Ю. Ю. Лещенко

(Черкас. нац. ун-т им. Б. Хмельницкого, Ин-т физики, математики и компьютерно-информ. систем)

ДИАМЕТРЫ ГРАФОВ КОММУТАТИВНОСТИ СПЛЕТЕНИЙ ГРУПП ПОДСТАНОВОК

Let G be a group and let $\mathcal{Z}(G)$ be the center of G. The commuting graph of the group G is an undirected graph $\Gamma(G)$ with the set of vertices $G \setminus \mathcal{Z}(G)$ such that two vertices x and y are adjacent if and only if xy = yx. In the paper, we study the commuting graphs of permutation wreath products $H \wr G$, where G is a transitive permutation group acting upon X (the top group of the wreath product) and (H,Y) is an Abelian permutation group acting on Y.

Нехай G — група, а $\mathcal{Z}(G)$ — її центр. Граф комутативності групи G — це неорієнтований граф $\Gamma(G)$ з множиною вершин $G\setminus \mathcal{Z}(G)$, де вершини x та y з'єднуються ребром тоді і тільки тоді, коли xy=yx. У статті вивчаються графи комутативності вінцевих добутків $H\wr G$, де G — група підстановок, що транзитивно діє на X ("активна" група вінцевого добутку), а (H,Y) — абелева група підстановок на Y.

1. Введение. Графом коммутативности неабелевой группы G называется неориентированный граф (без петель и кратных ребер) $\Gamma(G)$, вершинами которого являются нецентральные элементы группы G и две вершины соединяются ребром тогда и только тогда, когда они коммутируют в G. В статье [1] исследованы соответствующие графы симметрических и знакопеременных групп, а также сформулирован ряд гипотез. Наиболее известная из них, — гипотеза об ограниченности сверху множества диаметров связных графов коммутативности конечных групп — была опровергнута в 2012 г. [2]. Графы коммутативности (а также их дополнения) изучались, например, в работах [3-5]. Достаточно полный обзор результатов по данной теме можно найти в препринте [6], где также приводится доказательство ослабленной гипотезы о диаметрах: диаметры компонент связности графа коммутативности произвольной конечной неабелевой группы с тривиальным центром не превышают 10.

В [7] доказано утверждение, позволяющее судить о строении графов коммутативности прямых произведений конечных групп по свойствам соответствующих графов сомножителей. В связи с этим возникает естественный интерес к исследованию подобных связей касательно других классических теоретико-групповых конструкций, например сплетений групп подстановок.

Цель данной статьи — изучение графов коммутативности сплетений конечных групп подстановок, где одна из групп (активная группа сплетения) является транзитивной, а вторая — абелевой. Такие сплетения имеют нетривиальный центр.

Введем следующие обозначения. Пусть x,y — вершины графа Γ , тогда $x\sim y$ означает, что x и y соединены в Γ ребром. Символом $\rho(x,y)$ обозначим длину кратчайшего пути от x к y; если такого пути не существует, то $\rho(x,y)=\infty$. Тогда $\mathrm{d}(\Gamma)=\sup\{\rho(x,y)\}$, где x,y пробегают множество вершин графа Γ , называется ∂ иаметром Γ .

Для произвольной группы подстановок (G,X) *циклом максимальной длины* на X будем называть любой элемент из G, действующий на X транзитивно.

Теорема 1. Пусть (G,X), (H,Y) — группы подстановок, причем (G,X) транзитивна, (H,Y) абелева, а Γ — граф коммутативности сплетения $H \wr G$.

1. Если |X| — простое число, то граф Γ несвязный.

2. Если |X| не является простым числом, то граф Γ связный и $\mathrm{d}(\Gamma) \leq 5$. Дополнительно, если G импримитивна, то $\mathrm{d}(\Gamma) \leq 4$, а если G не содержит циклов максимальной длины, то $\mathrm{d}(\Gamma) \leq 3$.

Теорема 2. Пусть (G,X),(H,Y) — группы подстановок с циклами максимальной длины, при этом |X| не является простым числом, группа (G,X) импримитивна, а группа (H,Y) абелева. Тогда граф $\Gamma(H \wr G)$ связный с диаметром равным 4.

В качестве примеров в последнем пункте приведены диаметры графов коммутативности для некоторых серий классических p-групп (силовских p-подгрупп полной линейной группы над конечным полем, а также силовских p-подгрупп симметрических групп).

2. Сплетения групп подстановок. Пусть (G, X) и (H, Y) — группы подстановок, действующие на множествах X и Y соответственно, $\operatorname{Fun}(X, H)$ — множество функций из X в H. Обозначим символом x^g образ x под действием подстановки g. Тогда можно построить новую группу $H \wr G$, действующую на декартовом произведении $Y \times X$, как описано ниже. Пусть

$$H \wr G = \{[f,g] \mid f \in \operatorname{Fun}(X,H)$$
 и $g \in G\}$

и если $(b,a) \in Y \times X$, $u = [f,g] \in H \wr G$, то $(b,a)^{[f,g]} = (b^{f(a)},a^g)$. Группа подстановок $(H \wr G, Y \times X)$ называется *сплетением* групп (H,Y) и (G,X). Если $v = [f_1,g_1] \in H \wr G$, то

$$u \cdot v = [ff_1^g, gg_1],$$

где $f_1^g(x) = f_1(x^g)$ и $(ff_1^g)(x) = f(x) \cdot f_1^g(x) = f(x) \cdot f_1(x^g)$ для всех $x \in X$.

Нормальная подгруппа $\overline{H}=\{[f,1_G]\,|\, f\in \operatorname{Fun}(X,H)\}$, где 1_G — единица группы G, называется $\mathit{базой}$ сплетения. Пусть $\overline{G}=\{[e_H,g]\,|\, g\in G\}$, где e_H — функция, возвращающая единицу группы H при всех $x\in X$. Тогда $H\wr G\cong \overline{H}\rtimes \overline{G}$.

Операция сплетения ассоциативна в классе групп подстановок, т. е. $(G_3 \wr G_2) \wr G_1 \cong G_3 \wr (G_2 \wr G_1) \cong G_3 \wr G_2 \wr G_1$. Это свойство позволяет естественным образом обобщить понятие сплетения на произвольное конечное число сомножителей.

Предположим, что $(G,X) < S_X$ и $(H,Y) < S_Y$, где S_X и S_Y — симметрические группы множеств X и Y соответственно. Зафиксируем $g \in G$ и $x_0 \in X$. Тогда $\mathrm{Cyc}_g(x_0) = (x_0,x_1,\ldots,x_{t-1}),$ где $x_i^g = x_{i+1}$ для $i \in \{0,1,\ldots,t-2\}$ и $x_{t-1}^g = x_0$, называется *циклом* подстановки g с представителем x_0 .

Рассмотрим сплетение $H \wr G$, некоторый фиксированный элемент $g \in G$ и два вида функциональных уравнений:

$$f^{-1} \cdot f^g = e_H, \tag{1a}$$

$$f^{-1} \cdot f^g = r,\tag{16}$$

где f — неизвестная функция, r — некоторая фиксированная функция из $\operatorname{Fun}(X,H)$, а $e_H(x)=1_H$ при всех $x\in X$. Символ f^{-1} обозначает такую функцию, что $f^{-1}(x)=(f(x))^{-1}$ для всех $x\in X$.

Уравнения вида (1а), (1б) встречаются в работе Л. Калужнина, посвященной изучению силовских p-подгрупп симметрических групп (см. [8], леммы 5 и 6 — случай кратного сплетения циклических групп простого порядка). Похожие уравнения также часто возникают при изучении других обобщений конструкции сплетения (см., например, [9], лемма 14 — случай кратного сплетения копий аддитивной группы целых чисел). Следующие две леммы справедливы для произвольных групп подстановок.

Лемма 1. Функция f является решением уравнения (1a) тогда и только тогда, когда на каждом цикле подстановки g функция f постоянна. B частности, g действует транзитивно на X тогда и только тогда, когда единственным решением будет $f \equiv \text{const} - \text{постоянная}$ функция.

Доказательство. Пусть C — некоторый цикл подстановки g и f(x) = h для всех $x \in C$, где h — некоторый фиксированный элемент группы H. Тогда $f^{-1}(x) \cdot f(x^g) = h^{-1} \cdot h = 1_H$ для всех $x \in C$ и уравнение (1aa) имеет место. С другой стороны, если существуют $x, y \in C$ такие, что $x^g = y$ и $f(x) \neq f(y)$, то $f^{-1}(x) \cdot f(x^g) = f^{-1}(x) \cdot f(y) \neq 1_H$, т. е. f не удовлетворяет уравнению (1a).

Лемма 2. Уравнение (1б) имеет решения тогда и только тогда, когда на каждом конечном цикле $\mathrm{Cyc}_a(x_0) = (x_0, x_1, \dots, x_{t-1})$ подстановки g выполняется равенство

$$\prod_{i=0}^{t-1} r(x_i) = 1_H. \tag{2}$$

Доказательство. Подстановка g может иметь бесконечные циклы. Пусть $C=(\dots,x_{-1},x_0,x_1,\dots)$ — один из них. Положим $f(x_0)=1_H,$ $f(x_i)=f(x_{i-1})r(x_{i-1})$ и $f(x_{-i})=f(x_{-i+1})\times x^{-1}(x_{-i}),$ где i>0. Тогда при $i=0,1,2,\dots$ получаем

$$f^{-1}(x_i) f(x_i^g) = f^{-1}(x_i) f(x_{i+1}) = f^{-1}(x_i) f(x_i) r(x_i) = r(x_i),$$

$$f^{-1}(x_{-i}) f(x_{-i}^g) = f^{-1}(x_{-i}) f(x_{-i+1}) = (f(x_{-i+1})r^{-1}(x_{-i}))^{-1} f(x_{-i+1}) = r(x_{-i}).$$

Другими словами, на бесконечном цикле C функция f, построенная выше, удовлетворяет уравнению (1б).

Пусть теперь $C = \operatorname{Cyc}_g(x_0) = (x_0, x_1, \dots, x_{t-1})$ — некоторый конечный цикл подстановки g. Если f удовлетворяет уравнению (1б), то

$$\prod_{i=0}^{t-1} r(x_i) = \prod_{i=0}^{t-1} \left(f^{-1}(x_i) f(x_i^g) \right) = \prod_{i=0}^{t-1} \left(f^{-1}(x_i) f(x_{i+1}) \right) = 1_H, \quad \text{где } x_t = x_0.$$

Покажем, что если равенство (2) выполняется, то уравнение (1б) имеет решение. Положим $f(x_0)=1_H$ и $f(x_i)=r(x_0)r(x_1)\dots r(x_{i-1})$, если $i\in\{1,2,\dots,t-1\}$. Рассмотрим произвольный элемент $x_i\in C,\,i\in\{0,1,\dots,t-1\}$. Если i< t-1, то

$$f^{-1}(x_i) f(x_i^g) = f^{-1}(x_i) f(x_{i+1}) =$$

$$= (r(x_0)r(x_1) \dots r(x_{i-1}))^{-1} r(x_0)r(x_1) \dots r(x_{i-1})r(x_i) = r(x_i).$$

Из (2) следует, что $(r(x_0)r(x_1)\dots r(x_{t-2}))^{-1}=r(x_{t-1})$. Поэтому

$$f^{-1}(x_{t-1}) f(x_{t-1}^g) = f^{-1}(x_{t-1}) f(x_0) =$$
$$= (r(x_0)r(x_1) \dots r(x_{t-2}))^{-1} \cdot 1_H = r(x_{t-1}),$$

т. е. равенство (1б) выполняется для любого символа цикла. Повторим такую же процедуру для всех циклов. Тогда f — искомое решение.

При фиксированном $h \in H$ символом c_h обозначим функцию из $\operatorname{Fun}(X,H)$, принимающую значение h при всех $x \in X$. Множество всех пар вида $[c_h,1_G]$, где h пробегает H, называется диагональю базы сплетения $H \wr G$. Следующее утверждение является частным случаем следствия 3.4 из [10].

Лемма 3. Пусть (G,X), (H,Y) — группы подстановок, причем (G,X) является транзитивной, а (H,Y) — абелевой. Тогда

$$\mathcal{Z}(H \wr G) = \{ [c_h, 1_G] \mid h \in H \text{ } u \text{ } c_h(x) = h \text{ } \partial n \text{ } s \text{ } c \text{ } e x \text{ } \in X \}$$

— центр сплетения $H \wr G$.

3. Диаметры графов коммутативности сплетений групп подстановок. Далее будем считать, что $2 \le |X|, |Y| < \infty$.

Лемма 4. Пусть (G,X), (H,Y) — группы подстановок, |X|=p — простое число, (G,X) транзитивна, а (H,Y) абелева. Тогда граф $\Gamma(H \wr G)$ является несвязным.

Доказательство. Поскольку G транзитивна, то |X| — делитель |G| и, следовательно, G содержит элемент порядка p, который будет циклом максимальной длины на X.

Зафиксируем $h \in H$ и положим $u = [c_h, g] \in H \wr G \setminus \mathcal{Z}(H \wr G)$, где g — цикл длины p и $c_h(x) = h$ для всех $x \in X$. Рассмотрим таблицу $v = [f, g'] \in H \wr G$ и допустим, что uv = vu. Тогда, так как g — цикл максимальной длины, он коммутирует в S_X (а значит, и в (G, X)) только со своими степенями (см. например, [11, с. 246], лемма 8.24). Другими словами, $g' = g^{\alpha}, \ \alpha = 1, 2, \ldots, p$, и должно выполняться равенство первых координат таблиц uv и vu, т. е.

$$c_h(x)f(x^g) = f(x)c_h(x^{g'})$$
 для всех $x \in X$.

Поскольку функция c_h постоянна при всех $x \in X$, а группа H абелева, из последнего равенства следует $f^g = f$, где g действует на X транзитивно. Тогда по лемме 1 получаем $f \equiv \text{const.}$

Таким образом, $v=[c_{h'},g^{\alpha}]$, где $c_{h'}(x)=h'$ при всех $x\in X$, а h' — некоторый фиксированный элемент группы H. С другой стороны, $g^{\alpha}=1_G$ тогда и только тогда, когда $\alpha=p$ (в этом случае $v\in \mathcal{Z}(H\wr G)$). Если же $\alpha=1,2,\ldots,p-1$, то g^{α} — цикл длины p и действует на X транзитивно. Следовательно, пары, не содержащиеся в $\mathcal{Z}(H\wr G)$, имеющие в качестве второго элемента p-цикл и постоянную функцию в качестве первого своего элемента, коммутируют только с парами такого же вида. При этом они образуют отдельную компоненту связности графа $\Gamma(H\wr G)$.

Пример 1 ([12], теорема 2). Граф коммутативности группы $\mathbb{Z}_p \wr \mathbb{Z}_p$ (считаем, что \mathbb{Z}_p действует на себе регулярно) несвязный.

3.1. Оценка диаметров сверху.

Лемма 5. Пусть (G,X), (H,Y) — группы подстановок, где |X|=m не является простым числом, группа (G,X) транзитивна, а группа (H,Y) абелева. Тогда граф $\Gamma(H \wr G)$ является связным и $\operatorname{d}(\Gamma(H \wr G)) \leq 5$.

Доказательство. Пусть $u = [f, g] \in H \wr G \setminus \mathcal{Z}(H \wr G)$.

Случай 1: g действует на X не транзитивно, т. е. g имеет по крайней мере два независимых цикла. Пусть S — множество символов в одном из циклов подстановки g. Положим $z=[f_1,1_G]$, где f_1 — такая функция из $\mathrm{Fun}(X,H)$, что $f_1(x)\neq 1_H$ при $x\in S$ и $f_1(x)=1_H$ при $x\in X\setminus S$. Тогда $f_1(x^g)=f_1(x)$ для всех $x\in X$. Более того, так как H абелева, то

$$uz = [ff_1^g, g] = [ff_1, g] = [f_1f, g] = zu.$$

Согласно лемме 3 получаем $z=[f_1,1_G]\not\in\mathcal{Z}(H\wr G)$. Следовательно, u соединена с z ребром в $\Gamma(H\wr G)$.

Случай 2: g действует на X транзитивно, т. е. g — цикл длины |X|=m. Поскольку m не является простым, существует простое p такое, что $m=p\cdot n$, где $n\geq 2$. Тогда g^p имеет по крайней мере два цикла и

 $u^p = [ff^g \dots f^{g^{p-1}}, g^p]$

удовлетворяет условиям случая 1. Следовательно, найдется такое $z \in \overline{H} \setminus \mathcal{Z}(H \wr G)$, что $u \sim u^p \sim z$ является путем длины 2 в $\Gamma(H \wr G)$.

Наконец, так как элементы множества \overline{H} перестановочны между собой, между двумя произвольными вершинами графа $\Gamma(H \wr G)$ всегда существует путь, длина которого не больше 5.

Оценка, содержащаяся в предыдущей лемме, является точной.

Пример 2. Пусть S_9 — симметрическая группа, а группа \mathbb{Z}_2 действует на себе регулярно. Тогда $d(\Gamma(\mathbb{Z}_2 \wr S_9)) = 5$.

Доказательство. По лемме 5 диаметр графа $\Gamma(\mathbb{Z}_2 \wr S_9)$ не превышает 5. Докажем, что найдутся такие две таблицы, расстояние между которыми в $\Gamma(\mathbb{Z}_2 \wr S_9)$ равно 5.

Пусть $g_1=(1,2,3,4,5,6,7,8,9)$ и $g_2=(1,4,3,5,6,7,8,9,2)$ — два цикла из S_9 . Тогда $\rho(g_1,g_2)=5$ в $\Gamma(S_9)$ (это можно показать путем непосредственных вычислений, например, используя GAP [13]). Рассмотрим таблицы $u=[c_0,g_1]$ и $v=[c_0,g_2]$ из $\mathbb{Z}_2 \wr S_9$, где $c_0(x)=0$ при всех $x\in X$.

Допустим, что $u'=[f,g]\not\in\mathcal{Z}(\mathbb{Z}_2\wr S_9)$ и коммутирует с u. Тогда $g_1\sim g$ и $c_0(x)f(x^{g_1})==f(x)c_0(x^g)$ для всех $x\in X$. Поскольку c_0 — постоянная функция, из последнего равенства следует, что $f^{-1}(x)f(x^{g_1})=1_H$ при всех $x\in X$. По лемме 1, так как g_1 действует на X транзитивно, функция f также должна быть постоянной. С другой стороны, поскольку g_1 — цикл длины |X| (и, таким образом, g_1 коммутирует только со своими собственными степенями), $g=g_1^\alpha$ для некоторого $\alpha\in\{0,1,\ldots,8\}$. При этом если $\alpha=0$, то $u'\in\mathcal{Z}(\mathbb{Z}_2\wr S_9)$. Значит, $u'=[c_{h_1},g_1^\alpha]$, где $c_{h_1}(x)=h_1$ при всех $x\in X$, $\alpha\in\{1,2,\ldots,8\}$, h_1 — некоторый фиксированный элемент группы H.

Аналогично, если $v' \sim v$, то $v' = [c_{h_2}, g_2^{\beta}]$, где $c_{h_2}(x) = h_2$ при всех $x \in X, \beta \in \{1, 2, \dots, 8\}$, h_2 — некоторый фиксированный элемент группы H.

Предположим, что существует таблица $w=[f_3,g_3]$, соединяющая u' и v' в $\Gamma(\mathbb{Z}_2 \wr S_9)$, т. е. u'w=wu' и v'w=wv'. Сравнивая первые компоненты таблиц из последних двух равенств и учитывая, что c_{h_1} и c_{h_2} постоянны, получаем равенства

$$f_3^{-1}(x)f_3(x^{g_1^\alpha})=1_G\quad \text{и}\quad f_3^{-1}(x)f_3(x^{g_2^\beta})=1_G,\quad x\in X.$$

Если g_1^{α} и/или g_2^{β} — циклы максимальной длины, то по лемме 1 функция f_3 постоянна на X. Осталось рассмотреть случаи, когда $\alpha \in \{3,6\}$ и $\beta \in \{3,6\}$. Получаем

$$g_1^3 = (1, 4, 7)(2, 5, 8)(3, 6, 9), \qquad g_1^6 = (1, 7, 4)(2, 8, 5)(3, 9, 6),$$

$$g_2^3 = (1,5,8)(4,6,9)(3,7,2), g_2^6 = (1,8,5)(4,9,6)(3,2,7).$$

При любом из четырех возможных случаев выбора α и β орбиты соответствующих подстановок g_1^{α} и g_2^{β} перекрываются. Таким образом, f_3 постоянна при всех значениях аргументов.

С другой стороны, так как расстояние между g_1 и g_2 в $\Gamma(S_9)$ равно 5 и S_9 имеет тривиальный центр, $g_3=\mathrm{id}$ — тождественная подстановка.

Следовательно, $w \in \mathcal{Z}(\mathbb{Z}_2 \wr S_9)$ и $\rho(u, v) \geq 5$.

Лемма 6. Пусть (G,X), (H,Y) — группы подстановок, |X|=m не является простым числом, группа (G,X) транзитивна и не содержит циклов максимальной длины, а группа (H,Y) абелева. Тогда граф $\Gamma(H \wr G)$ является связным и $\operatorname{d}(\Gamma(H \wr G)) \leq 3$.

Доказательство. Пусть $u=[f_1,g_1]$ и $v=[f_2,g_2]$ — произвольные элементы группы $H\wr G$. Поскольку G не содержит ни одного цикла максимальной длины, g_1 имеет по крайней мере два цикла (орбиты) на X. Пусть C_{g_1} — один из этих циклов.

Рассмотрим таблицу $u'=[f_3,1_G]$, где $f_3\in \operatorname{Fun}(X,H),\ f_3(x)=h\neq 1_H$ (h — некоторый фиксированный элемент группы H) при $x\in C_{g_1}$ и $f_3(x)=1_H$ при $x\not\in C_{g_1}$. Тогда путем непосредственных вычислений можно показать, что uu'=u'u и $u'\not\in \mathcal{Z}(H\wr G)$ (лемма 3). Аналогично, найдется таблица $v'\in H\wr G\setminus \mathcal{Z}(H\wr G)$ такая, что $v'=[f_4,1_G]$ и $v\sim v'$.

Наконец, поскольку $u' \sim v'$, расстояние между любыми таблицами u и v в $\Gamma(H \wr G)$ не превышает 3.

Пример 3. Рассмотрим группу $V_4 = \langle (1,2)(3,4), (1,4)(2,3) \rangle$ (четверная группа Клейна), которая транзитивна на $\{1,2,3,4\}$ и не содержит циклов длины 4. Тогда $d(\Gamma(\mathbb{Z}_2 \wr V_4)) = 3$.

Лемма 7. Пусть (G,X), (H,Y) — группы подстановок, |X|=m не является простым числом, группа (G,X) импримитивна, а группа (H,Y) абелева. Тогда граф $\Gamma(H\wr G)$ является связным и $\mathrm{d}(\Gamma(H\wr G))\leq 4$.

Доказательство. Пусть $u = [f_1, g_1], v = [f_2, g_2]$ — произвольные нецентральные элементы группы $H \wr G$. Учитывая лемму 6, достаточно рассмотреть случаи, когда один из элементов g_1, g_2 (или оба одновременно) — циклы максимальной длины.

Случай 1: g_1 — цикл максимальной длины, а g_2 нет. Тогда $u^p = [f_1', g_1^p]$, где $p \mid m, p \neq 1$ и $p \neq m$, является нецентральным (так как $g_1^p \neq 1_G$) элементом группы $H \wr G$ и при этом g_1 уже не будет циклом максимальной длины. Поскольку $u \sim u^p$, по лемме 6 получаем $\rho(u, v) \leq 4$. Если g_2 — цикл максимальной длины, а g_1 нет, то ситуация будет аналогичной.

Случай 2: g_1,g_2 — циклы максимальной длины. Пусть $\mathcal{S}=\{S_1,S_2,\dots,S_n\}$ — блоки системы импримитивности группы G. Тогда $n\mid m$ и n< m. Рассмотрим блок S_1 . Поскольку g_1 — цикл максимальной длины, g_1 действует на \mathcal{S} транзитивно (т. е. циклом). Тогда $S_1^{g_1^n}=S_1$, при этом, очевидно, $g_1^n\neq 1_G$. Аналогично, $S_1^{g_2^n}=S_1$ и $g_2^n\neq 1_G$.

Таким образом, $u^n = [f_1', g_1^n]$ и $v^n = [f_2', g_2^n]$ — нецентральные элементы группы $H \wr G$. Осталось доказать, что в $H \wr G$ существует нецентральный элемент w такой, что $u^n \sim w \sim v^n$. Для этого положим $w = [f, 1_G]$, где $f(x) = h \neq 1_H$ (h — некоторый фиксированный элемент группы H) при $x \in S_1$ и $f(x) = 1_H$ при $x \in X \backslash S_1$. Непосредственные вычисления показывают, что $u^n \sim w$ и $v^n \sim w$.

Следовательно, $u \sim u^n \sim w \sim v^n \sim v$ — путь длины 4 в $\Gamma(H \wr G)$.

Объединяя леммы 4-7, получаем теорему 1.

Итак, для того чтобы диаметр графа коммутативности сплетения не превышал 4, достаточно, чтобы (G,X) была импримитивной, но это условие не является необходимым. Например, $\operatorname{diam}(\Gamma(\mathbb{Z}_2 \wr S_6)) = 4$.

Вопрос. Пусть (G,X), (H,Y) — группы подстановок, причем группа (G,X) транзитивна, а группа (H,Y) абелева. При каких условиях диаметр графа коммутативности группы $H \wr G$ равен 5 ?

3.2. Оценки диаметров снизу. Оценка диаметра графа $\Gamma(H \wr G)$ снизу предполагает знание дополнительной информации о строении групп (G,X) и (H,Y). Для групп с циклами максимальной длины имеет место следующее утверждение.

Лемма 8. Пусть (G,X), (H,Y) — группы подстановок с циклами максимальной длины, $X = \{x_1, x_2, \ldots, x_n\}, Y = \{y_1, y_2, \ldots, y_m\},$

$$u = [f_n, g] \tag{3}$$

— таблица из $H \wr G$ такая, что g — цикл максимальной длины в (G,X), $f_n(x_n) = h$, где h — цикл максимальной длины в (H,Y), и $f_n(x) = 1_H$ при $x \neq x_n$. Тогда u — цикл максимальной длины в $(H \wr G, Y \times X)$.

Доказательство. Будем считать, что $g=(x_1,x_2,\ldots,x_n),\ h=(y_1,y_2,\ldots,y_m).$ Покажем, что u действует на $Y\times X$ транзитивно, т. е. для любых $y_j\in Y$ и $x_i\in X,\ 1\leq j\leq m,\ 1\leq i\leq n,$ существует такое α , что $(y_1,x_1)^{u^\alpha}=(y_j,x_i).$

Для произвольного α путем непосредственных вычислений имеем

$$u^{\alpha} = [f_n f_n^g \dots f_n^{g^{\alpha-1}}, g^{\alpha}].$$

При этом если $\alpha = n$, то для любого $x_i \in X$

$$f_n(x_i)f_n(x_i^g)\dots f_n(x_i^{g^{n-1}}) = f_n(x_i)f_n(x_{i+1})\dots f_n(x_n)f_n(x_1)\dots f_n(x_{i-1}) = h,$$

т. е. $u^n=[c_h,1_G],\, c_h(x)=h$ при всех $x\in X.$ Более того, $(u^n)^k=[c_{h^k},1_G],$ где $c_{h^k}(x)=h^k$ при всех $x\in X.$ При этом если $i\in\{1,2,\ldots,n\},$ то

$$(y_1, x_1)^{u^{i-1}} = (y_1^{f_n(x_1)f_n(x_1^g) \dots f_n(x_1^{g^{i-2}})}, x_1^{g^{i-1}}) = (y_1^{f_n(x_1)f_n(x_2) \dots f_n(x_{i-1})}, x_i) = (y_1, x_i).$$

Пусть $\alpha = (i-1) + n(j-1)$, где $i, j \in \{1, 2, \dots, n\}$. Тогда

$$(y_1, x_1)^{u^{\alpha}} = (y_1, x_1)^{u^{i-1} \cdot (u^n)^{j-1}} = (y_1, x_i)^{(u^n)^{j-1}} = (y_1^{n-1}, x_i)^{-1} = (y_1, x_i)^{(n-1)}$$

что и требовалось доказать.

Лемма 9. Пусть (G,X),(H,Y) — группы подстановок с циклами максимальной длины, группа (G,X) транзитивна, а группа (H,Y) абелева. Тогда $\mathrm{d}(\Gamma(H\wr G))\geq 4$.

Доказательство. Пусть |X|=n и $W=H\wr G$. Рассмотрим таблицы $u=[f_1,g]$ и $v=[e_H,g]$, где $g=(x_1,x_2,\ldots,x_n)$ — цикл длины n в $(G,X),\ u$ — таблица вида (3), т. е. $f_1(x_1)=h$, где h — цикл максимальной длины в $(H,Y),\$ и $f_1(x)=1_H$ при $x\neq x_1,\$ а $e_H(x)=1_H$ при всех $x\in X$. Докажем, что $\rho(u,v)\geq 4$. Для этого достаточно показать, что пересечение централизаторов любых элементов u_1 и v_1 таких, что $u_1\sim u$ и $v_1\sim v$, лежит в центре группы W.

Согласно лемме 8 таблица u — это цикл максимальной длины в W. Тогда u перестановочна в W только со своими степенями, т. е. если $u \sim u_1$, то

$$u_1 = \left[\prod_{i=0}^{\alpha - 1} f_1^{g^i}, g^{\alpha} \right],$$

где $\alpha = \gamma + n\delta$, $\gamma = 1, 2, \ldots, n-1$ и $\delta = 0, 1, \ldots, m-1$. Другими словами, α — это число от 1 до nm-1, которое не делится нацело на n, так как в противном случае (если $n \mid \alpha$) таблица u_1 принадлежит центру сплетения (вторая компонента равна 1_G , а первая — это функция, принимающая одинаковые значения при всех $x \in X$ (см. доказательство предыдущей леммы)).

Аналогично, поскольку g — цикл максимальной длины в (G,X) и при умножении таблиц из W умножаются их соответствующие вторые компоненты, из условия $v\sim v_1$ следует, что $v_1=[f_2,g^\beta]$, где $\beta=1,2,\ldots,n-1$. Более того, из равенства первых компонент таблиц vv_1 и v_1v следует, что $f_2=f_2^g$. Последнее, согласно лемме 1, означает, что $f_2\equiv {\rm const}-{\rm постоянная}$ функция. Итак,

$$v_1 = [\text{const}, g^{\beta}],$$

где $\beta = 1, 2, \dots, n-1$.

Предположим теперь, что $u_1 \sim v_1$. Тогда из равенства первых компонент таблиц u_1v_1 и v_1u_1 получаем

$$\prod_{i=0}^{\alpha-1} f_1^{g^i} = \prod_{i=0}^{\alpha-1} f_1^{g^\beta g^i} \quad \text{или} \quad \prod_{i=0}^{\alpha-1} f_1^{g^i} = \prod_{i=\beta}^{\alpha+\beta-1} f_1^{g^i}.$$

Последнее равносильно равенству

$$\prod_{i=0}^{\gamma-1} f_1(x^{g^i}) = \prod_{i=\beta}^{\beta+\gamma-1} f_1(x^{g^i}),\tag{4}$$

которое должно выполняться при всех $x \in X$. Возможны два случая.

- 1. Если $\beta < \gamma$, то выберем x_i , удовлетворяющее условию $x_i^{g^\beta} = x_2$. Тогда в равенстве (4) слева в произведении будет один сомножитель, равный h (а именно, $f_1(x_1)$; все остальные сомножители, которых не больше чем n-1, равны 1_H). При этом произведение справа можно представить как $f_1(x_2)f_1(x_3)\dots f_1(x_{\gamma+1}), \ \gamma+1 \le n$, которое равно 1_H . Таким образом, получаем противоречие $h=1_H$.
- 2. Если $\beta \geq \gamma$, то выберем x_i , удовлетворяющее условию $x_i^{g^{\gamma}} = x_2$. Тогда $x_i^{g^{\gamma-1}} = x_1$ и в равенстве (4) произведение слева равно h, а произведение справа снова не содержит $f_1(x_1)$. Действительно, $x_i^{g^{\beta}} = x_j$, где $j \geq 2$ и $j \neq i$, а $x_i^{g^{\beta+\gamma-1}} = x_1^{g^{\beta}} = x_{\beta+1}$, где $\beta+1 \leq n$.

Полученные противоречия показывают, что u_1 и/или v_1 должны принадлежать центру сплетения.

В качестве непосредственного следствия леммы 7 и леммы 9 получаем теорему 2.

4. Примеры оценок диаметров графов коммутативности для некоторых p-групп. Нам понадобится следующее утверждение, которое может быть легко обобщено на любое конечное число сомножителей.

Лемма 10 ([7], теорема 1.2). Пусть $G = A \times B$. Тогда:

- 1) если A и B неабелевы, то $d(\Gamma(G)) \leq \min\{3, d(\Gamma(A)), d(\Gamma(B))\};$ при этом если граф коммутативности каждой из групп имеет диаметр не меньше 3, то $d(\Gamma(G)) = 3;$
 - 2) если одна из групп, например B, абелева, то $d(\Gamma(G)) = d(\Gamma(A))$.
- **4.1.** Силовские p-подгруппы симметрических групп. Пусть S_{p^m} симметрическая группа степени $p^m, m \in \mathbb{N}$. Тогда ее силовская p-подгруппа $\mathcal{P}_{p,m}$ может быть описана в терминах сплетений циклических групп простого порядка: $\mathcal{P}_{p,m} \cong \mathbb{Z}_p \wr \mathbb{Z}_p \wr \ldots \wr \mathbb{Z}_p$ (m множителей). Если $n = a_0 + a_1 p + a_2 p^2 + \ldots + a_t p^t$, где $0 \le a_i < p$ для всех $i \in \{0, 1, \ldots, t\}$, то силовскую p-подгруппу $\mathrm{Syl}_p(S_n)$ группы S_n можно представить в виде прямого произведения базовых подгрупп:

$$\operatorname{Syl}_p(S_n) \cong \mathcal{P}_{p,1}^{a_1} \times \mathcal{P}_{p,2}^{a_2} \times \ldots \times \mathcal{P}_{p,t}^{a_t}.$$

Силовскую p-подгруппу группы S_{p^m} при $m \geq 3$ можно представить как $\mathcal{P}_{p,m} = \mathbb{Z}_p \wr \mathcal{P}_{p,m-1}$, где группа $\mathcal{P}_{p,m-1}$ импримитивна с циклом максимальной длины (см., например, [14], теорема 2.4.2, и [15], лемма 6). Следовательно, по теореме 2 получаем $d(\Gamma(\mathcal{P}_{p,m})) = 4$. Отсюда непосредственно следует один из результатов [12].

Пример 4 ([12], теорема 4). Пусть P — силовская p-подгруппа симметрической группы S_n . Тогда:

- 1) если $n < p^2$, то группа P абелева;
- 2) если $p^2 \le n < 2p^2$, то граф $\Gamma(P)$ несвязный;
- 3) если $n = a_0 + a_1 p + p^k$, где $0 \le a_0, a_1 < p$, а $k \ge 3$, то граф $\Gamma(P)$ связный с диаметром 4;
- 4) в остальных случаях граф $\Gamma(P)$ связный с диаметром 3.

4.2. Силовские p-подгруппы полной линейной группы над конечным полем из q элементов, p > 2. Пусть p — нечетное простое число и $GL_n(q)$ — полная линейная группа степени n над конечным полем \mathbb{F}_q из q элементов. Если $p \mid q$, то силовская p-подгруппа группы $GL_n(q)$ изоморфна унитреугольной (специальной треугольной) группе матриц. Другими словами,

$$\operatorname{Syl}_n(GL_n(q)) \cong UT_n(q)$$
 при $p \mid q$.

Граф коммутативности $\Gamma(UT_3(q))$ несвязный и имеет q+1 компоненту связности, каждая из которых — полный подграф на q^2-q вершинах (см. [12], пример 2.2). Если же $n\geq 4$, то граф $\Gamma(UT_n(q))$ связный и имеет диаметр равный 3 (см. [7], утверждение 4.1).

Если $(p,q)=1,\ p>2,$ то силовская p-подгруппа группы $GL_n(q)$ конструируется следующим образом (подробнее см. в [16]). Пусть r определяется из уравнения $q^e-1=p^rm$, где (p,m)=1 и q^e — наименьшая степень числа q такая, что $q^e\equiv 1 \pmod{p}$. Тогда силовская p-подгруппа группы $GL_e(q)$ изоморфна \mathbb{Z}_{p^r} (циклической группе порядка p^r). Обозначим $Q_{p,0}=\mathbb{Z}_{p^r}$ и $Q_{p,i}=\mathbb{Z}_{p^r}$ д $P_{p,i}$ при i>0 (здесь $P_{p,i}$ обозначает силовскую p-подгруппу симметрической группы $S_{p^i}-i$ -кратное сплетение циклических групп порядка p). Предположим, что n=b+ea, где $0\leq b< e$, и $a=a_0+a_1p+a_2p^2+\ldots+a_tp^t,\ 0\leq a_i< p$ для всех $i\in\{0,1,\ldots,t\}$. Тогда

$$\operatorname{Syl}_p(GL_n(q)) \cong \mathcal{Q}_{p,0}^{a_0} \times \mathcal{Q}_{p,1}^{a_1} \times \mathcal{Q}_{p,2}^{a_2} \times \ldots \times \mathcal{Q}_{p,t}^{a_t}$$

— силовская p-подгруппа группы $GL_n(q)$.

В случае (p,q)=1 ключевую роль играют группы $\mathcal{Q}_{p,i}$. Если i>1, то по теореме 2 граф $\Gamma(\mathcal{Q}_{p,i})$ связный и имеет диаметр 4. При этом граф коммутативности группы $\mathcal{Q}_{p,1}=\mathbb{Z}_{p^r}\wr\mathbb{Z}_p$ является несвязным (лемма 4).

Пример 5. Пусть (p,q)=1, параметры r,b,a определены так, как описано выше, и $P=\mathrm{Syl}_n(GL_n(q))$. Тогда:

- 1) если a < p, то группа P абелева;
- 2) если $a = a_0 + p$, где $0 \le a_0 < p$, то граф $\Gamma(P)$ несвязный;
- 3) если $a = a_0 + p^k$, где $0 \le a_0 < p, k \ge 2$, то граф $\Gamma(P)$ связный с диаметром 4;
- 4) в остальных случаях граф $\Gamma(P)$ связный с диаметром 3.

Доказательство. 1. Если a < p, то $P \cong \mathcal{Q}_{p,0}^{a_0}$ — абелева группа.

- 2. Если $a=a_0+p$, где $0\leq a_0< p$, то $P\cong \mathcal{Q}_{p,0}^{a_0}\times \mathcal{Q}_{p,1}$. Тогда по лемме 10 получаем $\operatorname{d}(\Gamma(P))=\operatorname{d}(\Gamma(\mathcal{Q}_{p,0}^{a_0}\times \mathcal{Q}_{p,1}))=\operatorname{d}(\Gamma(\mathcal{Q}_{p,1}))=\infty$ граф не связный.
- 3. Если $a = a_0 + p^k$, где $0 \le a_0 < p, \, k \ge 2$, то $P \cong \mathcal{Q}_{p,0}^{a_0} \times \mathcal{Q}_{p,k}$ и, аналогично предыдущему пункту, $d(\Gamma(P)) = d(\Gamma(\mathcal{Q}_{p,k})) = 4$.

4. В остальных случаях в разложении P на прямое произведение хотя бы два сомножителя будут неабелевыми с диаметром соответствующего графа коммутативности не меньше 4. Применяя лемму 10, получаем нужный результат.

Аналогичную классификацию касательно диаметров графов коммутативности можно получить и в случае, когда p=2.

- 1. *Iranmanesh A., Jafarzadeh A.* On the commuting graph associated with the symmetric and alternating groups // J. Algebra and Appl. 2008. 7, № 1. P. 129 146.
- 2. *Giudici M., Parker C.* There is no upper bound for the diameter of the commuting graph of a finite group [электронный ресурс] / http://arxiv.org/abs/1210.0348v1.
- 3. Akbari S., Mohammadian A., Radjavi H., Raja P. On the diameters of commuting graphs // Linear Algebra and Appl. 2006. 418, № 1. P. 161–176.
- 4. Могхаддамфар А. Р. О графах некоммутативности // Сиб. мат. журн. 2006. 47, № 5. С. 1112 1116.
- 5. Abdollahi A., Akbari S., Dorbidi H., Shahverdi H. Commutativity pattern of finite non-abelian p-groups determine their orders // Communs Algebra. 2013. 41, № 2. P. 451–461.
- 6. *Morgan G. L., Parker C. W.* The diameter of the commuting graph of a finite group with trivial centre [электронный ресурс] / Режим доступа: http://arxiv.org/abs/1301.2341v1.
- 7. *Guidici M., Pope A.* On bounding the diameter of the commuting graph of a group [электронный ресурс] / http://arxiv.org/abs/1206.3731.
- 8. *Kaloujnine L.* La structure des *p*-groupes de Sylow des groupes symetriques finis // Ann. sci. Ecole norm. supér. 1948. **65**. P. 239 276.
- 9. *Олийнык А. С., Сущанский В. И.* Группы ZC-автоматных преобразований // Сиб. мат. журн. 2010. **51**, № 5. С. 1102 1119.
- 10. Neumann P. M. On the structure of standard wreath products of groups // Math. Z. 1964. 84. S. 343 373.
- 11. *Isaacs I. M.* Finite group theory // Grad. Stud. Math. Providence, Rhode Island: Amer. Math. Soc., 2008. 92. 350 p.
- 12. *Лещенко Ю. Ю., Зоря Л. В.* Оценки диаметров графов коммутативности силовских p-подгрупп симметрических групп // Карпат. мат. публ. − 2013. − **5**, № 1. − C. 70 − 78.
- 13. The GAP group, GAP groups, algorithms, and programming, Version 4.6.3; 2013 / http://www.gap-system.org.
- 14. *Сущанський В. І., Сікора В. С.* Операції на групах підстановок. Теорія та застосування. Чернівці: Рута, 2003. 256 с.
- 15. *Slupik A. J., Sushchansky V. I.* Minimal generating sets and Cayley graphs of Sylow *p*-subgroups of finite symmetric groups // Algebra and Discrete Math. 2009. **4**. P. 167–184.
- 16. Weir A. J. Sylow p-subgroups of the classical groups over finite fields with characteristic prime to p // Proc. Amer. Math. Soc. 1955. 6, № 4. P. 529–533.

Получено 25.06.13, после доработки — 14.11.13