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GENERALIZED BOMBIERI – LAGARIAS’ THEOREM AND GENERALIZED  
LI’S CRITERION WITH ITS ARITHMETIC INTERPRETATION  

УЗАГАЛЬНЕНА ТЕОРЕМА БОМБІЄРІ – ЛАГАРІАСА ТА УЗАГАЛЬНЕНИЙ 
КРИТЕРІЙ ЛІ ЗІ СВОЄЮ АРИФМЕТИЧНОЮ ІНТЕРПРЕТАЦІЄЮ 

We show that Li’s criterion equivalent to the Riemann hypothesis, viz. the statement that the sums  kn =  
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)   over Riemann xi-function zeroes and derivatives !n "

1
(n #1)!

dn

dzn
(zn#1 ln ($(z)))

z=1
, where  

n = 1, 2, 3,… ,  are nonnegative if and only if the Riemann hypothesis is true, can be generalized and the nonnegativity of 
certain derivatives of the Riemann xi-function estimated at an arbitrary real point  a ,  except  a = 1/2 ,  can be used as a 

criterion equivalent to the Riemann hypothesis.  Namely, we demonstrate that the sums  kn,a  = !" 1#
" # a

" + a #1
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)   for 

any real  a   and any  a < 1/2   are nonnegative if and only if the Riemann hypothesis is true (correspondingly, the same 
derivatives with  a > 1/2   should be nonpositive).  The arithmetic interpretation of the generalized Li’s criterion is given.  
Similarly to Li’s criterion, the theorem of Bombieri and Lagarias applied to certain multisets of complex numbers is also 
generalized along the same lines. 

Показано, що критерій Лі є еквівалентним гіпотезі Рімана, тобто твердження, що суми  kn =  !" 1# 1# 1
"
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(
)   по 

нулях ріманової хі-функції та похідні  !n "
1

(n #1)!
dn

dzn
(zn#1 ln ($(z)))

z=1
,  де  n = 1, 2, 3,… ,  є невід’ємними тоді і 

тільки тоді, коли справедлива гіпотеза Рімана, може бути узагальнене, а невід’ємність деяких похідних ріманової хі-
функції, що оцінюються у довільній точці  a ,  крім  a = 1/2 ,  може бути застосована, як критерій, еквівалентний 

гіпотезі Рімана.  А саме, показано, що суми  kn,a  = !" 1#
" # a

" + a #1
$
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(
)   для будь-яких дійсних  a   та будь-яких  

a < 1/2   є невід’ємними тоді і тільки тоді, коли справедлива гіпотеза Рімана (відповідно такі ж похідні з  a > 1/2   
повинні бути недодатніми).  Наведено арифметичну інтерпретацію узагальненого критерію Лі.  Подібно до критерію 
Лі теорема Бомбієрі та Лагаріаса, у застосуванні до деяких мультимножин комплексних чисел, також може бути 
узагальнена аналогічним чином. 

1.  Introduction.  In 1997, Li has established the following criterion equivalent to the Riemann hy-
pothesis concerning nontrivial zeroes of the Riemann  ! -function  (see, e.g., [1] for standard defini-
tions and discussion of the general properties of this function) and now bearing his name (Li’s crite-
rion) [2]: 

Li’s criterion.  Riemann hypothesis is equivalent to the nonnegativity of the following numbers: 

 !n " 1
(n #1)!

dn

dzn
zn#1 ln ($(z))

z=1( )  (1) 

for any nonnegative integer  n .   



372 S. K. SEKATSKII 

ISSN 1027-3190.  Укр. мат. журн., 2014, т. 66, № 3 

Here  !(z)   is the Riemann xi-function related with the Riemann  ! -function  by the well-
known relation [1] 

 !(z) = 1
2
z(z "1)#"z /2$(z/2)%(z) . (2) 

Two years later, Bombieri and Lagarias generalized Li’s criterion [3].  If  ! = 1/2 + iT ,  T   real 

and  i = !1 ,  than   (! "1)/! = 1  and hence can be written as  exp (i!i ) ,  where !i =  

= arctan T
T 2 !1/4

.  Let us introduce the sum  kn = !" 1# 1# 1
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  over 

nontrivial Riemann function zeroes  ( n   is nonnegative integer, zeroes are counting taking into ac-
count their multiplicity, for  n = 1   contributions of complex conjugate zeroes should be paired 
when summing).   For two complex conjugate “correct” Riemann function zeroes  ! = 1/2 ± iT   we 
easily see that their contribution to sum  kn   is  2(1! cos (n"i )) ,  and hence nonnegative; corre-
spondingly, the sum  kn   is also nonnegative.  Quite the contrary, if some nontrivial Riemann func-
tion zero with  Re ! " 1/2   exists, for large enough  n   we will have an arbitrary large (by module) 
negative contributions from these zeroes, and it is straightforward to show that for infinitely many  
n   this contribution can not be compensated by all other “correct”  1! cos (n"i )   terms of the sum 
[3], whence infinitely many sums  kn   are to be negative.   

This consideration immediately shows that the nonnegativity of the sums  kn   is equivalent to 
the Riemann hypothesis.  Li also demonstrated that these sums are equal to derivatives presented in 
eq. (1) (certainly, this is the most technically difficult part of his work; another derivation of this re-
lation will be given shortly below).   

2.  Generalized Li’s and Bombieri – Lagarias’ criteria.  Now we note that for  ! = 1/2 + iT   

and any real  a ! " a
! + a "1

= " a +1/2 + iT
a "1/2 + iT

= 1   and introduce the sum   

 kn,a = 1! " ! a
" + a !1

#
$%

&
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) = 1! 1! 2a !1
" + a !1

#
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&
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) . 

To demonstrate that on RH all these sums are nonnegative, just replace  !i = arctan
T

T 2 "1/4
  given 

above by  !i = arctan
T (2a "1)

T 2 " a2 + a "1/4
  and repeat all the abovesaid.  To demonstrate the inverse 

implication, let us briefly reproduce a slightly modified argument of Bomberi and Lagarias [3]; see 
their original paper for some more details. 

 Let  a < 1/2 .  We observe that for any Riemann zero  ! = " + iT ,  ! " a
! + a "1

2
 = 

= 1+ (1! 2a)(2" !1)
# + a !1 2

,  and thus if  ! > 1/2   we may find at least one zero for which  
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! " a
! + a "1

> 1 .  Because  (1! 2a)(2" !1)
# + a !1 2

  tends to zero when  !k   tends to infinity, maximum of 

this expression over  !   is achieved and there are only finitely many, say  K ,  zeroes  !k   for which  

! " a
! + a "1

= 1+ t = max ,  for all others  ! " a
! + a "1

# 1+ t " $   for some fixed positive  ! .  Clearly, 

taking  n   large enough, the term  1! "k ! a
"k + a !1

#
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n

= 1! (1+ t)n exp (in)k )   !k
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  is an argument 

of  !k " a
!k + a "1

#
$%

&
'(
&
'(

  can be made very large by module and negative.  Then, due to the Dirichlet’s 

theorem on simultaneous Diophantine approximation, the sum of  1! "k ! a
"k + a !1

#
$%

&
'(
n

  over all  !k   

can be made arbitrary close to  K (1! (1+ t)n )   while the sum over all other zeroes is of the order of  

O(n2(1+ t ! ")n ) ,  just due to their known density.  The case  a > 1/2   is quite similar, so we have 
proven the following theorem. 

 Theorem 1.   Riemann hypothesis is equivalent to the nonnegativity of sums 

 kn,a = 1! " ! a
" + a !1
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taken over the Riemann xi-function zeroes for any real  a ,  except  a = 1/2 .  Here  n   is nonnega-
tive integer, zeroes are counting taking into account their multiplicity, for  n = 1   contributions of 
complex conjugate zeroes should be paired when summing. 

Indeed, we proved this statement not only for the Riemann  ! -function zeroes but for certain 
multisets of complex numbers, see [3].  For completeness, here we formulate this result as a follow-
ing theorem. 

Theorem 2 (Generalized Bombieri – Lagarias’ theorem).  Let  a   and  !   are arbitrary real 
numbers,  a < ! ,  and  R   be a multiset of complex numbers  !   such that 

(i)  2! " a #R ; 

(ii)  1+ Re !( )/(1+ ! + a " 2# 2 )
!$ < +% . 

Then the following conditions are equivalent: 
(a)  Re ! " #   for every  ! ; 

(b)  Re 1! " ! a
" ! 2# + a

$
%&

'
()
n$

%
&

'

(
)"* + 0    for  n = 1, 2, 3,… ; 

(c)  for every fixed  ! > 0   there is a positive constant  c(!)   such that  

Re 1! " ! a
" ! 2# + a

$
%&

'
()
n$

%
&

'

(
)"* + ! c(,)e,n ,  n = 1, 2, 3,… . 
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If at the same conditions  a > !   is taken, the point (a) is to be changed to 
(a′)  Re ! " #   for every  ! , 

points (b), (c) remain unchanged.   
As you see, the statement of Theorem 2 is formulated for any  ! ,  not only for  ! = 1/2 ,  pro-

vided  ! " a .  To demonstrate this, just note that for  ! = " + iT ,  ! " a
! + a " 2#

= # " a + iT
a " # + iT

= 1   

and for  ! = q + iT ,  ! " a
! + a " 2#

2

= 1+ 4(# " a)(q " #)
! + a " 2# 2 ,  and then repeat all the abovesaid.   

If, additionally to the aforementioned conditions of the generalized Bombieri – Lagarais’ theo-
rem, also the following takes place: 

(iii)  If  ! "R ,  than  ! "R   with the same multiplicity as  ! ,  one can omit the operation of 
taking the real part in (b), (c), the expressions at question are real.  (Here, as usual,  !   means a 
complex conjugate of  ! .) 

Following again the paper of Bombieri and Lagarais [3], we conclude this section with the fol-
lowing theorem. 

Theorem 3 (Generalized Li’s criterion).  Let a is an arbitrary real number,  a ! " ,  and  R   
be a multiset of complex numbers  !   such that 

(i)  2! " a #R ,  a !R ; 

(ii)  1+ Re !( )/ 1+ ! + a " 2# 2( )!$ < +% ,  1+ Re !( )/ 1+ ! " a 2( )!# < + $ ; 

(iii)  if  ! "R ,  than  2! " # $R . 
Then the following conditions are equivalent: 
(a)  Re ! = "  for every  ! ; 

(b)  Re 1! " ! a
" + a ! 2#

$
%&

'
()
n$

%
&

'

(
)"* + 0   for any  a   and  n = 1, 2, 3,… ; 

(c)  for every fixed  ! > 0   and any  a   there is a positive constant  c(!, a)   such that  

Re 1! " ! a
" + a ! 2#

$
%&

'
()
n$

%
&

'

(
)"* + ! c(,, a)e,n ,  for  n = 1, 2, 3,… . 

For clearly, in the conditions of the theorem we for all  !   have  Re ! " #   and  Re (2! " #)  ≤ 
≤ ! ,  whence  Re ! = " .  If, additionally to the aforementioned conditions of the generalized Li’s 
criterion, also the following takes place: 

(iv)  If  ! "R ,  than complex conjugate  ! "R   with the same multiplicity as  ! , 
one can omit the operation of taking the real part in (b), (c), the expressions at question are real. 

Remark 1.  Similarly to the Li’s criterion, generalized Li’s criterion can be applied also to nu-
merous other zeta-functions, as this was shown first by Li himself for Dedekind zeta-function [2], 
and afterwards was the subject of a number of sequel papers by other authors.  We will not pursue 
this line of researches here.   

3.  Connection between generalized Li’s sums and certain derivatives of Riemann xi-
function.  Our next aim is to establish relation “of the Li’s type” similar to eq. (1), viz.  the relation 
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between sums  kn,a   and certain derivatives of the Riemann xi-function.  For this we will use the 
generalized Littlewood theorem concerning contour integrals of logarithm of an analytical function, 
recently used by us to establish numerous equalities equivalent to the Riemann hypothesis [4], which 
for completeness we reproduce below.  The proof [4] is a straightforward modification of familiar 
and well known corresponding Littlewood theorem (or lemma) proof (see, e.g., [5]).  Actually, this 
theorem has been more or less explicitly used in Riemann researches already by Wang who in 1946 
established the first integral equality equivalent to the Riemann hypothesis [6]. 

Theorem 4 (Generalized Littlewood theorem).  Let  C   denotes the rectangle bounded by the 
lines  x = X1 ,  x = X2 ,  y = Y1 ,  y = Y2 ,  where  X1 < X2 ,  Y1 < Y2   and let  f (z)   be analytic and 
nonzero on  C   and meromorphic inside it, let also  g(z)   is analytic on  C   and meromorphic in-
side it.  Let  F(z) = ln ( f (z)) ,  the logarithm being defined as follows: we start with a particular de-
termination on  x = X2 ,  and obtain the value at other points by continuous variation along  
y = const   from  ln (X2 + iy) .  If, however, this path would cross a zero or pole of  f (z) ,  we take  
F(z)   to be  F(z ± i0)   according as we approach the path from above or below.  Let also the poles 
and zeroes of the functions  f (z) ,  g(z)   do not coincide. 

Then 

 F(z)g(z)dz
C
! = 2"i res (g(#g ) $F(#g )

#g
% ) & g(z)dz

X1+iY#0

X#
0+iY#0

!
# f0
% + g(z)dz

X1+iY#pol

X#
pol+iY#pol

!
# f
pol
%

'

(
)
)

*

+
,
,

, 

where the sum is over all  !g   which are poles of the function  g(z)   lying inside  C ,  all  ! f
0  = 

= X!
0 + iY!0   which are zeroes of the function  f (z)   counted taking into account their multiplicities 

(that is the corresponding term is multiplied by  m   for a zero of the order  m )  and which lie inside  
C ,  and all ! f

pol = X!
pol + iY!pol   which are poles of the function  f (z)   counted taking into account 

their multiplicities and which lie inside  C .  For this is true all relevant integrals in the right-hand 
side of the equality should exist. 

Remark 2.  Actually, the case of the coincidence of poles and zeroes of the functions  f (z) ,  
g(z)   often does not pose real problems and can be easily considered.  We have dealt with a few 
such cases before [4]. 

The subtle moment related with this generalized Littlewood theorem is the circumstance that the 
function  arg (F(z))   (imaginary part of the  ln ( f (z))   is not continuous on the left border of the 
contour (segment  X1 + iY1 ,  X1 + iY2 )  if there are zeroes or poles of the function  f (z)   inside the 
contour.  This is explicitly stated in the theorem condition:  If, however, this path would cross a zero 
or pole of  f (z) ,  we take  F(z)   to be  F(z ± i0)   according as we approach the path from above 
or below.  In practice, this means that when calculating the corresponding part of the contour inte-

gral, viz. the integral  ! arg (F(z))g(z)dz
X1+iY1

X1+iY2"   (minus sign comes from the necessity to round the 

contour counterclockwise),  ± 2!il   jumps should be added to an argument function at a point  
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X1 + iYz, p   whenever a zero or a pole of an order  l   of the function  f (z)   occurs somewhere at a 
point  X + iYz, p   inside the contour.  Corresponding integral should be properly modified if the use 
of a continuous argument branch is desirable.  See our paper [7] for details, we also would like to 
note that the appropriateness of the necessary modification of an argument has been numerically 
tested (and confirmed) by us for a number of integrals, e.g., for the integral 

 t arg (!(1 / 4 + it))
(1/16 + t 2 )2

dt
0

"

# = $ %! (1/2)
!(1/2)

& 9$ & $ 1
tk2 +1/4

'
()

*
+,-,.k>1/4, tk>0

/  

!
"#
similar  equality in the form 

 t arg (!(1 / 2 + it))
(1/16 + t 2 )2

dt
0

"

# = $ %! (3/4)
!(3/4)

& 32$
3

 

is equivalent to the Riemann hypothesis, our Theorem 5 from [4]!"# .  However, for what follows the 

asymptotic of the function  g(z)   for large values of  X1   tending to minus infinity makes this modi-

fication irrelevant, the value of the integral  ! arg (F(z))g(z)dz
X1+iY1

X1+iY2"   tends to zero anyway. 

 First, as an exercise, we use this theorem to establish the Li’s relation (1).  For this, let us con-
sider the rectangular contour  C   with vertices at  ±X ± iX   with real  X ! +" ,  if some Riemann 
zero occurs on the contour just shift it a bit to avoid this, and consider a contour integral 

g(z) ln (!(z))dz
C"  where 

 g(z) = n
(z !1)2

z
z !1

"
#

$
%

n!1
! n
(z !1)2

. (3) 

Known asymptotic of the logarithm of the xi-function for large  z ,  ! O(z ln z)   guaranties the 
“disappearance” of the contour integral value (it tends to zero when  X ! "   due to the asymptotic  
g(z) ! O(1/z3) )  thus we get, after division by  2!i , 

 n 1
(n !1)!

dn

dzn
(zn!1 ln ("(z)))

z=1
! n " '

"
(1) ! 1! 1! 1

1! #
$
%&

'
()
n$

%&
'
()#

* ! n 1
#

= 0
#
* . (4) 

Complex
!

"#
conjugate zeroes are to be paired when calculating  1

!!"   and  

1! 1! 1
1! "

#
$%

&
'(
n#

$%
&
'(")   for  n = 1.

!
"#

  Here the first term is the contribution of the  n +1   order pole 
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of  g(z)   at  z = 1 ,  second term is the contribution of the second order pole arising from the term  

! n
(z !1)2

  occurring in (3), the third and fourth terms are the integrals  ! g(z)dz
! "+iTi

#i$ .  Clearly,
!

"#
 

 n
(z !1)2

z
z !1

"
#$

%
&'
n!1

= d
dz

1! 1! 1
1! z

"
#$

%
&'
n"

#$
%

&'
  

 which explains while function  g(z)   in form (3) is used; the term  ! n
(z !1)2

  is added just to en-

sure the asymptotic  g(z) ! O(1/z3)   necessary to bring the contour integral value to zero.  Note also 
evident   

 1! 1! 1
1! "

#
$%

&
'(
n#

$
%

&

'
(

"
) = 1! 1! 1

"
#
$%

&
'(
n#

$
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&

'
( .

"
)

&

'
((

 

We know that  !"
"
(1) = # 1

$$%   [1], so that we have   

 n 1
(n !1)!

dn

dzn
(zn!1 ln("(z)))

z=1
= 1! 1! 1

#
$
%&

'
()
n$

%
&

'

(
)

#
*    

which is a relation we have searched for. 
Quite similar consideration is applied to our case, where now we introduce the function  

 
 
!g(z) = ! n(2a !1)(z ! a)

n!1

(z + a !1)n+1
+ n(2a !1)
(z + a !1)2

 (5) 

and consider contour integral  
 
!g(z) ln (!(z))dz

C"   taken round the same contour as above.  Applica-

tion of Theorem 4 (generalized Littlewood theorem) gives  

 ! n(2a !1)
(n !1)!

dn

dzn
((z ! a)n!1 ln ("(z)))

z=1!a
+ n(2a !1) #"

"
(z) z=1!a  – 

 – 1! " ! a
" + a !1

#
$%

&
'(
n#

$
%

&

'
(

"
) + n(2a !1) 1

" + a !1
= 0

"
) . (6) 

(Again, complex conjugate zeroes are to be paired whenever necessary.)  Using well known  
!"
"
(z)

z=1#a
= # 1

$ + a #1$
%   [1] and reminding our Theorem 1 we have the following theorem. 
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Theorem 5.  Riemann hypothesis is equivalent to the nonnegativity of all derivatives  
1

(n !1)!
dn

dzn
((z ! a)n!1 ln ("(z)))

z=1!a
  for all nonnegative integers  n   and any real  a < 1/2 ;  cor-

respondingly, it is equivalent also to the nonpositivity of all derivatives  
1

(n !1)!
dn

dzn
((z ! a)n!1 ln ("(z)))

z=1!a
  for all nonnegative integers  n   and any real  a > 1/2 . 

Remark 3.  Another possibility to arrive to the same conclusions is to see the formula  
! " a

! + a "1
= " a +1/2 + iT

a "1/2 + iT
= 1   as a precursor for the conformal mapping  s = z ! a

z + a !1
.  For  

a < 1/2   and  Re z ! 1/2 ,  module of  s   is always less or equal to 1; this equality is realized only 

on the line  z = 1/2 + it .  Correspondingly, on RH the function  ln ! z " a
z + a "1

#
$%

&
'(   is analytic in the 

interior of the discus  s < 1 .  We will not pursue this line of researches here, see again [2, 3] and 
our paper [8] where similar idea was used to generalize Balazard – Saias – Yor’s criterion equivalent 

to the Riemann hypothesis [9].  Similarly, for more general case  s = z ! a
z + a ! 2"

,  if  a < !   and  

Re z ! " ,  module of  s   is always less or equal to 1, and if  a > !   and  Re z ! " ,  this module 
also is always less or equal to 1.  This illustrates again our Theorem 2 (the generalized Bombieri – 
Lagarias’ theorem). 

Remark 4.  Along similar lines, analogous formulae connecting generalized Li’s sums and cer-
tain derivatives of the logarithm, can be established for numerous other zeta-functions.  We will not 
pursue this line of researches here.    

Now we want to prove the following minor theorem. 

Theorem 6.  The statement that there are no nontrivial Riemann function zeroes with  
Re ! > " > 1/2   is equivalent to the statement that for any  a < !   all derivatives  

1
(n !1)!

dn

dzn
((z ! a)n!1 ln ("(z)))

z=2#!a
  are nonnegative and for any  a > 1! "   all derivatives  

1
(n !1)!

dn

dzn
((z ! a)n!1 ln ("(z)))

z=2!2#!a
  are nonpositive. 

Proof.  From our Theorem 2 (generalized Bombieri – Lagarias’ theorem), we know that the con-
dition that there are no nontrivial Riemann function zeroes with  Re ! = " > 1/2   is equivalent to the 

statement that for any  a < !   all  1! " ! a
" ! 2# + a

$
%&

'
()
n$

%
&

'

(
)"* + 0   for  n = 1, 2, 3,… .  These sums 

are calculated using our Theorem 4 (the generalized Littlewood theorem) exactly as above, with the 

only difference that now the function  
 
!!g(z) = n(2! " 2a)(z " a)n"1

(z + a " 2!)n+1
" n(2! " 2a)
(z + a " 2!)2

  instead of the 

function   !g(z)   given by (5) is exploited.  Such change brings the equality between the sums  
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1! " ! a
" ! 2# + a

$
%&

'
()
n$

%
&

'

(
)"* + 0  and derivatives  n(2! " 2a)

(n "1)!
dn

dzn
((z " a)n"1 ln (#(z)))

z=2!"a
 which, 

consequently, also should be nonnegative.   
If there are no zeroes with  Re ! > " > 1/2 ,  there are also no zeroes with  Re ! < 1" #   and we 

are able to apply Theorem 2 with  a > 1! " ;  all corresponding sums  

 1! " ! a
" ! 2 + 2# + a

$
%&

'
()
n$

%
&

'

(
)

"
* + 0   

and are given by  n(2(1! ") ! 2a)
(n !1)!

dn

dzn
((z ! a)n!1 ln ("(z)))

z=2!2#!a
  whence the derivatives  

1
(n !1)!

dn

dzn
((z ! a)n!1 ln ("(z)))

z=2!2#!a
  should be nonpositive. 

Theorem 6 is proved. 
3.  An arithmetic interpretation of the generalized Li’s criterion.  In Ref. [3], Bombieri and 

Lagarias demonstrated the relation of Li’s criterion with the so called Weil’s explicit formula in the 
theory of prime numbers and Weil’s criterion of the truth of the Riemann hypothesis (see [10, 11]) 
and gave an arithmetic interpretation of the Li’s criterion.  Lately, such an interpretation has been 
given for some other Zeta-functions (see, e.g., [12]).  For completeness, we would like to conclude 
this paper establishing an arithmetic interpretation of the generalized Li’s criterion.  We closely fol-
low the lines used in [3] here. 

For suitable function  f ,  Mellin transform is defined as  f̂ (s) = f (x)xs!1 dx
0

"
#   while inverse 

Mellin transform formula is  f (x) = 1
2!i

f̂ (s)x"s ds
Re s=c#   with an appropriate value of  c .  The 

following is more or less a repetition of Lemma 2 from [3], which is a particular case corresponding 
to  a = 1 .   

Lemma 1.  For  n = 1, 2, 3,… ,  and an arbitrary complex number  a   the inverse Mellin trans-

form of the function  kn,a (s) = 1! 1! 2a !1
s + a !1

"
#$

%
&'
n

  is 

 gn,a (x) = Pn,a (x)       if    0 < x < 1 , 

 gn,a (x) =
n
2
(2a !1)     if    x = 1 ,  (7) 

 gn,a (x) = 0       if    x > 1 , 

where  Pn,a (x) = xa!1 Cnj
(2a !1) j ln j!1 x

( j !1)!j=1
n" ;  Cnj =

n!
j !(n ! j)!

  is a binomial coefficient. 
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Proof.  We have for  Re (s + a) > 1: 

 Cnj
(2a !1) j

( j !1)!
(ln j!1 x)xs+a!2 dx

0

1

"
j=1

n

# = Cnj
(2a !1) j

( j !1)!
d j!1

ds j!1
xs+a!2 dx

0

1

"
j=1

n

#  = 

 = Cnj
j=1

n

! (2a "1) j ("1) j"1

(s + a "1) j
= 1" 1" 2a "1

s + a "1
#
$%

&
'(
n

. 

If a is an arbitrary complex number with  Re a > 1 ,  for the function  gn (x)   we can apply the so 
called Explicit Formula of Weil (see [3, 10, 11]), which is, as given in [3]:  

 
 

f̂ (!)
!
" = f (x)dx

0

#

$ + !f (x)dx
0

#

$ % &(n)( f (n) + !f (n))
n=1

#

"  – 

 – 
 
(ln ! + " ) f (1) # f (x) + !f (x) # 2

x2
f (1)$

%
&

'
(
)

xdx
x2 #11

*

+ . (8) 

Here  !(n)   is a van Mangoldt function let!
"#

us remind that for  Re s > 1   !" (s)
"(s)

= # $(m)
msm=1

%&   

[1]!"# ,  ! = 0.572…   is Euler – Mascheroni constant and  
 
!f (x) := 1

x
f 1

x
!
"#

$
%& ,  thus in our case the 

function  
 
!Pn,a (x) = x!a Cnj

(!1) j!1(2a !1) j ln j!1 x
( j !1)!j=1

n"   should be used whenever appropriate.  

Surely,   
!Pn,a (x)   is inverse Mellin transform of  kn,a (1! s) = 1! 1! 2a !1

a ! s
"
#$

%
&'
n

. 

Such an application is justified because this is easy to check that for  Re a > 1   the functions  
gn,a (x)   do possess the following necessary properties for eq. (8) can be used for a function  f (x)   
[3, 10, 11]: 

(A)  f (x)   is continuous and continuously differentiable everywhere except at finitely many 
points  ai ,  in which both  f (x)   and  !f (x)   have at most a discontinuity of the first kind, and in 

which one sets  f (ai ) =
1
2

f (ai + 0) + f (ai ! 0)[ ] ; 

(B)  there is  ! > 0   such that  f (x) = O(x! )   as  x! 0 +   and  f (x) = O(x!1!" )   as  x! +" . 

The use of eq. (8) gives 

 1! " ! a
" + a !1

#
$%

&
'(
n#

$
%

&

'
(

"
) = 1! " + a !1

" ! a
#
$%

&
'(
n#

$
%

&

'
(

"
)  = 
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 = Cnj
(2a !1) j

( j !1)!j=1

n

" xa!1 ln j!1 x
0

1

# dx + (!1) j!1 x!a ln j!1 x dx
1

$

# ! (!1) j!1 %(m) ln j!1 m
ma

m=1

$

"
&
'
(

)(

*
+
(

,(
 – 

 ! n
2
(2a !1)(ln " + # ) ! Cnj

(!1) j!1(2a !1) j!1

( j !1)!j=1

n

$ x!a ln j!1 x ! n
x2
(2a !1)

%
&
'

('

)
*
'

+'

xdx
x2 !11

,

- . (9) 

Now, in the second and third integrals in the right-hand side of (9) we make a variable transform  x   

to  1/x ,  after what these integrals take the forms  I2 = xa!2 ln j!1(x)dx
0

1
"   and   

 I3 = Cnj
ln j!1 x
( j !1)!

(2a !1) j xa!1
j=2

n

" + n(2a !1)(xa!1 ! x)
#
$
%

&%

'
(
%

)%

dx
1! x20

1

* .   

(Note, that when writing  I3   we move the summation term corresponding to  j = 1   from the sum 
to the second term under the integral sign.)  The first two integrals are handled by virtue of an  
Example 4.272.6 of GR book [13]:   

 lnµ!1(1/x)x"!1 dx
0

1

# = 1
"µ

$(µ) ;      Reµ > 0     and    Re ! > 0 .   

Adopting for our case, we get   

 ln j!1(x)xa!1 dx
0

1

" = (!1)
j!1

a j
( j !1)! ,      ln j!1(x)xa!2 dx

0

1

" = (!1)
j!1

(a !1) j
( j !1)!. 

The “second part” of the third integral  I3   is, by virtue of an Example 3.244.3 of GR book [13], 
equal to   

 I32 = n(2a !1)
xa!1 ! x
1! x2

dx
0

1

" = ! n
2
(2a !1)(# + $(a/2)) ; 

!   is a digamma function.  In the first part of this integral we make the variable change  
x = exp (! t) : 

 I31 = Cnj
ln j!1 x
( j !1)!

(2a !1) j xa!1 dx
1! x2j=2

n

"
0

1

# = Cnj (!1) j!1
(2a !1) j

( j !1)!
t j!1 e!at

1! e!2t
dt

0

$

#
j=2

n

" . 

Applying Taylor expansion  (1! e!2t )!1 = 1+ e!2t + e! 4t + e!6t +…   we get further 

 I31 = Cnj (!1) j!1
(2a !1) j

( j !1)!
( j !1)!
(2m + a) jm=0

"

#
j=2

n

# = Cnj (!1) j!12! j (2a !1) j$( j, a/2)
j=2

n

# , 

where  !(s, a) := 1
(m + a)sm=0

"#   is Hurwitz zeta-function. 
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Using the relations 

 Cnj (!1) j!1(2a !1) j a! j
j=1

n

" = 1! Cnj (!1) j
2a !1
a

#
$%

&
'(
j
= 1! !1+ 1

a
#
$%

&
'(j=0

n

"
n

, 

 Cnj (!1) j!1(2a !1) j (a !1)! j = !1! !1! 1
a !1

"
#$

%
&'j=1

n

(
n

, 

and collecting everything together we have proven the following theorem. 
 Theorem 7.  For  n = 1, 2, 3,…   and an arbitrary complex a with  Re a > 1   we have  

 1! " ! a
" + a !1

#
$%

&
'(
n#

$
%

&

'
(

"
) = 1! " + a !1

" ! a
#
$%

&
'(
n#

$
%

&

'
(

"
) = 2 ! !1+ 1

a
#
$%

&
'(
n
! !1! 1

a !1
#
$%

&
'(
n

 + 

 + Cnj (2a !1) j
(!1) j

( j !1)!
"(m) ln j!1 m

ma
m=1

#

$
j=1

n

$  + 

 + n
2
(2a !1)("(a/2) ! ln #) + Cnj (!1) j2! j (2a !1) j$( j, a/2)

j=2

n

% . (10) 

Remark 5.  The case  n = 1   of the Theorem 1 gives well known equality  

 1
a ! ""

# = 1
a
+ 1
a !1

! $(m)
ma

m=1

%

# + 1
2
(&(a / 2) ! ln ')  

(see, e.g., [1]). 
The same connection of Li’s criterion with Weil’s criterion of the truth of the Riemann hypothe-

sis that has been discussed in [3], takes place also for the generalized Li’s criterion.  This can be 
seen as follows.   

The multiplicative convolution of functions  f (x) ,  g(x)   satisfying conditions (A), (B) given 

above, is defined as  ( f * g)(x) = f (x /y)g(y) dy
y0

!
" ,  and Mellin transform of such a convolution is 

f̂ (s) ! ĝ(s) .  For the multiplicative convolution  f *
!f   signs!

"# of complex conjugation and definition 

 
!f (x) := 1

x
f 1

x
!
"

#
$  are used!"# ,  Mellin transform is given by   f̂ (s) !

!
f (1" s)  — an expression which 

clearly is real and positive for  Re s = 1/2 .  Correspondingly, for any function expressible as   f *
!f ,  

on RH the sum over the nontrivial Riemann zeroes should be positive.  Weil showed that this is also 
a sufficient condition for RH to be true.   
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Now let us remind that if  h(s) = s ! a
s + a !1

  then  h(1! s) = 1/h(s)   and thus  

 kn,a (s) ! kn,a (1" s) = kn,a (s) + kn,a (1" s) , (11)  

where  kn,a (s) = 1!
s ! a

s + a !1
"
#

$
%

n
.  By construction,  kn,a (s) = ĝn,a (s)   and, due to general proper-

ties of the Mellin transform,    !̂gn,a (s) = ĝn,a (1! s)   thus (11) can be rewritten as   ĝn,a (s) ! !̂gn,a (s)  = 

=  ĝn,a (s) + !̂gn,a (s) .  Whence, applying inverse Mellin transform,   gn,a (x) + !gn,a (x)  = 
=  (gn,a * !gn,a )(x) ,  and this establishes the aforementioned connection: right-hand side of eq. (8) is 

invariant with respect to the change of  f (x)   into   
!f (x) .   

4.  Conclusion.  Thus we see that to judge the truth of the Riemann hypothesis, evaluation of 
certain derivatives of the Riemann xi-function can be effected at any point of the real axis apart from 
the point  z = 1/2 .  In particular, such a point can lie arbitrary far to the right from the critical strip: 

however large the number  b > !1/2   is, all derivatives  1
(n !1)!

dn

dzn
((z + b)n!1 ln ("(z)))

z=b+1
  

should be nonnegative for RH is true, and vice versa.  The present author sincerely hopes that this, 
and other related interesting possibilities might be useful for Riemann researches.  Finally, we are 
also sure that there is a room to use the approach presented in the paper to study other than Riemann 
function analytic functions.  
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