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WEAKLY SS-QUASINORMAL MINIMAL SUBGROUPS
AND THE NILPOTENCY OF A FINITE GROUP*

CJIABKO S S-KBA3IHOPMAJIBHI MIHIMAJIBHI HIAT'PYIIN
TA HUIbIIOTEHTHICTh CKIHYEHHOI I'PYIIU

A subgroup H is said to be an s-permutable subgroup of a finite group G provided that H P = P H holds for every Sylow
subgroup P of G, and H is said to be SS-quasinormal in G if there is a supplement B of H to G such that H permutes
with every Sylow subgroup of B. We show that H is weakly S.S-quasinormal in G if there exists a normal subgroup 7’
of GG such that HT is s-permutable and H N T is SS-quasinormal in G. We investigate the influence of some weakly
S'S-quasinormal minimal subgroups on the nilpotency of a finite group GG. Numerous results known from the literature are
unified and generalized.

MMinrpyna H Ha3uMBa€ThCsl S-NEPECTaBHOIO MIATPYyHolo cKiHueHHO! rpymu G 3a ymoBH, mo HP = PH BuHKOHYyeTbCS
ULl KOXKHOI cuitoBebkoi miarpynu P rpymu G; H HasuBaeTbes SS-KBa3iHOpMalbHOK B (G, SIKIIO ICHYE JTOMOBHEHHS
B migrpynu H no G Take, mo H MOXHa MepecTaBUTH 3 KOXXHOI CHIIOBCHKOIO miarpymoto B. ITlokazano, mo H e
cinabko S.S-kBasiHopManbHOIO B (7, SKIIO iCHye HopMmaibHa minrpymna 7' rpymu G Taka, mo HT' € s-mepecraBHOIO, a
H NT e SS-xBazinopmanpHOio B . J[OCHIHKEHO BIUTUB ACSKHX clabko SS-KBa3iHOPMAJIbHUX MiHIMAJIbHHUX MiATPYI HA
HUIBIIOTEHTHICTB CKiHYeHHOT rpynu G. Benuky KiTbKiCTb BIIOMHX 3 JIITEpaTypH pe3ysbTaTiB yIOPSAKOBAHO Ta y3arajibHeHO.

1. Introduction. All groups considered in this paper will be finite and we use conventional notions
and notation, as in D. Gorenstein [7]. We use F to denote a formation, A/ and V,, denote the classes
of all nilpotent groups and p-nilpotent groups, respectively. G7 is the F-residual of G, that is,
G7 =n{N <G|G/N € F}. A normal subgroup N is said to be F-hypercentral in G, provided that
N has a chain of subgroups 1 = Ny < Ny <... < N, = N such that each N;11/N; is an F-central
chief factor of GG. The product of all F-hypercentral subgroups of G is again an F-hypercentral
subgroup of G, it is denoted by Zz(G) and called the F-hypercenter of G. For the formation N, we
use the notation Z (G) = Z(G), which is the hypercenter of G.

In the study of group theory, from the generalized normalities of some primary subgroups to
investigate the structures of a finite group is a common method. Recently, many new generalized
normal subgroups were introduced successively. Following Kegel [12], a subgroup H is said to be
s-permutable in G, if H is permutable with every Sylow subgroup P of G. As a development, in
[13] the authors introduced that: a subgroup H is called an S.S-quasinormal subgroup of G if there
is a supplement B of H to G such that H permutes with every Sylow subgroup of B. Recently, in
[8] Guo et al. introduced that: a subgroup H is said to be S-embedded in G if there exists a normal
subgroup N such that HN is s-permutable in G and H N N < Hyq, where Hyg is the largest s-
permutable subgroup of G contained H. This concept integrated both the s-permutability and another
related concept called c-normal subgroup, introduced by Wang in [18] and investigated extensively
by many scholars. By assuming that some primary subgroups of G satisfying the s-permutability,
S S-quasinormality or S-embedded properties, many interesting results have been derived (see, for
example, [1, 8, 9, 13, 14, 16]).

* This work was supported by the National Natural Science Foundation of China (Grant N. 11171243).

© T. ZHAO, X. ZHANG, 2014
ISSN 1027-3190. Ykp. mam. xcypu., 2014, m. 66, Ne 2 187



188 T. ZHAO, X. ZHANG

In order to unify and generalize the related results, in this paper, we introduce a new kind of
generalized normal subgroup which can generalize both the SS-quasinormality and the S-embedded
property (and so it contains the s-permutability and c-normality) properly.

Definition 1.1. Let H be a subgroup of a finite group G, then H is said to be weakly SS-quasi-
normal in G, if there exists a normal subgroup T of G such that HT is s-permutable and H N'T is
SS-quasinormal in G.

Remark 1.1. From the definition, it is easy to see that every S-embedded subgroup and SS-
quasinormal subgroup of G is weakly SS-quasinormal in G. In general, a weakly SS-quasinormal
subgroup of GG need not to be S-embedded or S'S-quasinormal in G. For instance, we let G = S5 be
the symmetric group of degree 5.

Example 1.1. Let H = Sy and P € Syl;(G). Since HP = PH = G, H is SS-quasinormal
and thus weakly SS-quasinormal in G. Since the only nontrivial normal subgroups of G are A5 and
G, but neither H nor H N A; = Ay is s-permutable in G, H is not S-embedded in G.

Example 1.2. Let K = ((12)) and T' = As. Since 7' I G is a complement of K, K is weakly
SS-quasinormal in G. Since the only supplement of K to G are As and G itself, but K ((12345)) #
# ((12345))K, K is not SS-quasinormal in G.

From some minimal subgroup’s normalities to characterize the structure of a finite group is an
active topic in the group theory. A number of meaningful results have been obtained under the
assumption that some minimal subgroups of GG are well located. For example, Buckley [3] and It6
(see [11], III, 5.3) have got some well-known results about the supersolublity and nilpotency of a
finite group, respectively. Since then, a series of papers have dealt with generalizations of the results
of Itd6 and Buckley by using the theory of formations and some generalized normal subgroups (see,
for example, [1, 2, 4, 10, 16]). In this paper, we investigate the influence of some weakly SS-qu-
asinormal minimal subgroups on the structures of a finite group G. Some new results about the
nilpotency of GG are obtained, we also generalized some known ones.

2. Preliminaries. In this section, we list some basic results which will be useful in the sequel.

Lemma 2.1. Let H be an s-permutable subgroup of G.

(1) If K <G, then HN K is s-permutable in K.

(2) If N <G, then HN/N is s-permutable in G/N.

(3) If H is a p-subgroup of G for some prime p, then Ng(H) > OP(G).

Proof. The proof of the statements can be seen in [12] and [5].

Lemma 2.2 ([13], Lemma 2.1). Suppose that H is SS-quasinormal in a group G.

(1) If H < K <G, then H is SS-quasinormal in K.

(2) If N <G, then HN/N is SS-quasinormal in G/N.

Lemma 2.3 ([13], Lemma 2.2). Let P be a p-subgroup of G, p a prime. Then P is s-permutable
in G if and only if P < O,(G) and P is SS-quasinormal in G.

Now, we can prove that:

Lemma 2.4. Suppose that H is weakly SS-quasinormal in a group G, N <G.

(1) If H < K <@, then H is weakly SS-quasinormal in K.

(2) If N < H, then H/N is weakly SS-quasinormal in G/N.

(3) Let 7 be a set of primes, H a ww-subgroup and N a normal w'-subgroup of G. Then HN/N
is weakly S S-quasinormal in G /N.
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4) If H < K G, then G has a normal subgroup L contained in K such that HL is s-
permutable and H N L is SS-quasinormal in G.

Proof. The statements (1), (2) and (4) can be deduced directly by Lemmas 2.1 and 2.2. Now
we prove the statement (3). By hypotheses, there exists a normal subgroup 7" of G such that HT is
s-permutable and H N T is SS-quasinormal in G. It is easy to see that TN/N < G/N, by Lemma
2.1(2) we know (HN/N)(T'N/N) = HT'N/N is s-permutable in G/N. Since H is a m-group and
N a 7'-group,

[H|-|TN|; _ |H]-|T]s
|[HTN |7 |HT 7

This implies that H N TN = H NT. Hence (HN/N)N (I'N/N) = (HN NTN)/N = (HnN
NTN)N/N = (HNT)N/N, which is SS-quasinormal in G/N by Lemma 2.2(2). Thus HN/N is
weakly SS-quasinormal in G/N, as required.

Lemma 2.4 is proved.

The following results is well known, one can see [21] (Lemma 2.2) for example.

Lemma 2.5. Let G be a group and p a prime divisor of |G| with (|G|,p — 1) = 1.

(1) If N is normal in G of order p, then N lies in Z(G).

(2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent.

(3) If M is a subgroup of G with index p, then M is normal in G.

Lemma 2.6. Let F be a saturated formation containing the classes of all nilpotent groups N,
H a normal subgroup of G. If G/H € F and H < Z(G), then G € F.

Proof. Let f and F be the canonical definitions of A/ and F, respectively. Pick an chief factor
M/N of G contained in H, then M/N is a p-group for some prime p. Since M < H < Z(G),
M/N < Z(G/N). Thus G/Ce(M/N) = 1 € f(p). Since N C F, f(p) € F(p) by [6](V,
Proposition 3.11). It follows that G/Cq(M/N) € F(p). The arbitrary choice of M /N implies that
there exists a normal chain of GG contained in H such that every G-chief factor is F-central. Since
G/H € F, it follows that G € F.

Lemma 2.7 ([16], Lemma 2.8). Suppose that P is a normal p-subgroup of G contained in
Z(G), then Ce(P) > OP(Q).

Lemma 2.8 ([11], X. 13). Let F*(G) be the generalized Fitting subgroup of G.

(1) If M is a normal subgroup of G, then F*(M) < F*(QG).

(2) F*(G) # 1,if G # 1; in fact, F*(G)/F(G) = Soc(F(G)Cq(F(Q))/F(Q)).

(3) F*(F*(GQ)) = F*(G) > F(G), if F*(G) is soluble, then F*(G) = F(G).

4 If K < Z(Q), then F*(G/K) = F*(G)/K.

3. Main results.

Theorem 3.1. Suppose that p is a prime divisor of a group G with (|G|,p—1) = 1, P € Syl (G).
If every cyclic subgroup of P N G™Nv with prime order or order 4 (if p = 2 and P is non-abelian) not
having a p-nilpotent supplement in G is weakly SS-quasinormal in G, then G is a p-nilpotent group.

Proof. Suppose that the result is false and let G be a counterexample of minimal order. Then we
have

(1) Every proper subgroup of G is p-nilpotent, GNe = P is not a cyclic group.

Let M be a proper subgroup of G. Since M/(MNGN?) = MGNe JGNr < G/GVr is p-nilpotent,
MNe < M N GNe. Now, let M, be a Sylow p-subgroup of M. Without loss of generality, we may
assume that M, < P and so M, "M No < PAGMs. By Lemma 2.4, we know every cyclic subgroup
of M, N M N with prime order or order 4 (if p = 2 and M), is non-abelian) not having a p-nilpotent
supplement in M is weakly S.S-quasinormal in M. Thus M satisfies the hypotheses of the theorem.

|[HNTN| = =|HNT]|.
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The minimal choice of G implies that M is p-nilpotent and so G is a minimal non-p-nilpotent group.
By [11](IV, Theorem 5.4), G' has a normal Sylow p-subgroup P and a non-normal cyclic Sylow
g-subgroup @ such that G = PQ; P/®(P) is a minimal normal subgroup of G/®(P). Moreover, P
is of exponent p if p > 2 and exponent at most 4 if p = 2. On the other hand, the minimal choice of
G implies that GN» = P. By Lemma 2.5, we may also assume that P is not cyclic.

(2) Some minimal subgroup X /®(P) of P/®(P) is not s-permutable in G/ ®(P).

If every minimal subgroup of P/®(P) is s-permutable in G/®(P), then by [17] (Lemma 2.11)
we know P/®(P) has a maximal subgroup which is normal in G/®(P). Since P/®(P) is a chief
factor of G, |P/®(P)| = p and so P is cyclic, this contradicts with (1). Thus there exists some
minimal subgroup X/®(P) of P/®(P) such that X/®(P) is not s-permutable in G/P(P).

(3) (z) is weakly SS-quasinormal in G for any v € X\®(P).

Let z € X\®(P), then by (1) we know (z) is a cyclic group of order p or 4. Let 1" be any
supplement of (x) in G, then G = ()T and P = PN (z)T = (x)(PNT). Since P/®(P) is abelian,
(PNT)®(P)/®(P)<G/®(P) and hence (PNT)P(P)<G. Thus PNT < &(P) or PNT = P, as
P/®(P) is a chief factor of G. If PNT < ®(P) for some supplement 7" of (z) in G, then P = (x)
is cyclic, this contradicts with (1). Now assume that P NT = P for any supplement 7. Then T’ = G
is the unique supplement of () in G. Since G is not p-nilpotent, (z) is weakly SS-quasinormal in
G by the hypotheses.

(4) The final contradiction.

By (3) and Lemma 2.4(4), there exists a normal subgroup K of G contained in P such that (z) K
is s-permutable and (z) N K is SS-quasinormal in G. Since (x) N K < P = Op(G), (z) N K is
s-permutable in G by Lemma 2.3. Since P/®(P) is a chief factor of G, K < ®(P) or K = P.
If K < ®(P), then X/®(P) = (x) K®(P)/®(P) is s-permutable in G/P(P), a contradiction. If
K = P, then (z) = (z)N K is s-permutable in G and so X/®(P) = (z)P(P)/P(P) is s-permutable
in G/®(P), a contradiction too.

Theorem 3.1 is proved.

Next, by assuming that some minimal subgroups lie in the hypercenter of G and some cyclic
subgroups of order 4 having the weakly S S-quasinormal properties, we give out some criteria about
the nilpotency of a group G.

Theorem 3.2. Let E be a normal subgroup of G such that G/ E is nilpotent. If every minimal
subgroup of E is contained in Z~(G) and every cyclic subgroup of E with order 4 is weakly
SS-quasinormal in G or also lies in Z(G), then G is nilpotent.

Proof. Suppose that the result is false and let G be a counterexample of minimal order. Then we
have

(1) Every proper subgroup of G is nilpotent.

Let K be an arbitrary proper subgroup of G. Since G/E is nilpotent, K/K N E = KE/E is
nilpotent. Let H be a minimal subgroup of K N E, then H < Z,(G)N K < Z(K). For any cyclic
subgroup U of K N E of order 4, by hypotheses U is weakly SS-quasinormal in G or lies in Z (G).
Then by Lemma 2.4, U is weakly SS-quasinormal in K or lies in Z(G) N K < Zy(K). Thus
(K, KNFE) satisfies the hypotheses of the theorem in any case. The minimal choice of G implies that
K is nilpotent, thus GG is a minimal non-nilpotent group. By [11] (II, Theorem 5.2), we can deduce
that G = PQ), where P is a normal Sylow p-subgroup and () a non-normal cyclic Sylow g-subgroup
of G; P/®(P) is a chief factor of G; exp(P) = p or 4.

(2) p =2, exp(P) = 4 and every cyclic subgroup of P < E with order 4 is weakly SS-quasi-
normal in G.
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Since G/E is nilpotent and G/PNE < G/P x G/E, G/P N E is nilpotent. If P £ E, then
PNE < Pand Q(PNE) < G. Thus Q(PNE) is nilpotent by (1), then Q(PNE) =Q x (PNE)
and @ char Q(P N E). On the other hand, G/PNE = P/PNE x Q(PNE)/PNE, it follows that
Q(PNE)/PNE<LG/PNE and Q(PNE)<G. Therefore, Q <G and G = P x (), a contradiction.
Thus we have P < E. Since P is a normal Sylow p-subgroup of G, all elements of order p or 4 (if
p = 2) of G are contained in P and so contained in E. If p > 2 or p = 2 and every cyclic subgroup
of P with order 4 lies in Z(G), then by (1) and hypotheses, P < Z,,(G). Therefore, Lemma 2.7
implies that G = PQ = P x () is nilpotent, a contradiction. Thus by hypotheses, we know that (2)
holds.

(3) Every x € P\®(P) is weakly SS-quasinormal in G.

If there exists some x € P\®(P) such that o(x) = 2, we denote M = (2)¢ < P, then
M®(P)/®(P)<G/®(P). Since P/®(P) is a minimal normal subgroup of G/®(P) and M ¢ ®(P),
P =M®(P) =M < Zy(G). Therefore, Lemma 2.7 implies that G = PQ = P x (@ is nilpotent, a
contradiction. Thus every x € P\®(P) is of order 4. By (2), we know (x) is weakly S.S-quasinormal
in G.

(4) Some minimal subgroup of P/®(P) is not s-permutable in G /®(P).

If every minimal subgroup of P/®(P) is s-permutable in G/®(P), then by [17](Lemma 2.11)
we know P/®(P) has a maximal subgroup which is normal in G/®(P). Since P/®(P) is a chief
factor of G, |P/®(P)| = p. Since exp(P) = 4, P is a cyclic group of order 4. Then Lemma 2.5
implies that () < G and so G is nilpotent, a contradiction. Thus some minimal subgroup X/®(P) of
P/®(P) is not s-permutable in G/P(P).

(5) The final contradiction.

Let x € X\®(P), then by (3) we know that x is of order 4 and (z) is weakly S.S-quasinormal in
G. Thus there exists a normal subgroup K of G contained in P such that (z) K is s-permutable and
(x) N K is SS-quasinormal in G. Since (z) N K < P = O,(G), by Lemma 2.3 we know (z) N K
is s-permutable in G. Since P/®(P) is a chief factor of G, K < ®(P) or K = P. If K < ®(P),
then X/®(P) = (z) K®(P)/®(P) is s-permutable in G/P(P), a contradiction. If K = P, then
(x) = (x) N K is s-permutable in G and so X/®(P) = (x)®(P)/P(P) is s-permutable in G/®(P),
a contradiction too.

Theorem 3.2 is proved.

Now, we can prove that:

Theorem 3.3. Let F be a saturated formation containing N'. If every minimal subgroup of G
lies in the F-hypercenter Zx(G) of G, then G € F if and only if every cyclic subgroup of G” with
order 4 is weakly SS-quasinormal in G.

Proof. The necessity is obvious, we need to prove only the sufficiency.

Let (x) be a minimal subgroup of G7, then (z) < Z#(G) NG which is contained in Z(G”) by
[6](IV, 6.10). From Lemma 2.4, we know that every cyclic subgroup of G with order 4 is weakly
S S-quasinormal in G7. Theorem 3.2 implies that G is nilpotent and so it is soluble. If G¥ < ®(G),
then G/®(G) € F, hence G € F. Thus we may assume that there exists a maximal subgroup M of
G such that G = MGY = MF(G). By [6](1V, 1.17), we know M7 < G7. Hence every minimal
subgroup of M7 is contained in Zr(G) N M < Zz(M). By Lemma 2.4, every cyclic subgroup of
M7 with order 4 is SS-quasinormal in M. Therefore, M satisfies the hypotheses of the theorem.
Then M € F by induction. From [1](Theorem 1 and Proposition 1), we know G” is a p-group
for some prime p ; G7 /®(G7) is a minimal normal subgroup of G/®(G7); G has exponent p if
p > 2 and exponent at most 4 if p = 2.
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If exp(G7) = p, then G7 = Q1(G7) < Zr(G) by the hypotheses, this would imply that
G € F. Thus we may assume that p = 2 and exp(G7) = 4. If there exists some z € G7\®(G7)
such that o(x) = 2, denote H = ()%, then H <G and H < Q1(G”7) < Z#(G). On the other
hand, G¥ = H®(G”) = H as G7 /®(G’) is a minimal normal subgroup of G/®(G7). In this
case, G € F. Next we assume that every x € G7\®(G7) is of order 4, and so by hypotheses () is
weakly SS-quasinormal in G. Let X/®(G7) be an arbitrary minimal subgroup of G¥ /®(G7) and
r € X\®(G7). Then there exists a normal subgroup K of G contained in G such that (z)K is
s-permutable and (x) N K is SS-quasinormal in G. Since (z) N K < G¥ < 05(Q), (x) N K is s-
permutable in G by Lemma 2.3. Since G /®(G7) is a chief factor of G, K < ®(G7) or K = G7.
If K < ®(G7), then X/®(GT) = () K®(GT)/®(G7) is s-permutable in G/®(G7). If K = G7,
then (z) = (z)N K is s-permutable in G and we also deduce that X/®(G7) = (2)®(G7)/®(G7) is
s-permutable in G//®(G7). This means that every minimal subgroup of G /®(G7) is s-permutable
in G/®(G7). Then by [17] (Lemma 2.11) we know G7 /®(G7) has a maximal subgroup which is
normal in G/®(G7). Since G¥ /®(G7) is a chief factor of G, |G7 /®(G”)| = 2. By Lemma 2.5,
we know G7 /®(G7) < Z(G/®(G7)). Since (G/®(GT))/(GT /®(GT)) = G/GT € F, Lemma
2.6 implies that G/®(G7) € F. Since ®(G7) < ®(G) and F is an saturated formation, G € F, as
desired.

Theorem 3.3 is proved.

Theorem 3.4. A group G is nilpotent if and only if every minimal subgroup ofF*(GN) lies in
Zso(@) and every cyclic subgroup of F*(GN) with order 4 is weakly SS-quasinormal in G.

Proof. The necessity is obvious, we need to prove only the sufficiency. Suppose that the result is
false and let G be a counterexample of minimal order. Then

(1) Every proper normal subgroup of G is nilpotent.

Let M be a proper normal subgroup of G. Since M/(M N GN) = MGV /GN < G/GN is
nilpotent and M <M NGV <GV, Lemma 2.8 implies that F*(MN) < F*(MNGV) < F*(GV).
Moreover, M N Zs(G) < Zso(M). Now we can see easily that M satisfies the hypotheses of the
theorem. The minimal choice of G implies that M is nilpotent.

(2) F(QG) is the unique maximal normal subgroup of G.

Let M be a maximal normal subgroup of GG, then M is nilpotent by (1). Since the classes of all
nilpotent groups formed a Fitting class, the nilpotency of M implies that M = F(G) is the unique
maximal normal subgroup of G.

(3) GN =G =G and F*(G) = F(G) < G.

If GN < G, then GV is nilpotent by (1). Thus, F*(GV) = GV by Lemma 2.8. Now Theorem
3.2 implies immediately that G is nilpotent, a contradiction. Hence, we must have GV = G. Since
GN < @, it follows that G/ = G. Hence G/F(G) cannot be cyclic of prime order. Thus G/F(G)
is a non-abelian simple group. If F(G) < F*(G), then F*(GV) = F*(G) = G by (2). Again by
Theorem 3.2, we can deduce that G is nilpotent, which is a contradiction.

(4) The final contradiction.

Since F(G) = F*(G) # 1, we may choose the smallest prime divisor p of |F'(G)| such that
Op(G) # 1. Then for any Sylow g-subgroup @ of G (¢ # p), we consider the subgroup Gy =
= 0,(G)Q. Tt is clear that G < 0,(G) and Go N Zoo(G) < Zoo(Go). Hence, every minimal
subgroup of G{}f lies in Zo(Gy) and every cyclic subgroup of G{)\[ with order 4 is weakly S.S-
quasinormal in Gg. By Theorem 3.2, we know G is nilpotent. Hence, Go = O,(G) x @ and
Q < Cq(Oy(G)). Consequently, G/Cq(Op(G)) is a p-group. Thus we have C(O,(G)) = G by (3),
namely O,(G) < Z(G). Now we consider the factor group G = G/O,(G). First we have F*(G) =
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= F*(G)/0,(G) by Lemma 2.8(4). Besides that, for any element Z of odd prime order in F*(G),
since O, (@) is the Sylow p-subgroup of F*(G), T can be viewed as the image of an element z of odd
prime order in F*(G). It follows that x lies in Z5(G) and T lies in Zoo(G), as Zoo(G/0,(G)) =
= Z(G)/0,(G). This shows that G satisfies the hypotheses of the theorem. By the minimal choice
of G, we can conclude that G is nilpotent and so is G.

Theorem 3.4 is proved.

Now, we can get a more precise result:

Theorem 3.5. Let F be a saturated formation containing N'. Then G € F if and only if every
minimal subgroup of F*(G”) lies in Zx(G) and every cyclic subgroup of F*(G”) with order 4 is
weakly SS-quasinormal in G.

Proof. Only the sufficiency needs to be verified. By [6](IV, 6.10), G¥' N Zx(G) < Z(GT) <
< Zoo(G7). Consequently, every minimal subgroup of F*(G7) is contained in Z..(G”). By the hy-
potheses and Lemma 2.4, every cyclic subgroup of F*(G7) with order 4 is weakly S.S-quasinormal
in G7. By Theorem 3.4, we see that G7 is nilpotent and so F*(G7) = G7. Now by Theorem 3.3,
we can deduce that G € F, as required.

Theorem 3.5 is proved.

4. Applications. Since all normal, quasinormal, s-permutable, c-normal, S.S-quasinormal, nearly
s-normal [19] and S-embedded subgroups of G are weakly S.S-quasinormal in GG, our results have
many meaningful corollaries. Here, we list some of them.

Corollary 4.1 (see [20]). G is 2-nilpotent if every cyclic subgroup of G with order 2 or order 4
is c-normal in G.

Corollary 4.2.  Let p be a prime divisor of G with (|G|,p — 1) = 1, P € Syl (G). If every
cyclic subgroup of P N GMNo with prime order or order 4 (if p = 2 and P is non-abelian) not having
a p-nilpotent supplement in G is SS-quasinormal (nearly s-normal, S-embedded) in G, then G is a
p-nilpotent group.

Corollary 4.3 (see [2]). Let F be a saturated formation such that N C F. Let G be a group
such that every element of G of order 4 is c-normal in G. Then G belongs to F if and only if (x)
lies in the F-hypercenter Zr(G) of G for every element x € G of order 2.

Corollary 4.4 (see [15]). Let F be a saturated formation containing N and let G be a group.
Then G € F if and only if G” is solvable and every element of order 4 of F(G”) is c-normal in G
and x lies in the F-hypercenter Zx(G) of G for every element x of prime order of F(G”).

Corollary 4.5 (see [16]). Suppose N is a normal subgroup of a group G such that G/N is
nilpotent. Suppose every minimal subgroup of N is contained in Z~(G), every cyclic subgroup of
order 4 of N is s-permutable in G or lies also in Z(G), then G is nilpotent.

Corollary 4.6 (see [14]). Let F be a saturated formation such that N C F, and let G be a
group. Every cyclic subgroup of order 4 of G (or F*(G”)) is SS-quasinormal in G. Then G
belongs to F if and only if every subgroup of prime order of G¥ (or F*(G”)) lies in the F-
hypercenter Zx(G) of G.

Corollary 4.7. Let F be a saturated formation containing N. Then G € F if and only if every
minimal subgroup of F*(G”) lies in Zx(G) and every cyclic subgroup of F*(G”) with order 4 is
nearly s-normal or S-embedded in G.
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