0), Zr ={G: Yr € ¢}.
ack

Applying Propositions 3.2 and 3.3 we conclude that {Zp: F' € F} is a disjoint family of subsets of
X5 and each Zp has a nonempty interior.

Proposition 4.1 is proved.

Recall that the density den X of a topological space X is the smallest cardinality of dense subset
of X.
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Proposition 4.2. For every unbounded ballean B = (X, P, B), we have
den(XB) < QasdenX.

Proof.: We take a large subset L of X of cardinality asden X and denote by F the family of
all unbounded subsets of L. For each F' € F, we pick ¢r € X such that F € ¢p. Then {dr:
F € F} is a dense subset of X5 and |{jp: F € F}| < 21

Proposition 4.2 is proved.

Theorem 4.3. For every infinite cardinal x, we have asden % =k and

kT < (k) < den(k) < 27,

where K is the corona of .

Proof. By the definition of k, each large subset of x has cardinality x. By Proposition 4.2,
den(k) < 2%. In view of Proposition 4.1 and the Baumgartner theorem it suffices to construct
corresponding subset Y.

We put yo = 1 and define a set Y = {y,: a < k} recursively by ya+1 = Yo + Ya + Yo + Yo and
yg = sup{ya : a < B} for every limit ordinal /.

Theorem 4.3 is proved.

For k = Ny, Proposition 4.1 gives more strong result

s(Rg) = den(Rp) = ¢.

Recall that a character x(z) of a topological space X at the point z is the minimal cardinality of
bases of neighborhoods of x.

For a metric space X, X denotes the corona of corresponding metric ballean. Under CH, if X
is a countable ultrametric space then, by [17], X is homeomorphic to w* = fw \ w. By [18], this
statement is independent of ZFC.

Theorem 4.4. Let X be an unbounded metric space, v = asden X. Then | X| = 2" and

¢-rn < s(X) <den(X) <27

Proof. 1In view of Theorem 4.2 and Proposition 4.2, it suffices to verify only ¢ - k < s(X).
The inequality ¢ < s(X) follows directly from Proposition 4.1. To prove x < s(X), we use
Theorem 3.1 and choose a disjoint family F of thick subsets of X such that |F| = k. For each
F € F, use Proposition 3.3 to find a subset Xp C F' such that projections p — p of {Xlﬁw:
F € F} to corona are pairwise disjoint with nonempty interior.

Theorem 4.4 is proved.

Corollary 4.1. For an unbounded countable metric space X we have
den(X) =s(X) =c.

5. Companions.

Theorem 5.1. Let B be a ballean with the support X. For a subset A of X, the following
statements hold:

(i) A is large if and only if A,(A) # @ for each p € X*;

(i) A is thick if and only if p = A,(A) for some p € X*;

(iii) A is prethick if and only if there exist p € X* and o € P such that p = A, (B(A, a));
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(iv) A is thin if and only if A,(A) < 1 for each p € X*.

Proof. The theorem is proved in [10] (Theorems 4.1, 4.2, 4.3) for metric balleans, but the proof
can be easily adopted to the general case.

Given p € X*, we say [10] that a subset S C j is ultrabounded with respect to p if there is a« € P
such that, for each ¢ € S and every @ € ¢, we have B(Q, «) € p.

We say that a subset A of X is

sparse if A,(A) is ultrabounded for each p € X¥;

scattered if, for every Y C A, there is p € Y? such that AP(Y) is ultrabounded.

To prove Theorems 5.2 and 5.3, one can adopt the arguments from [10] and [12].

Theorem 5.2. Let B = (X, P, B) be an unbounded ordinal ballean. For a subset A of X, the
following statements are equivalent:

(i) A is sparse;

(ii) for every unbounded subset Y of A, there exists B € P such that, for every o € P, we have

{y €Y: Ba(y, @)\ Baly, ) = 2} # 2.

Theorem 5.3. Let B = (X, P, B) be an unbounded ordinal ballean. For a subset A of X, the
following statements are equivalent:

(i) A is scattered;

(ii) for every unbounded subset Y of A, there exists B € P such that, for every o € P, we have

{y €Y :By(y,a)\ By(y,0) = @} # @.

A ballean B = (X, P, B) is called uniformly locally finite if, for every a € P, there exists a
natural number n(«) such that |B(z,a)| < n, for every z € X. By [8] (Theorem 6), for every
locally finite ballean B = (X, P, B), there exists a group G of permutations of X such that B is
asymorphic to the ballean B(G, X, F) (see Example 2.4), where §¢ is the ideal of finite subsets of
G.

The following statement is a part of Theorem 5.4 from [13].

Theorem 5.4. Let B = (X, P, B) be a uniformly locally finite ballean with the support X. A
subset A of X is scattered if and only if Ap(A) is discrete for each p € X f,

Now we discuss a possibility generalization of Theorem 5.4 to arbitrary balleans.
Let B = (X, P, B) be a ballean. For p € X% and o € P, we set

B(p,a) = {qe X*: B(P',a) € q for each P’ € p}

and note that p = U p
[e%

We say that a point p € X* is ball isolated if there exists P’ € p and a € P such that if ¢ € p
and P’ € ¢ then q € B(p,a). Applying Proposition 3.4, it is easy to verify that if p is ball isolated
then each point ¢ € p is ball isolated. If B is uniformly locally finite then p is ball isolated if and
only if p is an isolated point of the subset p of X*.

Theorem 5.5. Let B = (X, P, B) be a ballean, A be a subset of X. If each point p € A* is ball
isolated, then A is scattered.

B(p, ) and each subset B(p, «) is closed in p.
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Proof. We say that a subset ' C X is invariant if p € F and ¢||p imply ¢ € F.
We take an arbitrary unbounded subset Y of A, denote by § the family of all closed invariant
subsets of X* and put
Jy={FeY" Fejg}

By the Zorn lemma, there is a minimal by inclusion element M € §y. We take an arbitrary
p € M and show that A,(Y) is ultrabounded. Assume the contrary and choose ¢ € clp such that
q ¢ B(p,d/) for each o/ € P. Since ¢ € M, by the minimality of M, p € ¢l(g). By the assumption,
p is ball isolated. We choose corresponding P’ € p and o € P. We pick ¢’ € ¢ such that P’ € ¢'.
Since ¢'||q, there is 8 € P such that ¢ € B(q’, 8) so B(P',3) € q.

If p’ € B(P',3) then, by Proposition 3.4, there is p” € P’ such that p” € B(p', 3). We choose
v € P such that B(B(z,«),3) C B(x,~) for each x € X. Then q € ¢lB(p,v) and q € B(p,~),
contradicting the choice of gq.

Theorem 5.5 is proved.

Question 5.1. Let A be a scattered subset of X. Is every point p € AP ball isolated? By
Theorem 5.4, this is so for each uniformly locally finite balleans but the question is open even for
metric balleans.

Recall that a topological space X is scattered if each nonempty subset Y of X has an isolated
point in Y.

Question 5.2. Let B be a ballean with the support X, A C X. Assume that each subspace
A,(A), p € At is sparse in X*. Is A a sparse subset of B? By Theorem 5.4 and [8] (Theorem 6),
this is so for every uniformly locally finite ballean because in this case each A, (A) is discrete.

Given a ballean B = (X, P, B) and a subset A of X, we remind that a subset p N A' is a corona
p-companion of A and characterize a size of A in terms of corona companions.

Theorem 5.6. Let B = (X, P, B) be an unbounded ordinal ballean, A C X. Then the following
statements hold:

(i) A is large if and only if p N A* # & for each p € X ¥,

(ii) A is thick if and only if there exists p € X" such that p C A¥;

(iii) A is thin if and only if |p N A¥| < 1 for each p € XP.

Proof. (i1)) Assume that A is thick. We may suppose that P is an infinite regular cardinal .
We choose a r-sequence {yo: @ < x} in A such that B(ya, ) C A and B(ya,«) N B(ys, ) = @
for each o < B < k. Then we pick an arbitrary ultrafilter p € X* such that {y,: o < k} € p. By
Proposition 3.2, we have p € A®,

Suppose that p C A* for some p € X*. Given any o < &, there is P € p such that B(P,a) € A,
because otherwise, by Proposition 3.4, we can find ¢ € X* such that p||g and X \ A € gso p € A*.
Hence A is thick.

(i) It suffices to observe that A is large if and only if X \ A is not thick and apply (ii).

(iii) Assume that there are two distinct ultrafilters p, ¢ € X* such that p ~ gand A € p, A € q.
We choose P € p, Q € gsuchthat P C A, Q C A and PN Q = @. By Proposition 3.2, there is
a < k such that B(P, «) N @ is unbounded. It follows that A is not thin.

If A is not thin, one can choose 7 < k and two k-sequences {z,: o < k} and {y,: a < K} such
that 2o # Yo, Yo € B(xq,y) and B(zq,v) N B(xs,v) = @ forall @ < 8 < k. We take an ultrafilter
p € X¥ such that {z,: o < k} € p and use Proposition 3.4 to find ¢ € X* such that g||p and {yq :
a < Kk} € q. Then {p,q} C pn A"

Theorem 5.6 is proved.
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Let G be an uncountable Abelian group, B = (G, [G]<N0). By [9] (Proposition 4), the corona G5

is a singleton so Theorem 4.2 does not hold for B.

M

o

10.
11.

12.
13.

14.
15.
16.

17.
18.

Question 5.3. Is Theorem 5.6 true for every unbounded normal ballean?
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