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ON NEARLY M-SUPPLEMENTED SUBGROUPS OF FINITE GROUPS *
PO MAMKE M-TONOBHEHI HIJAIPYII CKIHUEHHUX T'PYII

A subgroup H is called nearly M-supplemented in a finite group G if there exists a normal subgroup K of G such that
HK <G and TK < HK for every maximal subgroup 1" of H. We obtain some new results on supersoluble groups and
formation by using nearly M-supplemented subgroups and investigate the structure of finite groups.

MMinrpyny H nazuBaemo Maiike M-I0OMOBHEHOIO B CKiHYeHHiH rpymi (7, skmo icHye HopMmaibHa miarpyna K rpymu G
taka, mo HK <G i TK < HK nnsa xoxHol MakcuManbHOI miarpynu T rpynu H. OTpuMaHO AEsIKi HOBI pe3yJbTaTi
PO CyNMEeppo3B’si3Hi TPyNMU Ta 1X YTBOPECHHS 3a JOMOMOTOK Maiike M-T0MOBHEHUX MATPYI Ta MOCTIIKEHO CTPYKTYPY
CKIHYEHHHX TPYII.

1. Introduction. It is well-known that supplemented subgroups play an important role in the theory
of finite groups. For instance, Hall [4] proved that a group G is soluble if and only if every Sylow
subgroup of G is complemented in G. Srinivasan [10] proved that a finite group is supersoluble if
every maximal subgroup of every Sylow subgroup is normal. Later on, by considering some special
supplemented subgroups (c-supplemented subgroups), Wang [12] proved that G is soluble if and
only if every Sylow subgroup of G is c-supplemented in G. Recently, Miao and Lempken [6] consid-
ered M-supplemented subgroups of finite groups GG and obtained some characterization of saturated
formations containing all supersoluble groups. More recently, Wang and Guo [13] introduced the
concept of nearly s-normal subgroups and obtained some interesting results.
Now, we introduce the following concept of nearly M-supplemented subgroups.

Definition 1.1. A subgroup H is called nearly M-supplemented in group G, if there exists a
normal subgroup K of G such that HK < G and TK < HK for every maximal subgroup T of H.

The following examples indicate that the nearly M-supplementation of subgroups can neither be
deduced from M-supplementation of subgroup nor from nearly s-normality of subgroup.

Example 1.1. Let G = S4. Since A4 is normal in G, clearly, A, is nearly M-supplemented in
G, but Ay is not M-supplemented in G.

Example 1.2. Let G = S, and H = ((1234)) be a cyclic subgroup of order 4. Then G = H Ay,
where Ay is the alternating group of degree 4. Clearly, since A4 < G, we have H is nearly M-
supplemented in GG, but H is not nearly s-normal in (. Otherwise, there exists a normal subgroup
K of G such that HK <G and H N K < Hyg, we have Hyg = 1. Otherwise, if Hy,g = H is
s-permutable in G, then H is normal in G, a contradiction. If Hyc = ((13)(24)) is s-permutable
in G, then ((13)(24)) is normal in G, a contradiction. But H N K # 1. Therefore H is not nearly
s-normal in G.

All the groups in this paper are finite. Most of the notation is standard and can be found in [1]
and [9)].

2. Preliminaries. For the sake of convenience, we first list here some known results which will
be useful in the sequel.
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Lemma 2.1. Let G be a group. Then:

(1) If H is nearly M-supplemented in G, H < K < G, then H is nearly M-supplemented in K.

(2) Let N < G and N < H. If H is nearly M-supplemented in G, then H/N is nearly
M-supplemented in G /N.

(3) Let w be a set of primes. Let N be a normal w'-subgroup and let H be a w-subgroup of G.
If H is nearly M-supplemented in G, then HN/N is nearly M-supplemented in G/N.

(4) Let R be a soluble minimal normal subgroup of a group G. If there exists a maximal subgroup
Ry of R such that Ry is nearly M-supplemented in G, then R is a cyclic group of prime order.

Proof. (1)-(4) follow from the definition of nearly M-supplemented subgroups.

Lemma 2.2 ([7], Lemma 2.6). If H is a subgroup of a group G with |G : H| = p, where p is a
prime divisor of |G| and (|G|,p — 1) =1, then H < G.

Lemma 2.3 ([8], Lemma 2.7). Let G be a finite group and P a Sylow p-subgroup of G, where
p is a prime divisor of |G| with (|G|,p — 1) = 1. Then G is p-nilpotent if and only if P is M-
supplemented in G.

Lemma 2.4 ([2], Theorem 1.8.17). Let N be a nontrivial soluble normal subgroup of a group
G.If NN ®(G) = 1, then the Fitting subgroup F(N) of N is the direct product of minimal normal
subgroups of G which are contained in N.

Lemma 2.5 ([14], Theorem 3.1). Let F be a saturated formation containing U, G a group with
a solvable normal subgroup H such that G/H € F. If for any maximal subgroup M of G, either
F(H) < M or F(H) N M is a maximal subgroup of F(H), then G € F. The converse also holds,
in the case where F = U.

Lemma 2.6 ([3], Main theorem). Suppose that a finite group G has a Hall m-subgroup where 7
is a set of primes not containing 2. Then all Hall w-subgroups of G are conjugate.

Lemma 2.7. Let § be a formation and G be a group. Suppose that a subgroup H of G has a
S-supplement in G. Then:

(1) If N < G, then HN/N has a §-supplement in G/N.

(2) If H < K <G, then H has a §-supplement in K.

Lemma 2.8 ([8], Lemma 2.9). Let G be a finite group and P be a Sylow p-subgroup of G,
where p is the smallest prime divisor of |G|. Then G is p-nilpotent if and only if every maximal
subgroup of P having no p-nilpotent supplement in G is M-supplemented in G.

Lemma 2.9. Let G be a group and N a subgroup of G. The generalized Fitting subgroup F*(G)
of G is the unique maximal normal quasinilpotent subgroup of G. Then:

(1) If N is normal in G, then F*(N) < F*(G).

() F*(G) # 1if G # 1; in fact, F*(G)/F(G) = Soc (F(G)Ca(F(G))/F(G)).

3) F*(F*(G)) = F*(G) > F(G); if F*(Q) is solvable, then F*(G) = F(G).

(4) Ca(F*(G)) < F(G).

(5) If P < G with P < Op(G), then F*(G/®(P)) = F*(G)/®(P).

6) If K < Z(Q), then F*(G/K) = F*(G)/K.

Lemma 2.10 ([6], Lemma 2.7). Let G be a finite group with normal subgroups H and L and
let p € w(QG). Then the following hold:

(1) (L) < 2(G).

(2) If L < ®(G), then F(G/L) = F(G)/L.

3) If L< HN®(G), then F(H/L) = F(H)/L.

(4) If H is a p-group and L < ®(H), then F*(G/L) = F*(G)/L.

(5) If L < ®(G) with |L| = p, then F*(G/L) = F*(G)/L.
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(6) If L < HN®(G) with |L| = p, then F*(H/L) = F*(H)/L.

3. Main results.

Theorem 3.1. Let G be a finite group and P be a Sylow p-subgroup of G, where p is a prime
divisor of |G| with (|G|,p — 1) = 1. Then G is p-nilpotent if and only if every maximal subgroup of
P having no p-nilpotent supplement is nearly M-supplemented in G.

Proof. As the necessity part is obvious, we only need to prove the sufficiency part. Assume that
the theorem is false and choose G to be a counterexample of minimal order. Moreover, we have

(1) Op(G) =1.

In fact, if O,/ (G)#1, then we consider the quotient group G/O,/(G). By Lemmas 2.1 and 2.7,
it is easy to see that G/O,/(G) satisfies the hypotheses of our theorem. The minimal choice of G
implies that G/O,,(G) is p-nilpotent and hence G is p-nilpotent, a contradiction.

(2) 0,(G) # 1.

Assume that O,(G)=1. If every maximal subgroup P; of P has a p-nilpotent supplement in G,
then GG is p-nilpotent, a contradiction. So there at least exists a maximal subgroup P; of P such
that P; is nearly M-supplemented in GG. Then there exists a normal subgroup K; of G such that
P Ky <G and TK; < -P1K; for every maximal subgroup 7' of P;. Furthermore, if P K| < G,
then (P K1), = Py or (P1Ky), = P. If (P1K,), = P, then P; is M-supplemented in P, K. By
Lemma 2.3, P, K is p-nilpotent, it follows from (P; K1), char P /K1 <G and (1) that (P K1), = 1.
Therefore P1K; = P, < G, a contradiction. Hence we have (P K;), = P. Obviously, P;K;
satisfies the hypotheses of the theorem and hence P; K7 is p-nilpotent by the choice of G. With
the similar discussion as above, we also get a contradiction. So we assume that P, K; = G. This
means every maximal subgroup of P having no p-nilpotent supplement in G is M-supplemented in
G. By Lemma 2.8, GG is p-nilpotent also a contradiction.

(3) G has a unique minimal normal subgroup N contained in Oy(G) such that N = Op(G) =
= F(G).

Let N be a minimal normal subgroup contained in O, (G). Obviously, G/N satisfies the condition
of the theorem and hence G/N is p-nilpotent by the choice of G. Since the class of all p-nilpotent
groups is a saturated formation, we have IV is the unique minimal normal subgroup of G contained
in Op(G) and ®(G) = 1. By Lemma 2.4 N = O,(G) = F(G).

(4) Final contradiction.

Since N is the unique minimal normal subgroup of G contained in O,(G) and N £ ®(G),
there exists a maximal subgroup M of G such that N £ M. Then G = NM and NN M = 1,
P = NM, where M, is a Sylow p-subgroup of M. Since G/N = M is p-nilpotent and (3), we have
G = NN¢g(M,y) = PNg(M,s) where M, is a Hall p’-subgroup of M and of course of G. So we
may assume M, < PN Ng(My) < Ly < -Li < -P. Otherwise, if PNN¢(M,y)=P, then M,y <G, a
contradiction. If [P : PN Ng(M,y)| = |G : Ng(M,)| = p and hence Ng(M,y) < G by Lemma 2.2,
a contradiction. If L, has a p-nilpotent supplement K in G such that G = L Ng(K,/) where K,
is a Hall p’-subgroup of K and of course of G. By Lemma 2.6, there exists an element z of L;
such that Ng(Mp/) = (]\Q;(I(p/)):B Therefore G = LlNg(Kp/) = (LlNg(Kp/))x = LlNg<Mp/).
Moreover, P = PN LiNg(M,y) = Li(P N Ng(M,)) = L1, a contradiction. So we may assume
L1 is nearly M-supplemented in G, there exists a normal subgroup B of GG such that L1 B < G and
TB < L1 B for every maximal subgroup 7" of L;. We will divide into the following two cases.

(a) 1B < G.

If (L1B), = L1, then L; is M-supplemented in L B and hence L1 B is p-nilpotent by Lemma 2.3.
It follows from (L B),y char L1 B <G and (1) that L1 B = L; <G, a contradiction. If (L, B), = P,
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Ly B satisfies the condition of the theorem by Lemmas 2.1 and 2.7, the minimality of G im-
plies that LB is p-nilpotent. So (L1B),s char L1 B < G. With the similar discussion as above,
Li1B =P = N<G by (3) and L, is the maximal subgroup of IV with L; is nearly M-supplemented
in G, hence we have |N| = p by Lemma 2.1(4) and G/N is p-nilpotent. Therefore G is p-nilpotent,
a contradiction.

(b) L1B =G.

That is, Ly is M-supplemented in G. For every maximal subgroup 7" of Ly, |G : TB| = p and
hence TB <G by Lemma 2.2. Set T’ = Lo and N < LoBor NNLyB =1.1f NN LB =1,
then |[N| = |G : LyB| = p, a contradiction. If N < Ly B, since M, < PN Ng(M,y) < Ly and
P = NL,, it follows that L1B = PB = NL9sB = LsB < (, a contradiction.

Theorem 3.1 is proved.

Theorem 3.2. Let G be a finite group where p is an odd prime divisor of |G|. Then G is
p-nilpotent if and only if Ng(P) is p-nilpotent and every maximal subgroup of P is nearly M-
supplemented in G.

Proof. As the necessity part is obvious, we only need to prove the sufficiency part. Assume that
the assertion is false and choose GG to be a counterexample of minimal order. Then

(1) Oy (G) = 1.

Suppose that L = O,/ (G)#1, we consider the factor group G//L. Clearly, P;L/L is a maximal
subgroup of Sylow p-subgroup of G/L where P is a maximal subgroup of Sylow p-subgroup of P.
Since P; is nearly M-supplemented in G, we have P;L/L is also nearly M-supplemented in G/L
by Lemma 2.1(3). On the other hand, N, (PL/L) = Ng(P)L/L ([6], Lemma 3.6.10) and so it is
p-nilpotent. Therefore G/ L satisfies the hypotheses of the theorem. The minimal choice of G implies
that G/ L is p-nilpotent, and hence G is p-nilpotent, a contradiction.

(2) If M is a proper subgroup of G with P < M < G, then M is p-nilpotent.

Clearly, Njs(P) < Ng(P) and hence Ny (P) is p-nilpotent. Applying Lemma 2.1(1), we find
that M satisfies the hypotheses of our theorem. Now, the minimal choice of G implies that M is
p-nilpotent.

(3) G = PQ, where Q is a Sylow g-subgroup of G with q # p.

Since G is not p-nilpotent, by Thompson ([11], Corollary), there exists a characteristic subgroup
H of P such that Ng(H) is not p-nilpotent. Since N¢(P) is p-nilpotent, we may choose a charac-
teristic subgroup H of P such that Ng(H) is not p-nilpotent, but Ng(K) is p-nilpotent for every
characteristic subgroup K of P with H < K < P. Since Ng(H) > Ng(P) and Ng(H) is not
p-nilpotent, we must have Ng(P) < Ng(H). Then by our claim (2), we obtain Ng(H) = G. This
leads to O,(G) # 1 and Ng(K) is p-nilpotent for every characteristic subgroup K of P satisfy-
ing O,(G) < K < P. Now, by using the result of Thompson ([11], Corollary) again, we see that
G/O,(G) is p-nilpotent and therefore G is p-soluble. Since G is p-soluble for any ¢ € 7(G) with
q # p, there exists a Sylow g-subgroup @ of G such that G; = PQ is a subgroup of G. Invoking
our claim (2) above, G is p-nilpotent if G; < G. This leads to Q@ < Cq(O,(G)) < O,(G), a
contradiction. Thus we have proved that G = P(Q).

(4) G has a unique minimal normal subgroup N such that N = O,(G) = Cq(N) = F(G).

Let N be a minimal normal subgroup of G. By (1) and (3), IV is an elementary abelian p-group.
Obviously G/N satisfies the condition of the theorem, the minimal choice of G implies that G/N
is p-nilpotent. Since the class of all p-nilpotent groups is a saturated formation, we have N is the
unique minimal normal subgroup and ®(G) = 1. By Lemma 2.4 N = O,(G) = Cg(N) = F(G)
and N £ ®(G).
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(5) Final contradiction.

Since N is the unique minimal normal subgroup of G and N & ®(G), there exists a maximal
subgroup M of G such that N « M. Then G = NM and N N M = 1. Clearly, P = NM,, and
M, < P, < Py where P; is the maximal subgroup of P and P, is the maximal subgroup of P;.
If M, = Py then |[N| = p and hence Aut (V) is a cyclic group of order p — 1. If p < ¢, by ([9],
10.1.9) then NQ is p-nilpotent. Consequently, ) < Cq(N) = O,(G), a contradiction. If ¢ < p, then
M = G/N = Ng(N)/Cq(N) is isomorphic to a subgroup of Aut (IV). It follows that @ is a cyclic
group that G is g-nilpotent by ([9], 10.1.9) and hence P < G. Therefore Ng(P) = G is p-nilpotent,
a contradiction.

By hypotheses, P; is nearly M-supplemented in GG. There exists a normal subgroup B; such that
P1By <G and T'By < Py B for every maximal subgroup 7" of P;. Furthermore,

(a) B < G.

Since M, < P and N < P, By, we have (P;B;), = P. By Lemma 2.1(1) and the hypotheses,
P, By satisfies the condition of the theorem, the minimal choice of GG implies that P} By is p-nilpotent.
Since (P1B),y char P1B; QG and (P B1)y < G. We have (P1B1), = 1 by (1), and hence
(P1B1) = P 4G, also is a contradiction.

(b) B =G.

That is, P is M-supplemented in GG. For every maximal subgroup T of P, TB; < G and
|G : TBy| = p by ([6], Lemma 2.2). Set T' = Py, if N < P, By, then P,B; = NP,B; = PBy =
= P, B; = G, a contradiction. So we may have that N ﬁ P, By and hence we have G = P,B1 N
and |[N| = |G : P,B1| = p, a contradiction.

Theorem 3.3. Let F be a saturated formation containing U, suppose G has a soluble normal
subgroup N with G /N € F. If every maximal subgroup of noncyclic Sylow subgroup of F(N') having
no supersoluble supplement is nearly M-supplemented in G, then G € F.

Proof. Assume that the theorem is false and let G be a counterexample of minimal order.
Furthermore, we have that

(1) Nno(G) =1.

If NN ®(G) # 1, then there exists a minimal normal subgroup L of G such that L < N N
N ®(G). Since N is soluble, we know that L is an elementary abelian p-group, moreover, we have
F(N/L) = F(N)/L. By Lemmas 2.1(2) and 2.7, every maximal subgroup of noncyclic Sylow
subgroup of F(N/L) having no supersoluble supplement is nearly M-supplemented in G/L and
(G/L)/(N/L) = G/N € F. Clearly, G/ L satisfies the condition of the theorem and hence G/L € F
by the minimal choice of GG. Therefore G € F, a contradiction.

(2) Every minimal normal subgroup of G contained in Op(N) is cyclic of order p where p is a
prime divisor of |N|.

If N = 1, the assertion is ture. So we may assume that NV # 1, the solubility of N implies that
F(N) # 1. By Lemma 2.4, F(N) is the direct product of minimal normal subgroups of G contained
in N. There at least exists a maximal subgroup W of G not containing F'(N) and hence there at
least exists a prime p of 7(|N|) with O,(N) £ W by Lemma 2.5. Applying Lemma 2.5 again, we
have |G : | is not prime order .

Denote P = O,(N). Then P is the direct product of some minimal normal subgroups of G. We
assume that P = Ry X Ro X ... X R; where R; is a minimal normal subgroup of G, i =1,2,... t.
Since NN®(G) = 1, for every minimal normal subgroup R of G contained P, there exists a maximal
subgroup M of G such that G = RM = PM and RN M=1. Let M), be a Sylow p-subgroup of M
and P = (PN M) x R. Then G, = PM,, is a Sylow p-subgroup of G. Now, let P; be a maximal
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subgroup of G, containing M, and set P, = PiNP. Since |P : P;| = |P: PiNP| = p, thatis, Py isa
maximal subgroup of P. On the other hand, P = P,NP = Po,N(PNM)R = (PNM) x (PNR).
Similarly, we know that P, N R is a maximal subgroup of R. If P» is nearly M-supplemented
in G, then there exists a normal subgroup K of G such that K < G and TK < PK for
every maximal subgroup T of P». Set Ko = (PN M)K < G, therefore (P, N R)Ky < G and
T'Ky < (P, N R)Ky = P, K for every maximal subgroup 7" of P, N R, that is, P, N R is nearly
M-supplemented in G' and hence |R| = p by Lemma 2.1(4). If P» has supersoluble supplement
in G. Then there exists a subgroup H of G such that G = P,H and H is supersoluble. Let L. =
= (PN M)H, so we have G = P,H = P,(PNM)H = P,L = PL.If P £ L, then L < G. Since
PNnM<PNL<PNL=(PNM)RNL=(PNM)RNL)=PnNM,then |P| = |P|, a
contradiction. So we assume P < L, then L =G, G/(PNM)=L/(PNM)=H/(PNMnNH)
is supersoluble. Since M /(P N M) is a maximal subgroup of G/(P N M), and hence |G : M| = p
and |R| = p.

(3) Final contradiction.

For every R;, ¢ = 1,2,...,t, is of prime order, G = R;M and R; N M = 1. It is clearly that
|G : M| = p and hence G € F by Lemma 2.5, a contradiction.

Theorem 3.3 is proved.

The final contradiction completes our theorem.

Corollary 3.1. Let F be a saturated formation containing U and G be a soluble group. If every
maximal subgroup of noncyclic Sylow subgroup of F(G) having no supersoluble supplement is nearly
M-supplemented in G, then G € F.

Corollary 3.2. Let F be a saturated formation containing U. Suppose G has a soluble normal
subgroup N with G/N € F. If every maximal subgroup of noncyclic Sylow subgroup of N having
no supersoluble supplement is nearly M-supplemented in G, then G € F.

Proof.: By Theorem 3.1, we know that N has supersoluble type Sylow tower. Let P be the
Sylow p-subgroup of N, where p is the largest prime divisor of |N|. Then P char N and hence
P < G. 1t is easy to know G/ P satisfies the hypotheses, therefore G/P € F. Since every maximal
subgroup of noncyclic Sylow subgroup of F'(P) = P having no supersoluble supplement is nearly
M-supplemented in GG, then G € F by Theorem 3.1.

Theorem 3.4. Let F be a saturated formation containing U and G be a group with a normal
subgroup H such that G/H € F. If every maximal subgroup of every noncyclic Sylow subgroup of
F*(H) having no supersoluble supplement is nearly M-supplemented in G, then G € F.

Proof. Suppose that the theorem is false and choose G to be a counterexample of the minimal
order, so in particular, H # 1. Furthermore, we have

Casel. F =U.

By Corollary 3.2, we easily verify that F*(H) is supersoluble and hence F'(H) = F*(H) # 1.
Since the pair (H, H) satisfies the hypotheses of the theorem in place of (G, H), the minimal choice
of GG implies that H is supersoluble if H < (&; then G € U by Theorem 3.3, a contradiction. Hence

(1) H = G is nonsoluble and F*(G) = F(G) # 1.

Let N be a proper normal subgroup of G containing F*(G). By Lemma 2.9, F*(G) =
= F*(F*(G)) < F*(N) < F*(G), so F*(N) = F*(G). Moreover, every maximal subgroup
of every non-cyclic Sylow subgroup of F*(N) having no supersoluble supplement is nearly M-
supplemented in /N by Lemma 2.1(1). Hence N is supersoluble by the minimal choice of G. So we
have

(2) Every proper normal subgroup of G containing F*(QG) is supersoluble.
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Suppose now that ®(O,(G)) # 1 for some p € w(F(G)). By Lemma 2.9 we have
F*(G/®(0p(G))) = F*(G)/®(0,(G)). Using Lemma 2.1 we observe that the pair (G/®(0,(G)),
F*(G)/®(0,(G))) satisfies the hypotheses of the theorem. The minimal choice of G then implies
G/®(0,(G)) € U. Since U is a saturated formation, we then get G € U, a contradiction. Thus we
have

(3) Ifp € w(F(G)), then ®(0p(G)) = 1 and so O,(Q) is elementary abelian, in particular,
F*(G) = F(QG) is abelian and C(F(G)) = F(G).

Suppose that L is a minimal normal subgroup of G contained in F'(G) and that |L| = p for some
p € m(F(Q)); also set C' := Cg(L). Clearly, F(G) < C < G.If C < G, then C is solvable by
(2). Since G/C'is cyclic, we get that G is solvable, a contradiction. So we have C' = G and hence
L < Z(G). Then we consider the group G/L. By Lemma 2.9, we have F*(G/L) = F*(G)/L =
= F(G)/L. In fact, G/L satisfies the hypotheses of the theorem by Lemma 2.1. Therefore the
minimal choice of G implies that G/L € U and hence G is supersoluble, a contradiction. This proves

(4) There is no minimal normal subgroup of prime order in G contained in F(QG).

If F(G) = Hy x...x H, with cyclic Sylow subgroups Hy, ..., H, of of F(G), then G/C¢(H;)
is abelian for any ¢ € {1,...,r} and so G/(,_, Cq(H;) = G/Cq(F(G)) = G/F(G) is abelian.
Therefore G is solvable, a contradiction. This proves

(5) P := 0,(G) € Sylp(F(Q)) is non-cyclic for some p € w(F(G)).

Let P; be a maximal subgroup of O,(G). If P; has a supersoluble supplement in G, then there
exists a supersoluble subgroup K of G such that G = PK = O,(G)K. Clearly, G/O,(G) =
= K/K N Opy(G) is supersoluble and hence G is soluble, a contradiction. So we obtain that

(6) Every maximal subgroup of every noncyclic Sylow subgroup of F(G) has no supersoluble
supplement in G.

Furthermore, if P N ®(G) = 1, then P = Ry X ... x R, with minimal normal subgroups
Ry, ..., Ry of G by Lemma 2.4. Clearly, P, = R;" R is the maximal subgroup of P where R7 is the
maximal subgroup of R; and R = Ry X ... X R;. By hypotheses, P» is nearly M-supplemented in G.
There exists a normal subgroup of K of G such that A, K < G and TK < P, K for every maximal
subgroup T' of P». Let K1 = RK. Clearly, K1 < G and P, K = R*K7 and T1 K7 < R1*K; for
every maximal subgroup 77 of R1*. Therefore R;* is also nearly M-supplemented in G and hence
|Ri| = p by Lemma 2.1(4), contrary to (4). So we get that

(7) R:=PnNo(G) # 1.

Now suppose that ) € Syl (F(G)) for some prime ¢ # p and let L be a minimal normal
subgroup of G contained in R. Then @ is elementary abelian by (3). By the definition of a generalized
Fitting subgroup, F*(G/L) = F(G/L)E(G/L) and [F(G/L),E(G/L)] = 1, where E(G/L) is the
layer of G/L. Since L < ®(G), F(G/L) = F(G)/L by Lemma 2.10. Now set £/L = E(G/L).
Since @ is normal in G and [F(G)/L,E/L] =1, [Q,E] < QNL =1, 1ie, [Q, E] = 1. Therefore
F(G)E < Cg(Q) 9 G. If Ce(Q) < G, then Ci(Q) is supersoluble by (2); thus E(G/L) =
= E/L is supersoluble and consequently F*(G/L) = F(G)/L. Clearly, we see that G/ L satisfies
the hypotheses of the theorem. By the minimal choice of G, G/L is supersoluble and so is G, a
contradiction. Henceforth we have C(Q) = G, i.e. Q < Z(G). Obviously, using the same argument
as in the proof of (7), G/Q € U and hence G is supersoluble, also is a contradiction. Thus we have

(8) F(G) = P, in particular,1 < R = ®(G) < P.

On the other hand, let X be a minimal normal subgroup of G contained in P with X # L.
By the definition of a generalized Fitting subgroup, F*(G/L) = F(G/L)E(G/L) and [F(G/L),
E(G/L)] = 1, where E(G/L) is the layer of G/L. Since L < ®(G), F(G/L) = F(G)/L by
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Lemma 2.10. Now set E/L = E(G/L). Since X is normal in G and [F(G)/L,E/L] =1, [X,E] <
< XNL=1,ie, [X,E] = 1. Therefore F(G)E < Cx(X) < G.If Cq(X) < G, then C(X) is
supersoluble by (2); thus E(G/L) = E/L is supersoluble and consequently F*(G/L) = F(G)/L.
Using the same argument as in the proof of (3) we see that G/L satisfies the hypotheses of the
theorem. By the minimal choice of G, G/ L is supersoluble and so is GG, a contradiction. Henceforth
we have C¢(X) = G, i.e., X < Z(G). Clearly, this also violates (4). Thus we have

(9) L is the unique minimal normal subgroup of G contained in P.

By (3), there exists a maximal subgroup P, of P with L &« P;. By hypotheses, P; is nearly
M-supplemented in GG. So there exists a normal subgroup K in G such that PiK; < G and
TK, < PiK; for every maximal subgroup 7" of P;. If PiK; = G, since L N P # 1, we may
choose a maximal subgroup P» of P with LN P, £« P, and P,K; < G. On the other hand,
L < ®(G) and hence P, K7 = LP,K; = G, a contradiction.

So we may assume P;K; < (. Since L is the unique minimal normal subgroup, we have
LNPK =1lor L.IfLNPK; =1,then LN P, = 1 and hence |L| = p, contrary to (4).
Therefore L < PiK; and P < PyK;. By Lemma 2.9 and (2), P, K is supersoluble. Particularly,
K is supersoluble and (K1), < K where g is the largest prime divisor of |K|. On the other hand,
PiNK; < ®(P) =1and PN K; = 1, otherwise, |P N K| = p, contrary to (4). It follows
from (K), char K and K; < G imply that (K;), < G. So we have (K1), < P, a contradiction.
Therefore K1 = 1 and Py K1 = P, < G, contrary to the choice of P;.

Casell. F #U.

By Case I, H is supersoluble. Particularly, H is soluble and hence F*(H) = F(H). Therefore
G € F by Theorem 3.3.

Theorem 3.4 is proved.

Corollary 3.3. Let G be a group with a normal subgroup H such that G/H € U. If every
maximal subgroup of every non-cyclic Sylow subgroup of F*(H) is nearly M-supplemented in G,
then G € U.
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