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FINITE GROUPS WITH X-QUASIPERMUTABLE SYLOW SUBGROUPS

CKIHYEHHI I'PYIIU 3 X-KBA3IIIEPECTABHUMUA
CUWJIOBCBKUMMU HIATI'PYIIAMM

Let H < E and X be subgroups of a finite group G. Then we say that H is X-quasipermutable (X s-quasipermutable,
respectively) in E provided that G has a subgroup B such that E = Ng(H)B and H X-permutes with B and with
all subgroups (with all Sylow subgroups, respectively) V' of B such that (|H|,|V|) = 1. We analyze the influence of
X -quasipermutable and X g-quasipermutable subgroups on the structure of G. In particular, it is proved that if every Sylow
subgroup P of G is F'(G)-quasipermutable in its normal closure P in G, then G is supersoluble.

Hexait H < E i X — niarpynu ckingeHnoi rpynmu G. Toxi roBopsts, mo H € X -keazinepecmasnoro (X s-keasinepecmag-
Hoto, BiNOBinHO) B F, sxmo G wmictute Taky miarpymy B, mo E = Ng(H)B i H € X-nepecraBuoto 3 B i 3 ycima
miarpynamu (3 yciMa CHIIOBCBKMMH HiArpynamu, Bimmosixuo) V' 3 B rtakumu, wo (|H|,|V|) = 1. ¥V nasiit po6ori
NPOaHai30BaHO BIUIMB X -KBasinepectaBHUX i X g-KBasimepecTaBHUX miarpyn Ha OynoBy (GG. 30kpema, JOBEIEHO, IO
SKIO KOKHA CHIOBCHKA miarpyma P i3 G e F(G)-kpasimepecraBHowo B ii HopMansHoMmy 3amukanui PC B G, 10 G €
HaJpO3B’I3HOIO.

1. Introduction. Throughout this paper, all groups are finite and G always denotes a finite group.
For any prime p we use C), to denote a group of order p.

If AB = BA, then A is said to permute with B; if G = AB, then B is called a supplement of A
to G; if AB* = B A, for at least one element x € X C G, then A is said to X -permute with B [1].

A large number of researches are connected with the study of subgroups H of G such that H
permutes with some subgroups of H’s supplement B in G. If, for example, H X-permutes with
all subgroups of B, then H is called X-semipermutable in G [2]; if H permutes with all Sylow
subgroups of B, then H is called SS-quasinormal in G [3]. Subgroups with a condition of such kind
have been useful in the analysis of many aspects of the theory of finite groups.

In this paper, we introduce and analyze some applications of the following concept that cover the
conditions of X -semipermutability and S.S-quasinormality.

Definition 1.1. Let H < E and X be subgroups of G. Then we say that H is X -quasipermutable
(X s-quasipermutable, respectively) in E provided G has a subgroup B such that E = Ng(H)B and
H X-permutes with B and with all subgroups (with all Sylow subgroups, respectively) V' of B such
that (|H|,|V]) = 1.

Example 1.1. Let p, g and r be different primes such that g divides p—1. Let A = C}, x C, be a
non-Abelian group of order pq and R a simple F,. A-module which is faithful for A. Let G = R x A.
Then C,, clearly, is Rg-quasipermutable in G. On the other hand, |R| > r when p > r and so C}, is
not R-quasipermutable in G.

It is clear that every X -semipermutable subgroup and every S.S-quasinormal subgroup of GG are
Xg-quasipermutable in G for any X C . We shall show that the inverse statements are not true in
general.

Example 1.2. Let p, q and 7 be different primes such that ¢r divides p — 1.
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(i) Let G = (Cp x Cy) x P, where C), x Cy is a non-Abelian group of order pq and C), = (a)
and P = (b) are groups of order p. Then Cj is clearly quasipermutable in G, and for every = € G,
(ab)*Cy # Cy(ab)*. Thus Cy is not G-semipermutable in G.

(i) Let G = Cp x (Cq x C;), where Cy x C, < Aut(Cp). Then Cj is 1-quasipermutable in
G. Assume that C is S.S-quasinormal in G. For any supplement B of C; to G' we have C), < B,
so for every 1 # = € C, we have C,C¥ = C*C,, which implies that G = C& < Ng(C,), so
Cq < Cg(Cy). This contradiction shows that Cj is not SS-quasinormal in G.

Our main goal here is to prove the following results.

Theorem A. Let X = F(G) be the Fitting subgroup of G and H a Hall X-quasipermutable
subgroup of G. If p > q for all primes p and q such that p divides |H| and q divides |G : H|, then H
is normal in G.

Corollary 1.1 (see [1], Theorem 5.4). Let X = F(G) be the Fitting subgroup of G and H a

Hall X-semipermutable subgroup of G. If p > q for all primes p and q such that p divides |H| and
q divides |G : H|, then H is normal in G.

Corollary 1.2 (see [4], Theorem 3). If a Sylow p-subgroup P of G, where p is the largest prime
dividing |G|, is 1-semipermutable in G, then P is normal in G.

Theorem B. Let X = F(G) be the Fitting subgroup of G. If every Sylow subgroup P of G is
X -quasipermutable in its normal closure P¢ in G, then G is supersoluble.

Corollary 1.3. If every Sylow subgroup P of G is 1-semipermutable in its normal closure P% in
G, then G is supersoluble.

Note that if a subgroup H of GG is 1-semipermutable in G, then H is 1-semipermutable in every
subgroup of G containing H. Hence we get from Corollary 1.3 the following known result.

Corollary 1.4 (see [4], Theorem 5). If every Sylow subgroup of G is 1-semipermutable in G,
then G is supersoluble.

From Theorem B we also get the following result.

Corollary 1.5 (see [4], Theorem 1.11). If every Sylow subgroup of G is F(QG)-quasipermutable
in G, then G is supersoluble.

We use My(G) to denote a set of maximal subgroups of G such that ®(G) coincides with the
intersection of all subgroups in My (G).

Theorem C. Let P be a Sylow p-subgroup of G and X = Oy ). Suppose that every number
V' of some fixed My(P) is X g-quasipermutable in G.

(i) If |P| > p, then G is p-supersoluble.

(i) If (p — 1,|G|) = 1, then G is p-nilpotent.

Corollary 1.6 (see [3], Theorem 1.1). Let P be a Sylow p-subgroup of G, where p is the smallest

prime dividing |G|. If every number V of some fixed My(P) is SS-quasinormal in G, then G is
p-nilpotent.

Corollary 1.7. Let P be a Sylow p-subgroup of G and X = F(G). If Ng(P) is p-nilpotent and
every number V of some fixed My(P) is X g-quasipermutable in G, then G is p-nilpotent.
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Proof. 1f |P| = p, then G is p-nilpotent by Burnside’s theorem [6] (IV, 2.6). Otherwise, G is
p-supersoluble by Theorem C. The hypothesis holds for G/O,/(G) (see Lemma 2.2 below) and so
in the case when O,/ (G) # 1, G/O,/(G) is p-nilpotent by induction, which implies the p-nilpotency
of G. Therefore we may assume that O,y(G) = 1. But then, by Lemma 2.4(3) below, P is normal in
G. Hence G is p-nilpotent by hypothesis.

From Corollary 1.7 we get the following corollary.

Corollary 1.8 (see [3], Theorem 1.2). Let P be a Sylow p-subgroup of G. If N (P) is p-nilpotent
and every number V' of some fixed My(P) is SS-quasinormal in G, then G is p-nilpotent.

2. Preliminaries. The first lemma is evident.

Lemma 2.1. Let A, B and X be subgroups of G and N a normal subgroup of G. If A X-
permutes with B, then AN/N (X N/N)-permutes with BN/N. Hence in the case when X < N,
AN/N permutes with BN/N.

Lemma 2.2. Let H and X be subgroups of G and N a normal subgroup of G. Suppose that H
is X-quasipermutable (X s-quasipermutable, respectively) in G.

(1) If either H is a Hall subgroup of G or for every prime p dividing |H| and for every Sylow
p-subgroup H,, of H we have H, £ N, then HN/N is (XN/N)-quasipermutable ((XN/N)g-
quasipermutable, respectively ) in G/N.

(2) If H is 1g-quasipermutable in G, then H permutes with some Sylow p-subgroup of G for all
primes p such that (|H|,p) = 1.

Proof. (1) By hypothesis there is a subgroup B of G such that G = Ng(H)B and H X-
permutes with B and with all subgroups (with all Sylow subgroups, respectively) L of B such that
(IH],|L[) = 1.

It is clear that G/N = Ng/n(HN/N)(BN/N). Let K/N be any subgroup (any Sylow p-
subgroup, respectively) of BN/N such that (| HN/N|,|K/N|) = 1. Then K = (KNB)N. Let B, be
a minimal supplement of KNBNN in KNB. Then K/N = (KNB)N/N = Bo(KNBNN)N/N =
= BoN/N and K N BN N N By < ®(By). Therefore 7(K/N) = n(By), so (|(HN/N|, |Bo|) = 1.
It follows that (|H|,|Bo|) = 1, so in the case when H is X-quasipermutable in G, H X -permutes
with By and hence HN/N (X N/N)-permutes with K/N = BoN/N. Thus HN/N is (XN/N)-
quasipermutable in G/N.

Finally, suppose that H is X g-quasipermutable in G and K /N is a Sylow p-subgroup of BN/N.
Then By is a p-group, so (|H|,p) = 1 and for some Sylow p-subgroup B, of B we have By < B,,.
Then K/N = ByN/N and hence HN/N (X N/N)-permutes with K /N. Thus HN/N is (XN/N)g-
quasipermutable in G/N.

(2) By [6] (VL, 4.6), there are Sylow p-subgroups P, P and P of Ng(H), B and G, respectively,
such that P = P; P». Hence H permutes with P.

Lemma 2.3. Let A and B be subgroups of G such that G = AB. Then G = AB* forall x € G.

Proof. Let x = ab, where a € A and b € B. Then AB* = AB® = AabBb~la ! = ABa~! =
=Ga ! =G.

We shall need in our proofs the following properties of p-supersoluble groups.

Lemma 2.4. (1) If G/®(QG) is p-supersoluble, then G is p-supersoluble [6] (IV, 8.6).

(2) Let N and R be distinct minimal normal subgroups of G. If G /N and G/ R are p-supersoluble,
then G is p-supersoluble.
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(3) Let A= G /Oy (G). Then G is p-supersoluble if and only if A/O,(A) is an Abelian group of
exponent dividing p — 1, p is the largest prime dividing |A| and F(A) = O,(A) is a normal Sylow
subgroup of A.

Proof. (2) This follows from the G-isomorphism NR/N ~ R.

(3) Since G is p-supersoluble if and only if G/O,/(G) is p-supersoluble, we may assume without
loss of generality that O, (G) = 1.

First assume that G is p-supersoluble. In this case G/Cq(H/K) is an Abelian group of exponent
dividing p — 1 for any chief factor H/K of G of order divisible by p. On the other hand,

Op »(G) = 0,(G) =N{Ce(H/K) | H/K is a chief factor of G and p € 7(H/K)}

by [8] (A, 13.2). Hence G/O,(G) is an Abelian group of exponent dividing p — 1. Thus p is the
largest prime dividing |G| and F(G) = O,(G) is a normal Sylow p-subgroup of G.

Finally, if G/O,(G) is an Abelian group of exponent dividing p — 1, then every chief factor H/K
of G below O,(G) is cyclic by [8] (B, 9.8(d)). Hence G is supersoluble.

Lemma 2.5 [7]. If G has three nilpotent subgroups Ay, As and As whose indices |G : A1],
|G : As|, |G : As| are pairwise coprime, then G is itself nilpotent.

Lemma 2.6. Let G = P x E, where P is the Sylow p-subgroup of G and E is a Sylow tower
group. Suppose that for every Sylow subgroup Q) of E there is a subgroup B of P such that
P = Np(Q)B and Q permutes with all subgroups of B. Then G is p-supersoluble.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. It is
clear that G is soluble and |P| > p. Let p; > ... > p; be the set of all prime divisors of |E|. Let P,
be a Sylow p;-subgroup of E.

Let N be a normal subgroup of G. Then the hypothesis holds for G/N, so the choice of G and
Lemma 2.4 imply that NV is the only minimal normal subgroup of G and N & ®(G). Therefore
N =Cg(N) = F(G) = P by [8] (A, 15.2), so E is a maximal subgroup of G.

Assume that |7(E)| > 2. Then ¢t > 2. Let E; be a Hall p)-subgroup of E. Then the hypothesis
holds for PE;, so PE; is p-supersoluble by the choice of G. Moreover, since P = Cg(P) we
have O, (PE;) = 1. Therefore PE; is supersoluble by Lemma 2.4(3), and F'(PE;) = P. Thus
PE;/P ~ E; is an Abelian group of exponent dividing p — 1. Therefore E has at least three
Abelian subgroups E;, E; and Ej, of exponent dividing p — 1 whose indices |E: E;|, |E: Ej,
|E: E}y| are pairwise coprime. But then by Lemma 2.5, E is nilpotent, and every Sylow subgroup of
E is an Abelian group of exponent dividing p — 1. Hence E is an Abelian group of exponent dividing
p — 1, which implies that | P| = p. This contradiction shows that |7 (E)| = 2.

Since E is a Sylow tower group, P; is normal in £ and so Ng(P;)NP = 1. Therefore P; permutes
with all subgroups of P. If P < Ng(P), then PP, = P x P». Hence in this case P» < C(P) = P.
This contradiction shows that Ng(P) N P # P, so there is a nonidentity subgroup B < P such that
P,B = BP,. Hence BE = B(P\P,) = (P, P»)B = BE is a subgroup of GG, which contradicts the
maximality of £ = P Ps.

Lemma 2.7 (see [9], Theorem E). Suppose that G = AB and P < O,(A). Assume that every
conjugate of P in A permutes with every Sylow q-subgroup of B for all primes q # p. Then P% is
soluble and the p-complements in PS are nilpotent.

Lemma 2.8 (see [10], Lemma 2.15). Let E be a normal nonidentity quasinilpotent subgroup of
G. If ®(G) N E =1, then E is the direct product of some minimal normal subgroups of G.

Lemma 2.9. Let H be a subnormal subgroup of G. If H is nilpotent, soluble, or a mw-group,
then H is nilpotent, soluble, or a w-group, respectively.

ISSN 1027-3190.  Yxp. mam. ocypu., 2015, m. 67, Ne 12



FINITE GROUPS WITH X-QUASIPERMUTABLE SYLOW SUBGROUPS 1719

Proof. See the proof of Theorem 2.2 in [11, Ch. 2].

3. Proofs of the results. Proof of Theorem A. Suppose that this theorem is false and let G
be a counterexample of minimal order. Let 7 be the set of all prime divisors of H. By hypothesis,
there is a subgroup B of G such that G = Ng(H)B and H X-permutes with B and with every
7’-subgroup of B. Let # € X such that HB* = B*H. Then (H, B*) = HB” and G = Ng(H)B*
by Lemma 2.3. Therefore H® = HN¢(H)B* — gB* < HB® Hence H® = H(H® N B?).

(1) HN is normal in G for any nonidentity normal subgroup N of G. Hence O, (G) = 1.

It is clear that HN/N is a Hall 7-subgroup of G/N and the hypothesis holds for (G/N, HN/N)
by Lemma 2.2. Hence HN/N is normal in G by the choice of G. Thus HN is normal in G. Since
O:(G) < H, it follows that in the case when O, (G) # 1, Or(G)H = H is normal in G, contrary
to the choice of G. Hence we have (1).

(2) F(QG) is a '-group.

Since O, (F(G)) is characteristic in F'(G), it is normal in G. Hence by (1), O (F(G)) <
< Or(G) = 1.

(3) F(G) = O,(G) for some prime p & .

Let p be a prime dividing |F(G)| and P the Sylow p-subgroup of F(G). Then by claim (2),
p & w. Suppose that P # F(G). Then F(G) = P x E, where E # 1 is the Hall p’-subgroup of
F(G). Since P and E are characteristic in F'(G), both these subgroup are normal in G. But then
HP and HFE are normal in G by claim (1), so H = HP N HE is normal in G. This contradiction
shows that F'(G) = P.

(4) F(G) is an elementary Abelian p-group.

Assume that this is false. Then ®(F(G)) # 1. Since ®(F(G)) is characteristic in F'(G), it is
normal in G. Hence by claim (1), ®(F(G))H is normal in G. But ®(F(G))H is w-soluble and so
any two Hall 7-subgroups of ®(F'(G))H are conjugate in ®(F(G))H. Therefore, by the Frattini
argument, G = (®(F(G))H)Ng(H) = ®(F(G))Ng(H) = Ng(H) since ®(F(GQ)) < ®(G), a
contradiction. Hence we have (4).

(5) G # HB.

Suppose that G = H B. Without loss of generality we may assume that B is a minimal supplement
of H in G. First assume that H permutes with all 7’-subgroups of B. Then the hypothesis holds
for every subgroup of GG containing H. Therefore for every maximal subgroup V of B we have
V < Ng(H) by the choice of G, so V is the only maximal subgroup of B. Hence B is a cyclic
group of order ¢” for some prime g. It is clear that ¢ is the smallest prime dividing |G| and, in view
of claim (1), (HN B)Y = (HN B)"B = (H N B)Y < Hg = 1. Hence H N B = 1. Therefore |G':
HV| = ¢, which implies that HV is normal in G. But then, since V' < Ng(H), H is normal in
G. This contradiction shows that for some 7/-subgroup A of B we have HA # AH. It follows that
F(G) # 1. Moreover, since G = HB, F(G) < B by claim (3). Hence by claim (4), the hypothesis
holds for (HF(G), H). Therefore, if HF(G) # G, then H is normal (and so characteristic) in
HF(G). Hence in this case H is normal in G by claim (1). Thus HF'(G) = G and so the minimality
of B implies that B = F'(G). But then, by claim (4), HA = AH. This contradiction shows that we
have (5).

(6) H permutes with every subgroup of B N O,(G) (this directly follows from claim (4)).

(7 Op(G) =1

Suppose that F'(G) = O,(G) # 1. Then:

(@) O,(G)Ne(H) = G.
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By claim (1), HO,(G) is normal in G. On the other hand, HO,(G) is p-soluble and so any
two Hall 7-subgroups of HO,(G) are conjugate in HO,(G). Therefore, by the Frattini argument,
G = (HO,(G))Ne(H) = Op(G)Na(H).

(b) HY = H(H% N 0,(G)).

In view of (a) we have

HE = gO»@ONa(H) — g0(@) < HO,(G),

so HY = HY N HO,(G) = H(HY N 0,(G)).

(c) HY N O,(G) is a subgroup of B.

HY = HHY N B*) = H(H® N 0,(G)) by (b). Hence HY N O,(G) < B by claim (3).

Final contradiction for (7). In view of claims (6), (b) and (c), the hypothesis holds for HS.
Hence in the case when H® # G, H is normal in H®, which implies the normality H in G. Thus
H% = G. But then G = HY = H(HY N B*) = HB* = H B, which contradicts (5).

Final contradiction. Since X = F(G) = O,(G) = 1 by claim (7), the hypothesis holds for
HY = H(H N B) < G. Hence H = G, which implies that G = H B, contrary to (5).

The theorem is proved.

Proof of Theorem B. Suppose that this theorem is false and let G be a counterexample with |G|
minimal. Let R be a minimal normal subgroup of G. Then X/X N R~ XR/R < F(G/R).

(1) The hypothesis holds for G/R. Hence G/ R is supersoluble.

Let P be a Sylow p-subgroup of G and D = P¢. Suppose that P £ R. By hypothesis,
D = Np(P)B, where B is a subgroup of D such that P X-permutes with B and with all p’-
subgroups of B. Then

(PR/R)Y/® = (PR)“/R = P°R/R =
= DR/R = (Np(P)R/R)(BR/R) = Npg/r(PR/R)(BR/R)

and PR/R (X R/R)-permutes with BR/R by Lemma 2.1.
Now, let V/R < BR/R, where (p,|V/R|) = 1. Let U be a minimal supplement to R in V. Then
UNR<®(U),so (p,|U|) = 1. Then for some x € X we have PU* = U*P, so

(PR/R)(UR/R)*" = (PR/R)(V/R)"" = (V/R)*®(PR/R),

where zR € XR/R < F(G/R). Therefore PR/R is F(G/R)-quasipermutable in (PR/R)%/%, so
the hypothesis holds for G/R. Thus G/R is supersoluble by the choice of G.

(2) G is soluble.

If X # 1, this follows from claim (1). Now assume that X = 1. Let p be the largest prime
dividing |G| and P a Sylow p-subgroup of G. Then P is normal, and so, characteristic in P“ by
Theorem A. Hence P is normal in G and so P < X, a contradiction.

(3) R = X = Cg(R) = Oy(G) for some prime p, and G = R x M, where M is a supersoluble
maximal subgroup of G.

Claim (1) and Lemma 2.4 imply that R is the unique minimal normal subgroup of G and
R £ ®(G), so Cg(R) < R. Thus we have (3) by claims (1), (2) and [8] (A, 17.2).

(4) p is the largest prime dividing.

Assume that this is false. Let ¢ be the largest prime dividing |G| and @ a Sylow g-subgroup of
M. Then D = Q% = R x @Q by claims (1) and (3). Moreover, Ng(Q) = M by claim (3). Hence
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Np(Q) = Q. By hypothesis and claim (3), there is a subgroup B of D such that D = QB and Q
R-permutes with all p-subgroups of B. But, clearly, R < B. Hence () is X-quasipermutable in D,
so @ is normal in D by Theorem A. That implies that ) < C(R), contrary to (3).

(5) R is a Sylow p-subgroup of G (this directly follows from claims (1), (3) and (4)).

Final contradiction. Let () be any Sylow subgroup of M. Then @ is a Sylow subgroup of G and
s0, by hypothesis and claim (3), there is a subgroup B of G such that Q¢ = Nge(Q)B and Q R-
permutes with every p-subgroup of B. It is clear that R = (RN Nye(Q))(RNB) = Nr(Q)(RNB).
Therefore G is p-supersoluble by Lemma 2.6, which implies that |[N| = p. This contradiction
completes the proof of the result.

Proof of Theorem C. (i) Suppose that this assertion is false and let G be a counterexample of
minimal order.

LetV € My(P)and D = V&, By hypothesis, there is a subgroup B of G such that G = Ng(V)B
and V' is X -permutable with B and with all Sylow subgroups S of B such that (p, |S|) = 1.

(1) Oy (N) = 1 for every subnormal subgroup N of G. Hence X < Op(G).

Indeed, suppose that for some subnormal subgroup IV of G we have O,y (IV) # 1. Then Oy (G) #
# 1 by Lemma 2.9, and the hypothesis holds for G/O,/(G) by Lemma 2.2. Hence G/Op (N) is
p-supersoluble by the choice of G. Thus G is p-supersoluble, a contradiction. Therefore O,/ (V) = 1.
Therefore, since X is p-nilpotent, X < O,(G).

(2) If L is a minimal normal subgroup of G, then L £ ®(P).

Indeed, in the case when L < ®(P), we have L < ®(G) and the hypothesis holds for G/L by
Lemma 2.2. Hence G/L is p-supersoluble by the choice of L. Therefore G is p-supersoluble by
Lemma 2.4(1), a contradiction.

(3) D is soluble, so O,(G) # 1.

Assume that O,(G) = 1. Then in view of claim (1), X = 1. Therefore V' permutes with B
and with all Sylow subgroups S of B such that (p,|S|) = 1. Therefore D = V& = VNa(V)B —
= VB <VB,soD=V(Dn B). Hence V7 is soluble by Lemma 2.7. But claim (1) implies that
O (VP) = 1. Hence O,(VP) # 1, and 0,(VP) < O,(G) by Lemma 2.9. Thus O,(G) # 1, a
contradiction.

(4) P is not cyclic.

Assume that P is cyclic. Claim (3) implies that for some minimal normal subgroup L of G we
have L < O,(G) < P. Then |L| = p, and since L £ ®(P) by claim (2), we get L = P, contrary to
the hypothesis.

(5) Every normal p-soluble subgroup of G is supersoluble and p-closed (see claim (5)(a) in the
proof of Proposition in [12]).

(6) G is not p-soluble (this directly follows from claim (5)).

Final contradiction for (i). In view of claim (4), there is a subgroup W & My(P) such that
V # W. Then P = VW. In view of claims (3) and (6), P £ D. Hence V is a Sylow subgroup of D,
so V is normal in D (and also in GG) by claim (5). Similarly, W is normal in G. Hence P is normal
in GG, contrary to claim (6). This final contradiction completes the proof of assertion (i).

(ii) If | P| = p, then G is p-nilpotent by [6] (IV, 2.6). Let |P| > p and H/K any chief factor of G
of order divisible by p. Then |H /K| = p by assertion (i), so Cq(H/K) = G since (p — 1,|G|) = 1.
Hence G is p-nilpotent.

The theorem is proved.
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