UDC 517.9
Liu Yang, Liping Luo, Zhenguo Luo (Hengyang Normal Univ., China)

INFINITELY MANY FAST HOMOCLINIC SOLUTIONS
FOR SOME SECOND-ORDER NONAUTONOMOUS SYSTEMS *

HECKIHYEHHA KIVIBKICTH HIBUJAKUX 'OMOKJ/IIHIYHUX PO3B’A3KIB
HEABTOHOMHUX CUCTEM JAPYI'OI'O ITIOPAAKY

We investigate the existence of infinitely many fast homoclinic solutions for a class of second-order nonautonomous
systems. Our main tools are based on the variant fountain theorem. A criterion guaranteeing that the second-order system
have infinitely many fast homoclinic solutions is obtained. Recent results from the literature are generalized and significantly
improved.

JlocimkeHo iCHYBaHHS HECKIHYEHHOI KITBKOCTI IIBHIKHAX TOMOKIIHIYHUX PO3B’S3KiB Ul KIacy HEAaBTOHOMHHX CHCTEM
npyroro nopsiaky. Hamr ocHoBHHMH Merton 0a3yerhcs Ha Moxpudikauii Teopemu mpo ¢onTtaH. OTpUMaHO KpHUTEpii, 10
rapaHTye HAsSBHICTh HECKIHYEHHOT KITBKOCTI MIBUAKMX TOMOKITIHIYHUX PO3B’SI3KiB CHCTEMH IPYTOTO MOPSAKY. Y3araabHEHO
Ta 3Ha4YHO MOKPAILEHO HELOABHO OMyOIiKOBaHI Pe3yJIbTaTH.

1. Introduction. In this article, we are concerned with the existence of infinitely many fast homo-
clinic solutions for the following second-order nonautonomous systems:

i(t) + it — L(t)ult) + Wult,u(t) =0 VteR, (FHS)

where u € R™, ¢ > 0 is a constant, W (t,u) € C}(R,R"), and L(t) € C(R,R"*") is a symmetric
matrix valued function. A nontrivial solution u of (F'HS) is said to be homoclinic to zero if u €
€ C%(R,R"),u(t) — 0 and u(t) — 0 as |t| — oo.

When ¢ = 0, (FHS) is just the following second-order Hamiltonian system:

i(t) — L{tyu(t) + Wa(t, u(t)) = 0. (HS)

In the last ten years, the existence and multiplicity of homoclinic solutions of (H.S) have been
intensively studied by many mathematicians (see [1 — 14] and the references therein). Compared with
the case that W (¢, u) is superquadratic growth as |u| — oo, there is less literature for the case that
W (t,u) is subquadratic growth as |u| — oo (see [12—-14]). In [13], Zhang and Yuan established the
following theorem.

Theorem 1.1 [13].  Assume that L and W satisfy the following conditions:

(H1) L(t) € C(R, R™™"™) is a symmetric and positive definite matrix for all t € R and there is
a continuous function : R — R such that o(t) > 0 for all t € R and (L(t)u,u) > o(t)|ul* and
a(t) — oo as |t| — 4o0;

(H2) W(t,u) zza(t)\uW where a(t): R — RY is a positive continuous function such that

a(t) € L>(R,R)N L2-7(R,R) and 1 < < 2 is a constant.
Then (HS) possesses a nontrivial homoclinic solution.
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There are many mathematicians introduced the concept of fast heteroclinic solutions for the
second-order ordinary differential equation u” + cu’ 4+ f(u) = 0, (see [15]). When ¢ # 0 in (FHS),
as far as we know, there is few research about the existence of homoclinic solutions for (F'HS). In
[15], Zhang and Yuan introduced the concept of fast homoclinic solutions for (F'H S) and established
some criteria to guarantee the existence of fast homoclinic solutions for the first time. In order to
state the concept of the fast homoclinic solutions conveniently, we first introduce some properties of
the weighted Sobolev space E.. For ¢ > 0, we define the weighted Sobolev space E. as follows:

E.={u¢c H(R,R"): /eCt [[u/|? + (L(t)u(t), u(t)] dt < +oo
R

If L satisfies (H1), E. is a Hilbert space with the inner product
(9) = [ e [/ (0).5/(0) + (Lle)a0).y(e))] e
R

and the corresponding norm ||z[|%, = (z, ). Here, we denote by LP(e"), 2 < p < 400, the Banach
space of functions on R with values in R™ under the norm

1/p
fullyi= | [ euteypar
R
Here, we still use the notation || - ||, to denote the norm of LP(e). Hence, there exists a constant
B = min{a(t),t € R} > 0 such that
Bllul3 < llul,  Vu € Ee. (1.1)

Definition 1.1. For ¢ > 0, a homoclinic solution u of (FHS) is called one fast homoclinic
solution if u € E..

Theorem 1.2 [15].  Assume that L and W satisfy (H1) and the following condition:

(H2) W(t,u) = a(t)|u|” where a(t): R — R is a continuous function such that a(t1) > 0 for
some t1 € R and a(t) € L%(e‘i) and 1 < vy < 2 is a constant.

Then (FHS) has at least one nontrivial fast homoclinic solution.

Motivated by the above facts, in this paper, we will use the following conditions to generalize
and improve Theorem 1.2. To the best of our knowledge, there is no paper studying the existence of
infinitely many fast homoclinic solutions for (F'HS).

(H2') a(t)|u]? < Wy (t, u)u, |Wu(t,u)] < b(t)|u]~ + c(t)|u|’~" where a(t), b(t), c¢(t): R —
2 2
— RT are positive continuous functions such that a(t), b(t) € L2=7(e), c(t) € L2-9 (e!) and

1 <v<2,1<6§<2are constants, W (t,0) =0, W(t,u) = W(t,—u).
t
We can see that if b(t) = a(t), c(t) = 0, then W (t,u) = G—>|u|7. Therefore, the condition of
Y
(H?2) is a special case of the condition of (H2'). Here is our main result.
Theorem 1.3. Suppose that the conditions of (H1) and (H2') hold. Then (FHS) possesses

infinitely many fast homoclinic solutions.
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The organization of this paper is as follows. In Section 2, we shall give some lemmas and some
preliminary results. In Section 3, main result are verified.

2. Preliminaries. In this section, we will present some lemmas that will be used in the proof of
our main result.

Lemma 2.1 [15]. Suppose that L satisfies (H1). Then the embedding of E. in L?(e) is com-
pact.

Lemma 2.2. Suppose that (H1), (H2') hold. If uj, — w in E., then Wy(t,uz) — Wy (t,u) in
L2 (€Ct).

Proof. Assume that uy — u in E.. By (H2/) we have

(Wt ) = Walt,w)] < b(2) [l ™+ [uP =]+ e) [Jaal™ + 1], @)
which yields that
[Walt, w) = Wt w)? < 462(8) [Jugl? =2 + [u 2] + 42(0) [P 2 + @ 2] 22)
Multiplying e and integrating on R, by (1.1) and Holder inequality, we get

/eCt|Wu(t, ug) — Wy (t,u)2dt <
R

<t [ R OuOF 7 + )P e+ 4 [ SOl + a2 <
R R

2y—2 2y—2 26—2 20—2
< AYBIP 5 (luelly”™ + flully? )+4HC”226(HukH2 + ull3) <
2—y 2—

- 2y—2 2y—2 -5 5— 5—
<4l s (fuwlg ™ + lullg ™) + 48 Nlels (lualm 2 + lully ). 23)
2—~ 2—0
Moreover, since ur — u in E,, there exists a constant M > 0 such that, by Banach — Steinhaus
theorem,
luklle. <M, lullg. < M.

Therefore, we can obtain

/ e Wi (t, ur) — W (t,u)[2dt < 887[|b]|> . M*7 2+ 8810 c||?y M*~2.

2— 2—06
R v

Since, by Lemma 2.1, uj, — u in L?(e®), which yields that e“uy(t) — eu(t) for almost every
t € R, ie., ug(t) — u(t) for almost every ¢t € R since e > 0 for every ¢ € R. Then, by the using
the Lebesgue convergence theorem.

Lemma 2.2 is proved.

Define the functional

Iw) = [ laP + (Ll u®))dt ~ [ Witu®)dt = 3 Jully, - Bla), @4

R R

where B(u) = / et W (¢, u(t))dt.
R
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Lemma 2.3. Under the conditions of Theorem 1.3, we get

I (u)w = / (i1, 8) + (L(E)u(t), v(t))]dt — / LW (Eu(t)), v(t))di =

R R

- / (@, 0) + (L(t)u(t), v(t))|dt — B'(w)v 2.5)

R
for any u,v € E., which yields that
I = lulfy, ~ [ (W, (6 u@) u(e)dr 26
R

Moreover, I € CY(E.,R),B": E. — E is compact, and any critical point of I on E. is a
classical solution of (FHS) satisfying u € C?(R,R™), u(t) — 0 and u(t) — 0 as |t| — <.
Proof. We firstly show that /: E. — R. Since W (t,0) = 0, by (H2'), we have

1
0< /ect /a(t)|uhmldh dt < /eCtW(t,u(t))dt =
0

R R

1 1
= /eCt /Wu(t,hu)udh dt < /eCt /]Wu(t, hu)||u|dh | dt <
0 0

R R
b(t t 1 1
< [e™uwpar+ [etSDiuypar< 2pl o a3 +Flel o ulf <
v 0 [ 0" T35
R R
1 _ 1 _
< Il 2 A7 lullg, + Slell 2. 8 g, 2.7)
T2y 2=6
Next we prove that I € C1(E,,R). Rewrite I as follows:
I = A(u) — B(u), (2.8)

where

A(u) = ;/ed [Jaf? + (L(Eyut), u(t))] dt.

R

It is easy to check that A € C!(E,,R) and A’ (u)v = / e [(,v) + (L(t)u(t),v(t))] dt. Therefore,

R
it is sufficient to show that this is the case for B. In the process we will see that

B (u)w = / LW (1 u(t)), v(t))dt. 2.9)

R

For any given u € E,, let us define J(u): E. — R as follows:
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J(u)o = / LW (#u(®), o(E)dt, v € B
R

(2.10)

It is obvious that J(u) is linear. Now we show that J(u) is bounded. Indeed, for any given

u € E,., we have

uwm:/wwwwwmww$

R

s/ﬁwmwvmww+/ﬁwmeWMWs

R R

1/2 1/2
< (/eCtbQ(t)u(t)272dt) (/ectv(t)2dt) +

R R

1/2 1/2
+ ( / ectCQ(t)u(t)Q“dt) ( / ectv(t)%zt) <

R R

1/2 1/2

< /éwwmmW* lollz + /ﬂémmwﬁ* lollz <
R

R

-1 5—
< Il 2 [full3™ ollz + llell 2 Jlulls™ o]z <
2—v 2—46

_ -1 5 5—
S U lullg, lolle. + 8 HC\|226HUHE61HUHEC-
— —

Moreover, for u,v € E,, by the mean value theorem, we obtain

/ T (£, u(t) + v(t))dt — / eI (t, u(t) )t / e (Wt u(t) + h(E0(2)), v())dt,

R R R

where h(t) € (0,1). Therefore, by Lemma 2.2, we get

/ e (W (t, u(t) + h(t)o(t)), v(t))dt — / (Wt ult)), v(t))dt =
R

R

= /ect (Wu(t,u(t) + h(t)v(t) — Wu(t,u(t)),v(t)) dt — 0
R

as v — 0. Suppose that & — ug in E,. and note that

B'(u)v — B'(ug)v = /eCt(Wu(t, u(t)) — Wy (t, uo(t)), v(t))dt.
R

2.11)
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By Lemma 2.2 and the Holder inequality, we obtain that
B'(u)v — B'(ug)v — 0 as  u — ug, (2.12)
which implies the continuity of B’ and we show that I € C* (E.,R). Let up, — u in E., we have

1B’ (u,,) = B'(w)]

g = sup [[(B'(u,) — B'(u))v]l =

lloll=

= sup /eCt<Wu(t,uk)—Wu(t,u),v(t)>dt <

lwi=t|J
1/2
< sup /eCt|Wu(t,uk)Wu(t,u)|2dt o]z <
lo]|=1
1/2
< /ect|Wu(t,uk)—Wu(t,u)fdt L0
R

as k — oo. Consequently, B’ is weakly continuous. Therefore, B’ is compact by the weakly conti-
nuity of B’ since F is a Hilbert space. Proofs of the other conclusions can be found in Lemma 3.1
of [15], so we omit them here.

In order to prove our main results, we recall the variant fountain theorem. Let £ be a Ba-

nach space with the norm | - || and E = @?:0 X; with dimX; < oo for any j € N. Set
Y, = @;?:0 X, Zy = @;’ik X ;. Consider the following C!-functional I): E — R defined by

I(u) = A(u) — AB(u), A€ [L,2]. (2.13)

Theorem 2.1 [16]. Suppose that the functional I)(u) defined above satisfies:

(C1) I, maps bounded sets to bounded sets uniformly for A € [1,2]. Furthermore, I\(—u) =
= I\(u) for all (A\,u) € [1,2] x E.

(C2) B(u) > 0; B(u) — oo as |u|| = oo on any finite dimensional subspace of E.

(C3) There exist py, > ry, > 0 such that

ar(A) == inf  Iy(u) >0>0b(N):= max I)(u)
uEZp,||ull=px UEY,[|ull=r

forall X € [1,2] and di.(\) := inf ez, |jul|<p, Ir(u) = 0 as k — oo uniformly for A € [1,2]. Then
there exist Ay, — 1,uy, € Yy, such that I} Y, (u(A\y)) = 0,1, (u(An)) = cp € [dp(2),bx(1)] as
n — oo. In particular, if {u(\,)}} has a convergent subsequence for every k, then Iy has infinitely
many nontrivial critical points {u,} C E \ {0} satisfying I (ur) — 0~ as k — oo.

3. Main results. Proof of Theorem 1.3. In order to apply Theorem 2.1 to prove Theorem 1.3,
we define the functionals A, B and I on our working space E. by

Alu) = %Huu%c, B(u) = / W (t, u)dt, (3.1)
R
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I(u) = A(u) — A\B(u) (3.2)

for all u € E. and A € [1,2]. From Lemma 2.3, we know that I, € C'(E,,R) for all A € [1,2].
We choose a completely orthonormal basis {e;} of E. and define X; := Re;. Then Z, Y}, can be
defined as that in Section 2.

Step 1. In the condition of Theorem 1.3, we have B(u) > 0. Moreover, B(u) — oo as |lu|| — oo
on any finite dimensional subspace of E..

Obviously, B(u) > 0 follows by the definition of the functional B and (H2'). For any finite
dimensional subspace F' C F., there exists £; > 0 such that

meas {t € R: e“a(t)|u(t)] > ei|ull}, } > a1 Vue F\{0}, (3.3)

where meas denotes that Lebesgue measure in R™. Otherwise, for any positive integer n, there exists
un, € F\ {0} such that

1
meas {t e R: e“a(t)|u(t)]” > n|u||'}gc} < (3.4)

1
.

(t
Set vy, (t) 1= ”Z(H; € F\ {0}, then [jv,||g. = 1 for all n € N and

1 1
meas {t cR: ea(t)|v,(t)]T > } < =
n n

Since dimF' < oo, it follows from the compactness of the unit sphere of F' that there exists a
subsequence, say {v,}, such that v, converges to some vy in F. Hence, we have ||vg||gz, = 1. By
the equivalence of the norms on the finite dimensional space F, we have v,, — vg in L?(e!). By the
Holder inequality, one has

v/2
/eCta(t)|vn —vp|"dt < |la|| 2 /eCtvn — wol?dt —0 as n— oo. (3.5)
R SN
Thus there exist £1, &2 > 0 such that
meas {¢t € R: e“a(t)|vo(t)]" > &} > &. (3.6)
In fact, if not, we have
ct 1
meas {t e R: e®a(t)|vo(t)|” > } >0 3.7)
n
for all positive integer n, which implies that
0< [ a®lon®P 2t < o funll < - ol = 5 >0 (.8
- n 2= np? Ee ™ pnp2 ’

R

as n — oo. Hence vy = 0 which contradicts that ||vg|| g, = 1. Therefore, (3.6) holds. Now let
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Qo = {t eR: e“a(t)|vo(t)]” > &1}, Q, = {t cR:ea(t)|va(t)]7 < 711}

and Qf = R\ Q. Then we get

1
meas(§2, N Q) > meas(Qp) — meas(25, N Q) > & — - (3.9

151 = 2761

Then we have

/eCta(t)|Un — vo|dt > / e“a(t)|vy, — vo|vdt >

Q,NQ
1
> — / e“a(t)|vo|Tdt — / e“a(t) v, |Vdt >
Q,NQ

<27_1£1 >meas(Q NQy) > % >0

for all large n, which is a contradiction to (3.5). Therefore, (3.3) holds. For the £; given in (3.1), let

Q, = {t e R: e®a(t)|u(t)]” > erflully, } Yu € F\ {0}. (3.10)

Then by (3.1),
meas(£)y,) > €1 Yu € F\ {0}.

Combining (H2') and (3.10), for any u € F'\ {0}, we obtain

B(u) = /eCt[W(t,u) —W(t,0)]dt = /eCt /Wu(t, huw)udh | dt >
0

R R
/ 1
> /ECt /a(t)|u\7h7_1dh dt > /eCta(t)|u(t)|7dt >
R 0 ! R
1 [ . 1
> 5 e“a(t)|u(t)|"dt > ;61||’LL||E meas(£),) >
Qy

L,
> —eillullg, -
Y
This implies B(u) — oo as ||u||g, — oo on any finite dimensional subspace of F
Step 2. Under the assumptions of Theorem 1.3, then there exists a sequence py — 07 as k — oo

such that
ag(N) = inf I(u) >0,

UEZy, |lull g =pk
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and

dp(\) == inf I\(u) = 0as k — oo uniformly for X € [1,2].
u€Zy,||lull 5. <pw

Set Bk := SUPycz, |ul| =1 lull2. Then By — 0 as k — oo since E. is compactly embedded into
L?(et). By (H2'), we have

1
Iw) = llull, ~ A [ Wt ujde >

R
1 1 2 2
> S lullE, — 2/eCtW(lt,U)dlt > SlullE, = =16l 2 [lull3 - *HCH HUHQ
2 2 Y p—
R Y
1 Y
§HUHEC - fﬂkllbll IIUII - */BkHCH HUHEC

Let
1

1
16457 27— 16452 2-9
o= (2802 ) (SR 2, )
Y 2=y 2-5

Obviously, pr — 0 as & — co. Combining this with the above inequality, straightforward computation
shows that

1
ap(A) > sz > 0. (3.11)

Furthermore, for any u € Z;, with ||u||g. < pg, we get

2 2
I(u) > ==Boll 2 llullg, — gﬁgHCHLHUH(sEC'
Y 2—y 2—0
Therefore,
2
Ode(A)Z—;ﬂ;ZHbH%HUW *BkHCH HUHEC (3.12)
-y

Since B, pr — 0 as k — oo, we obtain

dp(X) := inf In(u) - 0as k — oo uniformly for X € [1,2].
u€Z,||lull 5. <pw

Step 3. Under the assumptions of Theorem 1.3, for the sequence {py }ren obtained in Step 2,
there exist 0 < r; < py for all k& € N such that

be(N) := max In(u) <0 forall Xell,2].

u€Yy, llull =Tk
For any u € Y}, (a finite dimensional subspace of E.) and A € [1, 2], we have
1
I\(u) = iuuu%& - )\/eCtW(t, w)dt <
R
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1 1 1
< gl — [ Wt < Slully, > [ etafuterae <
R Qy

1 1 1
< Slulz, - ;ElHUHVC meas (Qu) < 5 |lullf, — —etlulg,

c

2\ 2=
where €, is defined in (3.10). Choosing 0 < 7 < min < pg, <€1> . Direct computation
Y

shows that )

be(\) < —%’f <0 VkeN.

Step 4. Evidently, the condition (C'1) in Theorem 2.1 holds. By Step 1, 2, 3, Conditions (C2),
(C3) in Theorem 2.1 are also satisfied. Therefore, by Theorem 2.1, there exist A, — 1,u(\,) € Y,
such that

I, Iy, (u(An)) = 0, I, (u(Mn)) = cx € [di(2), br(1)]

as n — oo. For the sake of notational simplicity, in what follows we always set u,, = uy, for all
n € N. Now we show that {u,,} is bounded in E.. Indeed, we have

1 1 1
gl < D un) + 0 [ | 200l + e0un(0)| a1 <
R

2 5
2 lunll3 + gHCHLHUn!b <

2
< M+ —|b]] 2
Y 2— 2-5

2 2
<M+ 270 _2_llualy, + 587llell_2_llwnlly,  Vn €N
Y 2—~ 2-5

for some M > 0. Since 1 < v < 2,1 <0 < 2,ityields {uy} is bounded in E.. Finally, we show that

{un} possesses a strong convergent subsequence in E.. In fact, in view of the boundness of {u,},
without loss of generality, we may assume

Up — U (3.13)

as n — oo for some ug € E.. By virtue of the Riesz representation theorem, [ f\n ly,: Y, — Y, and
I': E. — E¥ can be viewed as | f\n|yn :Y, = Y, and I': E. — E. respectively, where Y,* is the
dual space of Y;,. Note that

0=13 v, (un) = up — AP B (uy) Vn e N, (3.14)
where P, is the orthogonal projection for all n € N. That is,
Up, = AP B (uy,) Vn e N. (3.15)

Due to the compactness of B’ and (3.13), the right-hand side of (3.15) converges strongly in E,
and hence u,, — ug in E.. Now, we know that I = I; has infinitely many nontrivial critical points.
Therefore, (F'HS) possesses infinitely many nontrivial fast homoclinic solutions.

ISSN 1027-3190. Yxp. mam. acypn., 2014, m. 66, Ne 3



414

10.

11.

12.

13.

14.

15.

16.

LIU YANG, LIPING LUO, ZHENGUO LUO

Rabinowitz P. H. Homoclinic orbits for a class of Hamiltonian systems // Proc. Roy. Soc. Edinburgh A. — 1990. —
114, Ne 1-2. - P. 33-38.
Coti Zelati V., Rabinowitz P. H. Homoclinic orbits for second order Hamiltonian systems possessing superquadratic
potenials // J. Amer. Math. Soc. — 1991. — 4. — P. 693 -727.
Ding Y., Girardi M. Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing
sign // Dynam. Systems Appl. — 1993. — 2. — P. 131-145.
Fei G. The existence of homoclinic orbits for Hamiltonian systems with the potential changing sign // Chinese Ann.
Math. Ser. B. - 1996. — 17. — P. 403 -410.
Izydorek M., Janczewska J. Homoclinic solutions for a class of second order Hamiltonian systems // J. Different.
Equat. — 2005. — 219, Ne 2. — P. 375-389.
Ding Y. Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems // Nonlinear
Anal. — 1995. - 25. - P. 1095-1113.
Korman P, Lazer A. C. Homoclinic orbits for a class of symmetric Hamiltonian systems // Electron. J. Different.
Equat. — 1994. — 1994. — P. 1 - 10.
Ou Z., Tang C. Existence of homoclinic solutions for the second order Hamiltonian systems // J. Math. Anal. and
Appl. — 2004. — 291. — P. 203 -213.
Zou W. Infinitely many homoclinic orbits for the second order Hamiltonian systems // Appl. Math. Lett. — 2003. —
16. - P. 1283 -1287.
Omana W., Willem M. Homoclinic orbits for a class of Hamiltonian systems // Different. Integral Equat. — 1992. - §,
Ne 5. —P 1115-1120.
Yuan R., Zhang Z. Infinitely many homoclinic orbits for the second order Hamiltonian systems with super-quadratic
potentials // Nonlinear Anal.: Real World Appl. — 2009. — 10. — P. 1417 -1423.
Yang L., Chen H., Sun J. Infinitely many homoclinic solutions for some second order Hamiltonian systems // Nonlinear
Anal.: Real World Appl. — 2011. — 74. — P. 6459 —6468.
Zhang Z., Yuan R. Homoclinic solutions for a class of non-autonomous subquadratic second order Hamiltonian
systems // Nonlinear Anal. — 2009. — 71. — P. 4125-4130.
Zhang Z., Yuan R. Homoclinic solutions of some second order non-autonomous systems // Nonlinear Anal. — 2009.
—-71. - P. 5790-5798.
Zhang Z., Yuan R. Fast homoclinic solutions for some second order non-autonomous systems // J. Math. Anal. and
Appl. - 2011. - 376. — P. 51 -63.
Zou W. Variant fountain theorems and their applications // Manuscr. math. — 2001. — 104. — P. 343 -358.
Received 04.04.12,
after revision — 18.10.13

ISSN 1027-3190. Vkp. mam. yxcypn., 2014, m. 66, Ne 3



