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A RING OF PYTHAGOREAN TRIPLES OVER QUADRATIC FIELDS*
KLIBIE MMI®ATOPOBUX TPIMOK HAJI KBAJIPATHUMM IOJISIMUA

Let K be a quadratic field and let be R the ring of integers of K such that R is a unique factorization domain. The set P
of all Pythagorean triples in R is partitioned into P,, sets of triples («, 3, ) in P where n = v — . This paper shows the
ring structures of each P, and P from the ring structure of R.

Hexait K — xBanpatae none, a R — kinbue nimux 3 K takux, mo R — equHa gakropusaniiina obmacts. MHOXHHa P BCixX
nidaropoeux Tpiiiok 3 R pasobusaerbes Ha P,, MHOKUHE Tpiliok {a, 8,7) B P, ne n = v — 3. B po6ori nokasaHo KijbLesi
CTPYKTYpH JUIsl KOXHOTO P, Ta P 3 KiNbIeBoi cTpykTypu R.

1. Introduction. A triple (a, 3,7) of elements of a ring is said to be a Pythagorean triple if
a? + 2 = 42. B. Dawson [1] defined operations on the set of all Pythagorean triples in Z so that
this set is a ring. J. T. Cross [2] displayed a method for generating all Pythagorean triples over the
ring of Gaussian integers.

Let K be a quadratic extension of Q such that the ring of integers R of K is a unique factorization
domain. Let P be the set of all Pythagorean triples in R, i.e.,

P={(a,,7) € R’ | &® + 5> =~°}.

The set P is partitioned into sets

P,={(a,8,7) e P|y—-pB=n}

for all n» € R. This paper shows how to find all elements of each P, with all elements of P as the
byproducts and define bijections between P, and R, which construct a one-to-one correspondence
between P and R x R.

2. Preliminaries. Throughout this paper, all variables will be assumed to represent algebraic
integers unless otherwise stated. The notation [r] will be used for the smallest rational integer
greater than or equal to the real number 7.

The parity is significant in many theorems about Pythagorean triples. James T. Cross shows that
0 := 1+ i plays a role in the ring of Gaussian integers like that played by 2 in Z [2]. We expand his
idea by using the following theorem.

Theorem 2.1. Let K = Q(\/ﬁ), where d is a squarefree integer, R be the ring of integers of K.
Then:

2 is ramified in R if d = 2 or 3 (mod 4).

2 splits completely in R if d =1 (mod 8).

2isinertin Rifd =5 (mod 8).

We will separate each case of R into three sections. If 2 is ramified in R, there is a prime § € R
such that 2 ~ §2 and |R/(8)| = 2. For & € R, we may say that « is even if « is divisible by §
and « is odd otherwise. Moreover, the sum of two even or two odd algebraic integers gives an even
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one, the sum of an even algebraic integer and an odd one gives an odd one, the product of two odd
ones gives an odd one, and the product of an even one and any algebraic integer gives an even one.
Furthermore, since 0 | 2, 2 and all integers that are divisible by 2 are even algebraic integers. All units
in R are odd. In case that 2 splits completely in R, there are non-associate primes d, § € R such that
2 ~ 40 and |R/(0)| = |R/(6)| = 2. If 2 is inert in R, 2 is a prime in R.

Let 7 be a prime in R. The set R \ mR contains all elements of R which are not divisible by 7.
We use the countability property of R to show a connection between R \ mR and R which leads to
a one-to-one correspondence between P, and R.

Definition 2.1. Let 7 be a prime in R. All non-associate primes in R can be put into order, say
T, T1, T2, T3, . ... Define V,: (R\ mR) — R by

U, (ur)tmny?ms® ) = ur™a?ng® L,
where {a1,az,...} C Zar and v is a unit in R. It is not difficult to see that the mapping V. is a
one-to-one correspondence.

For the case that n = 0, Py = {(0,5,5) |5 € R} and the mapping ¢: Py — R defined by
»((0,8,8)) = B is a one-to-one correspondence. The following theorems consider the case where
n # 0.

3. 2 is ramified in R. In this case, there is a prime § € R such that 2 ~ 6% and |R/(5)| = 2.
To show a ring structure of P, and P, we characterize P, and define bijections by considering two
cases of 7 where §%||n for ag = 0, 1 and 62 | 5 in the following theorems.

Theorem 3.1. Let 1) be an algebraic integer and n = ué®n{*m5? ... w8, where ag = 0,1 and
fork >1,ay € Zg , wis a unit and 7, € R are non-associate odd primes. Set p = (5“07T11’1 7T12’2 ..mbm

where by, = {%W Then Py is

o -2 a2+
a
) 2/’7 Y 277
Moreover, the mapping ¢: P, — R defined by

ol(0,B,7)) = T (j)

o =T1p for someodd T € R} .

is a one-to-one correspondence.

Proof. Suppose (o, 3,v) € P,. Since n = v — 3, we have (o, 3,7) = (o, (a® —n?)/2n,
(a? +1%)/2n). Then 2 | a®+n? and thus 5202791 792 .. 10 |02 442520074 1202 | 7120m Hence
§20miid? . wim |, Since for each k = 1,...,m, by = [%-‘ , we get §%7ial2  gbma.
Therefore, there exist an algebraic integer 7 such that a = 7p. If 7 is even, then §°*2 | o2 and thus
o0t | §2a0 201 2a2 | p2am This is a contradiction, so 7 is odd.

Conversely, suppose a = 7p where 7 is odd. We have o? — 1% = 7252“07rfb17r§b2 O L
—u2§Progangdez | gplam — §200(p2p201p 2 p2bm 252015200 | p2am) Since 2by, > ay, we

obtain 7752 ... 7% |a? —n? If ap = 0, i.e.,, n and p are odd, o + 7 and o — 7 are divisible
by 6. Then &2[a? — 72, If ag = 1, since 7272 w22 ... 720m and w?n?72%2 .. 72%m are odd and

the difference of these two numbers is even, §%°*2 |a? — 7%, Consequently, 27 | a® — n? and thus
20| a? + n2.

If (o,B,7) € P,, then o/p is an odd algebraic integer and Ws(a/p) makes the mapping ¢
injective and surjective.

Theorem 3.1 is proved.
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Theorem 3.2. Let 1) be an even algebraic integer and n = ud®n{*n5? ... 7o where ag >

> 2and for k > 1, a € ZO, w is a unit and m, € R are non-associate odd primes. Set p

2
= 5b07r11’17r32 . ..7Tbm where by = [a();' w and by, = [%1 . Then Py, is

. o —n? a4+ ?
Y 27] 9y 2/,/]
Moreover, the mapping ¢: P, — R defined by

oo, B,7)) = "

a =Tp forsome T € R}.

is a one-to-one correspondence.

Proof. Suppose (a, (a2 —1%)/2n, (a®+n%)/2) € P, Then 69+2nfinse . no|a? +
s 202 p2am  Therefore, 0%+ 2x w2 .. % | o2, Hence 0%7t'7%2 ... 7bm | o Thus
a = 7p for some 7 € R.

Conversely, suppose o = 7p, where 7 € R. We have o = 7'262b07r%b17rgb2 ... m2bm which is
divisible by 27. Moreover, n? is divisible by 27 because 2 | 5. Hence 27| a? + n?.

Since any algebraic integer can be written in the form «/p, the mapping ¢ is bijective.

Theorem 3.2 is proved.

4. 2 splits completely in R. There are non-associate primes 5,0 € R such that 2 ~ §6 and
|R/(8)] = |R/(6)| = 2. Notice that the ideas of even and odd we used in the proofs of the previous
theorems are also practical in this section where we consider three cases of 1 depending on the
divisibility by & and d. Note that § and 0 hold the same properties and can be switched around in the
following theorem.

Theorem 4.1. Letn € R and n = ué a0 T .., where @g > 1, and for k > 1, ay, € Zg,

b ywhere

w is a unit and T, € R are non-associate primes where mj, = 6,5. Set p = § bo b1 coempmy

- 1
[a ot -‘ and by, = {a——‘ . Then Py is
2

by =
o — nQ a? + 772
a? b
2n 2n

Moreover, the mapping ¢: P, — R defined by

8]
ol B.2)) = s ()
p
is a one-to-one correspondence.

Proof. Suppose (a,(a® —n?)/2n, (o +n?)/2n) € P, Then 2n|a® + n? and thus

o =rT1p for some T € R, where (5)(7'}.

~ag+1 —<2ag

56% T w2 ot |a? 4 w6 CniMry® . mw20m . Therefore, 5% ‘“71;2 ... | 2. Hence
b() <2ag

5 mlrb2 . wbm|a. Thus oo = 7p for some 7 € R. If 8|7, then § | o2 and & | 25~ 72 x202 . q20m

a contradiction. This means that § 1 7.

Conversely, suppose a = 7p where 7 € R and § { 7. We have 0n|a? + n?. Since 6 { o?
(odd wrt 0) and J 1 2, we have 6 | a? + n? (even wrt d). Since 2 ~ 86, 21| a? + n?.

Theorem 4.1 is proved.

The proofs of the next two theorems are left to the reader.
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Theorem 4.2. Let n € R and n = u5a03607rf1. wdm  where ag > 1, ag > 1, and for

Lo
k>1, a. € Z(')F, w is a unit and ™, € R are non-associate primes, where m, ~ §,0. Set

—b 1] - ap+1
p= 5b05b07r11’1 ... mom where by = Fm;— -‘ , bop = [a();— —‘ and b, = {%-‘ . Then P, is

. o~ a2
) 277 b 277

Moreover, the mapping ¢: P, — R defined by

a=Tp forsome T € R}.

(07

oo, B,7)) = "

is a one-to-one correspondence.

The following theorem uses the idea that all non-associate primes in R can be put into order, say
5, 5, Ty T2y e v e

Theorem 4.3. Let ) € R and n = un{' ... 7l where for k > 1, aj, € Zar, u is a unit and

- a
T € R are non-associate primes where m ~ 6,9. Set p = 7Tl1)1 . ng‘, where by, = {?k—‘ . Then P,

2 .2 2 2
0@ 777a+n
2n 2n

Moreover, the mapping ¢: P, — R defined by

oo = s (5 (2))

a:+y\/a
2

a prime in R. Notice that the norm of 2 in Q(+/d) is 4, this means that the parity is not as useful as
in the previous sections.

is

a=Tp forsome T € R, where §1T, 5)(7'}.

is a one-to-one correspondence.

S. 2is inert in R. By Theorem 2.1, R = { z,y € Zand x =y (mod 2)} and 2 is

Theorem 5.1. Letn € R and n = un{'n5? ... 7% where ay, € Zg , w is a unit and 7, € R are
a
non-associate primes such that 2 { my,. Set p = 7rll’17r12’2 ...mbm where by, = [?k—‘ . Then P, is

2 .2 9 2
Oé,a 77704 ] a=Tp forsome T € R, where 24T ;.
2n 2n

Moreover, the mapping ¢: P, — R defined by

ol(0,,7)) = T (j)

is a one-to-one correspondence.

Proof. Suppose (o, (a® —n?)/2n,(a® +n?)/2n) € P,. Then 27{'n3?...70m|a? +
+udri® o2 p2em Therefore, 791752 ... 7% | a?. Hence p|a, say a = 7p for some 7 € R.
It is easy to see that 2 { 7.

Conversely, suppose a = 7p, where 7 € R and 2t 7. We have 17| a® —n%. Let a = (z 4+ y+/d) /2
and ) = (z 4+ wv/d)/2, where z,y,z,w € Z and z = y,z = w (mod 2). Since 2 { o and 2 1 7,
r=y=z=w=1 (mod 2). Hence 2| a—n and thus 2 | o® —n?. Since ged (,2) = 1, 21| a®+n>.

Theorem 5.1 is proved.
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Theorem 5.2. Letn € R and n = u2%r{' w52 ... 7% where ag > 1 and for k > 1, ay € Zg,

w is a unit and T, € R are non-associate primes such that 2 { 7. Set p = 2b07711)

1
by = [%;— —‘ and b, = {%-‘ . Then Py is

. o — 2 a2
) 277 M 277

Moreover, the mapping ¢: P, — R defined by

17712)2 ... mom where

a =Tp for some TER}.

o({a, B,7)) = "

is a one-to-one correspondence.

Proof. The proof is similar to the proof of Theorem 3.2.

6. The ring structure. We combine results from Sections 3—5 and define operations addition
and multiplication on P, and P to establish rings of Pythagorean triples. The ring structures of P,
and P are constructed from the ring structure of R.

Corollary 6.1. Let 1 be an algebraic integer. (P, ®,®) is a commutative ring with identity,
where @© and © are operations on P, defined by

(, B,7) @ (v, A) = 07 (0((a, B,7)) + ({1, v, A)))

and
(@, 8,7) © (v, A) = o~ (@, B,7)) - (s, v, X))
Corollary 6.2. The mapping ®: P — R X R given by

D((, B,7)) = (v = B, 0({e, B,7)))

is a bijection. Consequently, (P,HB,[) is a commutative ring with identity where B and [ are
operations on P defined by

(e, B,7) B (1, X) = @7H(@({ev, B,7)) + ({1, 1, \)))

and

(e, B,7) B (v, X) = @71 (@({a, B,7)) - (s, N))).
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