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WELL-POSEDNESS OF THE RIGHT-HAND SIDE
IDENTIFICATION PROBLEM FOR A PARABOLIC EQUATION

KOPEKTHICTb MMPOBJEMU MPABOCTOPOHHBOI ITEHTU®IKALIIT
ITAPABOJIITYHOTI'O PIBHAHHSA

We study the inverse problem of reconstruction of the right-hand side of a parabolic equation with nonlocal conditions.
The well-posedness of this problem in Holder spaces is established.

Jocnimkeno obepHeHy 3a/1ady BiJJHOBJIECHHS NPABOI YaCTHHH MapaboIivHOro PiBHSHHS 3 HENOKaJIbHHMH yMOBaMH. Bcera-
HOBJICHO KOPEKTHICTH i€l 3amadi y mpocTopax I'sombaepa.

1. Introduction. The inverse problems take an important place in various fields of science and engi-
neering and have been studied by different authors [1—7]. The optimal overdetermination conditions
are analyzed in some classical boundary conditions or and similar conditions given at a point. The
literature review and various approaches for the approximate solution are given in [8§ — 11]. Moreover,
the generalized overdetermination conditions such as nonlocal, integral, and final overdetermination
conditions are used [12-15].

The importance of well-posedness has been widely recognized by the researchers in the field of
partial differential equations [16—22]. Moreover, the well-posedness of the right-hand side identifi-
cation problem for a parabolic equation where the unknown function p is in space variable is also
well investigated [23 —28].

Let us give a brief summary of papers with investigations on the right-hand side identification
problem for a parabolic equation where the unknown function p is in time variable and the motivation
of our present paper.

In article [29], a conditional stability of Holder type (estimate in L,-norm) of the inverse problem
of determining p(¢), 0 < ¢ < T, in the heat source of the heat equation

Oru(z,t) = Au(z, t) + p(t)q(z), reR" t>0, (1)

from the observation u(xg,t), 0 < t < T, at a remote point xy away from the support of ¢ is
established by using Holder type inequalities.

The numerical algorithm for solving inverse problem of reconstructing a distributed right-hand
side of a parabolic equation with local boundary conditions is studied in [30] and [31]. In these
articles, the numerical solution of the identification problem and well-posedness of the algorithm
is presented. For reconstructing the right-hand side function f(¢,x) = p(t)q(x), where p(t) is the
unknown function, the solution is observed in the form of wu(t,z) = n(t)q(x) + w(t,z), where

t
n(t) = / p (s) ds. Then, an approximation is given for w(t, z) via fully implicit difference scheme.
0
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The solution of system constructed by the difference scheme is searched in the form

n—l—l

o n+1
i =Y +wy, Tz

w i i=0,1,..., M,

where £ is an interior grid point and the well-posedness of the algorithm is given by a priori estimate
1
(o

which is based on maximum principle. Thus, in [30] |z;| < 1 at small enough 7 = O(1), i.e., it is

max |z;| <7 max
0<i<M 0<i<M

(a%)x,i

necessary to use a sufficiently small time step.

In the papers [32-35], inverse problems of reconstructing a distributed right-hand side of a
parabolic equation were studied by using the methods of differential equations in Banach and Hilbert
spaces. The solvability of these inverse problems is dealt with by reducing it to an abstract Volterra
operator of the second kind. In the paper [34], the inverse problem of the form

u'(t) — Au(t) = (t)p(t) + f(t), 0<t<T,
2
u(0) = up, e(ut)) =), 0<t<T,

was considered. Here ug is an element, A and ¢ are linear operators and ®(A), f(A), ¥(A) are
given functions and u(A) and p(A) are the unknowns. It was assumed that A generates a strongly
continuous semigroup in a Banach space X, up € E, ¢ € L(E,F), ®(A) € C([0,T],L(F,E)),
F(A) € C([0,T], E) and (-) € C*([0,T], E). The author gives conditions on the coefficients that
insure existence, uniqueness and continuous dependence of solutions (u(A), p(A)) on the data.

In the paper [35], a problem of determining the right-hand side of a uniformly multidimensional
parabolic equation in a bounded domain with the Dirichlet boundary condition was studied. Addi-
tional information was given in integral form. An existence and uniqueness theorem for the solution
of the inverse problem in the Holder class was proven and a sufficient condition for the differentia-
bility of the solution was given.

In the present paper, we investigate the well-posedness of the inverse problem of reconstructing
the right-hand side of a one dimensional parabolic equation with nonlocal conditions

ou(t, x) 0u(t, x)

5 = a(x)w —ou(t,z) + p(t)g(x) + f(t, ),

O<z<l, 0<t<T,
w(t,0) = u(t, 1), up(t,0) = ug(t,1), 0<t<T, 3)
u(0,2) = p(z), 0<az<l,

u(t,x*)=p(t), 0<z*<Il, 0<t<T,

where u(t, z) and p(t) are unknown functions, a(x) > ¢ > 0 and o > 0 is a sufficiently large number
with assuming that
(a) gq(x) is a sufficiently smooth function,
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(b) ¢(x) and ¢(x) are periodic with length [,

© q(a*) #0.

At the end of the section, we give a brief comparison of them with our work.

The aim of the paper is to give well-posedness theorems and their proof for the inverse problem of
reconstructing the right-hand side of a parabolic equation with nonlocal conditions. In contrast to [29],

we establish the coercive inequality for the solution of problem (3) in <C([O, 1], 2o [0, l]) , C10, T]> .

Comparing to stability results of [30] for the solution of difference schemes, we give the well-
posedness in differential case and for the solution of problem (3) with nonlocal conditions. The
application of operator tools permits to investigate inverse problems of reconstructing a distributed
right-hand side of a multidimensional parabolic equation more general case than problem (3) with
classical boundary conditions (see, for example, [32 -35]).

In general, it would be interesting to establish the coercive inequality for the solution of problems
of reconstructing a distributed right-hand side of a multidimensional parabolic equation more general
case than problem (3). Of course, it will be possible after establishing theorem on well-posedness
of abstract problem (2) in (C([0,77], E,), C[0,T]) and theorem on structure of interpolation spaces
E, = E,(E, A) generated by multidimensional space operator A. Unfortunately (see [36]), struc-
ture of interpolation spaces E, = E,(F, A) generated by multidimensional space operator A with
boundary local and nonlocal conditions is not well investigated.

2. Main results. To formulate our results, we introduce the Banach space C“[0,!], a € (0,1),
of all continuous functions ¢(z) defined on [0, ] with ¢(0) = ¢(I) satisfying a Holder condition for
which the following norm is finite:

91l o |p(x)| +  sup |0 (z+ 1) _¢($)‘_

= max a
C«[0,]] 0<z<l O<z<z+h<l h

With the help of A we introduce the fractional spaces F,, 0 < o < 1, consisting of all v € F
for which the following norm is finite:

1ol g, = llvllz + sup A [ Aexp {-AA} o] - “4)
>

It is known that under the assumption that the operator —A generates an analytic semigroup
exp{—tA}, t > 0, with exponentially decreasing norm, when ¢ — +o0, i.e., the following esti-
mates hold:

lexp {~tA} g < Me™™, ®)

|A% exp {—tA}|| p_p < Me*&t*a, (6)

where t,d, M > 0 [36].
Positive constants, which can be differ in time will be indicated with an M. On the other hand
M (a, 3,...) is used to focus on the fact that the constant depends only on «, 3, . . ..

Theorem 1. Let ¢(x) € 8’2°‘+2[0, I, f(t,x) € C<[0,T],C072°‘[0,l]> and p'(t) € C[0,T]. Then

for the solution of problem (3), the following coercive stability estimates:
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* /
I r1270a) * Ml oy v <21 D e +

+M (CL, 57 U,O[,.’IT*,q, ) <||¢cha+2 Ol ||f||C([O,T],52°‘[O,l}) + ||p||C[0,T]>7

1Pl < M (2%, q) It HC[OT] +

+M (a‘? 67 0-7 a? $*7 q? )

g * 1l (o000 * ||puqo,ﬂ]

hold.
Proof. Let us search for the solution of the inverse problem in the following form:

U(t, .’B) = U(t)CI(fL") tw (tv x) )

where .
o) = [ p(s)ds
0

Taking derivatives from (7), we have

L) plt)g () + 22
and
0?u(t, x) B d*q(x)  O*w(t,x)

ox? n(®) dx? * Ox2
Moreover if we substitute = z* in equation (7), we get

u(t,z®) = n(t)q («°) +w (t,2") = p(t)

and

Using the triangle inequality and the identity (9), we have

p(t) — we (t, %)
q(z*)

p(t)| =

\ < M(a*,q) (|0 ()] + [wr (t,27)]) <

< M (z* t <
< M%) (o%lﬂ )|+ max. max fue(t, f’f”)—

(7

®

(€)
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< M o 1
< M(z*,q) (rgt%lp )| + max flwi(t )HCQQ[OJJ (10)

for any ¢,¢ € [0, T]. Using equations (7), (8) and under the same assumptions on ¢(x), one can show
that w(t, z) is the solution of the following problem:

ow(t,z) 0*w(t, ) p(t) —w(t,z*) d’q(x)
o a(z) Ox? +alo) q(z*) dz?
—UWq(x)—aw(t,x)—i—f(t,x), O<z<l, 0<t<T, (an

w(t,0) =w(t,l), wi(t,0)=wy(t,l), 0<t<T,

w(0,2) =p(z), 0<z<l

So, the end of proof of Theorem 1 is based on estimate (10) and the following theorem.
Theorem 2. For the solution of problem (11), the following coercive stability estimate:

o <M * o
Hwt”cm[o,l] < M (a,6,0,a,2%,q,T) (HSOHCQMQ[OI Hf”C([o,T},oM[o,Z]) + ”pHC[O,T]>

holds.
Proof. We can rewrite problem (11) in the abstract form

" ) p(t) _w(tv‘f*)

wt—l—Aw:(aq —oq " +f(t), 0<t<T,
q(z*)

w(0) = ¢

in a Banach space E = ([0, (] with the positive operator A defined by

0%u(t, z)

Au = —a(zx)——— 902

+ ou
with
D(A) = {u(x): ul,u" € 0,1, u(0) = u(l), ug(0) = ux(l)}.
Here, f(t) = f(t,z) and w(t) = w(¢,z) are known and unknown abstract functions defined on
[0, T'] with values in E = C[0,!], w (¢, z*) is unknown scalar function defined on [0,7], ¢ = ¢(z),

¢" =¢"(x), p = ¢(x) and a = a(x) are elements of £ = C[0,!] and ¢ (z*) is a number.
By the Cauchy formula, the solution can be written as

¢
"
w(t) = ey — /e_(t_s)Aaquw (s,x™)ds+
0

q*
t " t
+/e (-5 P8 (a;]* _JQ)ds+/e_(t_5)Af(s) ds
0 0
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Taking the derivative of both sides, we obtain that

"o
wy(t) = —Ae Ay + / Ae’(t’S)A%w (s, %) ds—

t t
"o
_/Ae—(t—s)Ap(S) (ag UQ)dS_/Ae—(t—s)Af(s)ds
0 0

Applying the formula

S

t
"o n_
Ae*(t*S)AL*aq /wz (z,2%) dzds + /Ae(ts)Aaq*JqW (") ds
q q
0 0

and changing the order of integration, we obtain that

t

/Ae (=494 :Uqw(s,:c*)ds:
q

0

t ot ¢

"o "_
= //Ae_(t_S)Aaqq*Uqwz (z,x*)dsdz—I—/Ae_(t_s)Aaqq*Uqgo(m*) ds.
0

Then, the following presentation of the solution of (11):

t ot
"o
w(t) = Ae Mo + //Ae_(t_s)Aaqq*aqwz (z,2%) dsdz+
0 =z

t t
"o "o
+ / A =9294" = 94 g / Ao-(t-9)aP(5) (" —0q) .
0 C]* 0 q*
¢ 5
_ / A=A F (s5)ds = 3 Gu(t)
0 k=1

is obtained. Here,

Gi(t) = Ac ™y,

q*

t ot
://A ~(1-9494" _qu (z,2") dsdz,
0

z
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t
"o
Gs(t) = /Ae_(t_s)Aaqq*aq<P(x*)d37
0

t
"o
Gu(t) = _/Ae—(t—s)Ap(s) (G;I* U(J)ds’

¢
—/Ae_(t_s)Af (s)ds
0

It is very well known that, from the fact that the operators R, exp {—AA} and A commute, it follows
that [36]

18| g0 < IBllpor- (12)

Now, let us estimate G (t) for any k = 1,2,3,4,5 separately. Applying the definition of norm
of the spaces F, and (12), we get

16101, = [Ae™¢llg, < e g, IAls, < lle” g g 11461IE, -

Using estimate (5), we get
1G1()]|g, < Mi|[Ael g, (13)

for any ¢, ¢t € [0, 7. Let us estimate G(t)

t t
1G5, = / / Ae—t=A% =00, e s <
0 =z E,

<[

z

[e3

—(t— sAaq aq
q*

ds|w, (z,x2")|dz.
Eq

By equation (4), we have that

ds+

"
—(t—s)AQq — 0q
HA@ (424" — 4
E

q

t
ds — / HAe—(t—s)AaqH —oq
Eq q*

)\l—aAe—AAAe—(t—s)A (Lq// —0q

t
+ sup/ ‘ " ds.
A>0 q E
z
By the definition of norm of the spaces F,, we get
¢ !
/HAe(ts)Aaq —oq|l 4
q* E

z
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¢
!
:/(t )t (t—s)l_o‘Ae_(t_S)Aiaq — 99 gs <
q* E o
z
¢ ! !
</(t_s)o¢—1d aq” —oq T |lag" —oq| _
B q* Ea @ q* Fa
z
- M2 (av ag, O[7$*,q,T) .
Using estimate (6), we can obtain that
¢ /"
/ ‘ N0 g gm0t — oty
z q E
! 22 a)\l « by A
AT +t—s , _At=s,
< / 5—ds 5 Ae” 2 X
) A+t—s) E—E
ANt — -« Aft— "
x H +8> ac sl —oa|
4 E
t
< My (a) || 2 =21 %4 / _d5<
A+t—s)"¢
con | (Y
- ¢ e, \QA—a)(A+t—z)

for any A > 0. Then,

"o
sup/ ‘ AlfO‘Aef)‘AAef(tfs)AL*gq ds <
A>0 J q E
q —oq 1 x
§M3 :M4 a,o,0,r ,q).
@ | ey = )
Then, we get
t
"o
/' Aef(tfs)AL*aq ds < M5 (a,0,a,2%,q,T) (14)
q E.
z
forany s, 0 < 2z < s <t and
1G2(t)]| g, < M (a, U,Oé,fﬂ*,q,T)/\wz (z,27)| dz. (15)
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G3(t) is estimated as follows:

t
"o
IG3(t))| . = /Ae—(t—s)A‘Mgp(x*)ds <
0

q*
Eq
¢ /!
< /Ae_(t_S)Aaq:qus lp ()] .
0 ! Eq

Since

o (@) <llellg < lelle, <MlAelg,
and using estimate (14) and choosing z = 0, we obtain

HG3(t)HEa < My (CL, U’aa$*7Q7T) ||A(10”Ea (16)

for any ¢ € [0, 7.
By estimate (14), the estimation of G4(t) is as follows:

t

"o_
IGaOl, = | [ 4e 09— as| - <
0 9 E,

t
7

—(t—s)A%q — 04q

</HA€ e 7(1* o dSHPHc[o,T] <

< Mg (a,0,a,2%,q,T) Hp”C[O,T] . (17)
Now, let us estimate G'5(¢). By the definition of the norm of the spaces E,, we get

t

1G5(0)]] 5, = / Ae— =941 (gyas| =

0 E.
t t
= /Ae_(t_s)Af (s)ds|| +sup Al ||Ade M / Ae= =941 (5) ds
0 - A>0 0 5

Using equation (4), we have that

o e
< [ (t=9""ds | flom. = — IFllomy < Ms (@) I fllom,) (18)

o _
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Now, we consider the second term. Using equation (4), we obtain

t
Ao Ae_’\A/Ae_(t_S)Af (s)ds|| <

0 E

0/t<ts+)\> <t—;+)\>_

t—s+ A\ t=s+A
(252 ac

t— A _t=stA
S+ Ae 7 A X

E—FE

X

t

t
u t—s+ A\ Ca t—s+ A\
< aon = [ (5552 g ds < amox = [ (S5ER) T as e,

0 0
for any A > 0. Then,

t

—a — —(t—s M 21 “

iup)\l Ae ’\A/Ae )Af (s)ds| < foil\f“c (o) = Mur (@) [[flloe,y - (19)
>0 J .

By estimates (18) and (19), we get

1G5, < Mz (@, T)|[fllem,) - (20)

Combining estimates (13), (15), (16), (17) and (20) we have

||wt||Ea < M1 ||A§0||Ea + M6 ((l,O‘, a>$*7Q>T) / |wz (Z,l‘*)| dz+

+M7 ((Z, g, Q, .%'*, q, T) HASDHEQ + MS (CL, g, Q, .I'*, q, T) HPHC[O,T} +
+ Mz (. ) | fllo(m.) -
Using integral inequality, we can write,

||thEa < eM@(a,U,a,:c*,q,T) Ml HAQDHEOC + M7 (CL, O-aavx*a%T) HAQOHEQ +

+M8 (av g, a,x*,q,T) HIOHC[O,T] + M12 (Oé,T) HfHC(Ea)

Then, the following theorem finishes the proof of Theorem 2.
1
Theorem 3 [37]. For 0 < a < 3 the norms of the spaces E, (C[0,1], A) and C**(0,1] are

equivalent.
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