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I-n-COHERENT RINGS, I-n-SEMIHEREDITARY RINGS
AND I-REGULAR RINGS

I-n-KOT'EPEHTHI KUIbLS, I-n-HAIIIBCITAAKOBI KIUIbLSA
TA I-PET'YJIAPHI KUUIBIIA

Let R be aring, I an ideal of R and n a fixed positive integer. We define and study /-n-injective modules, I-n-flat modules.
Moreover, we define and study left I-n-coherent rings, left /-n-semihereditary rings and I-regular rings. By using the
concepts of I-n-injectivity and [-n-flatness of modules, we also present some characterizations of left I-n-coherent rings,
left /-n-semihereditary rings, and I-regular rings.

Hexaii R — kinbue, I — igean R, a n — QikcoBaHe JogaTHE Iijie YUCI0. MU BU3HAYAEMO Ta BUBYAEMO [-n-1H’€KTUBHI
Mopxyii Ta [-n-mtocki Mogymi. KpiM Toro, BU3Ha4aeMo Ta BUBYA€EMO JIiBi [-n-KOT€PEHTHI Kb, JTiBi J-n-HamiBCIIaIKOBI
KibIg Ta I-peryispHi Kbl 3a JONOMOTOK0 KOHIENIii /-n-iH’€KTUBHOCTI Ta [-n-10JI0rocTi MOAYIiB TaKOK HABOAUMO
JIesIKi XapaKTePUCTUKH JBUX [-1n-KOrepeHTHUX KiJlellb, JiBUX [-n-HamiBCIaAKOBUX Kilelb Ta [-pery/sipHUX Kilelpb.

1. Introduction. Throughout this paper, n is a positive integer, R is an associative ring with identity,
I is an ideal of R, J = J(R) is the Jacobson radical of R and all modules considered are unitary.

Recall that a ring R is called left coherent if every finitely generated left ideal of R is finitely
presented; a ring R is called left semihereditary if every finitely generated left ideal of R is projective;
a ring R is called von Neumann regular (or regular for short) if for any a € R, there exists b € R
such that a = aba. Left coherent rings, left semihereditary rings, von Neumann regular rings and
their generalizations have been studied by many authors. For example, a ring R is said to be left
n-coherent [1] if every n-generated left ideal of R is finitely presented; a ring R is said to be /left
J-coherent [8] if every finitely generated left ideal in J(R) is finitely presented; a ring R is said to be
left n-semihereditary [24, 25] if every n-generated left ideal of R is projective; a ring R is said to be
left J-semihereditary [8] if every finitely generated left ideal of R is projective; a commutative ring
R is called an n-von Neumann regular ring [14] if every n-presented right R-module is projective.

In this article, we extend the concepts of left n-coherent rings and left J-coherent rings to left
I-n-coherent rings, extend the concepts of left n-semihereditary rings and left J-semihereditary
rings to left I-n-semihereditary rings, and extend the concept of regular rings to I-regular rings,
respectively. We call a ring R left I-n-coherent (resp., left /-n-semihereditary, /-regular) if every
finitely generated left ideal in [ is finitely presented (resp., projective, a direct summand of pR). Left
I-1-coherent rings and left /-1-semihereditary rings are also called left I-P-coherent rings and left
I PP rings respectively.

To characterize left I-n-coherent rings, left /-n-semihereditary rings and I-regular rings, in Sec-
tions 2 and 3, I-n-injective modules and I-n-flat modules are introduced and studied. I-1-injective
modules and 7-1-flat modules are also called I-P-injective modules and /-P-flat modules respec-
tively. In Sections 4, 5, and 6, I-n-coherent rings, I-n-semihereditary and I-regular rings are in-
vestigated respectively. It is shown that there are many similarities between I-n-coherent rings and
coherent rings, /-n-semihereditary rings and semihereditary rings, and between [-regular rings and
regular rings. For instance, we prove that R is a left /-n-coherent ring < any direct product of I-
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n-flat right R-modules is I-n-flat < any direct limit of I-n-injective left R-modules is I-n-injective
& every right R-module has an I-n-flat preenvelope; R is a left I-n-semihereditary ring < R is left
I-n-coherent and submodules of I-n-flat right R-modules are /-n-flat < every quotient module of an
I-n-injective left R-module is I-n-injective < every left R-module has a monic I-n-injective cover
& every right R-module has an epic I-n-flat envelope; R is an I-regular ring < every left R-module
is I-P-injective < every left R-module is I-P-flat < R is left I PP and left /- P-injective.

For any module M, M* denotes Homg(M, R), and M denotes Homz (M, Q/Z), where Q is
the set of rational numbers, and Z is the set of integers. In general, for a set .S, we write S™ for the
set of all formal (1 x n)-matrices whose entries are elements of S, and S,, for the set of all formal
(n x 1)-matrices whose entries are elements of S. Let N be a left R-module, X C N,, and A C R".
Then we definite ry, (A) = {u € Np,: au =0Va € A}, and Izgn(X) ={a € R": ax =0 Vx € X}.

2. I-n-injective modules. Recall that a left R-module M is called F-injective [11] if every R-
homomorphism from a finitely generated left ideal to M extends to a homomorphism of R to M, a
left R-module M is called n-injective [16] if every R-homomorphism from an n-generated left ideal
to M extends to a homomorphism of R to M, 1-injective modules are also called P-injective [16],
aring R is called left P-injective [16] if pR is P-injective. P-injective ring and its generalizations
have been studied by many authors, for example, see [16, 17, 19, 22, 26]. A left R-module M
is called J-injective [8] if every R-homomorphism from a finitely generated left ideal in J(R) to
M extends to a homomorphism of R to M. We extends the concepts of n-injective modules and
J-injective modules as follows.

Definition 2.1. A left R-module M is called I-n-injective, if every R-homomorphism from an
n-generated left ideal in I to M extends to a homomorphism of R to M. A left R-module M is called
I-P-injective if it is I-1-injective.

It is easy to see that direct sums and direct summands of /-n-injective modules are /-n-injective.
A left R-module M is n-injective if and only if M is R-n-injective, a left R-module M is J-injective
if and only if M is J-n-injective for every positive integer n. Follow [2], a ring R is said to be left
Soc-injective if every R-homomorphism from a semisimple submodule of zpR to R extends to R.
Clearly, if Soc(gR) is finitely generated, then R is left Soc-injective if and only if g R is Soc(grR)-n-
injective for every positive integer n. We remark that J- P-injective modules are called .J P-injective
in [22].

Theorem 2.1. Let M be a left R-module. Then the following statements are equivalent:

(1) M is I-n-injective.

(2) Ext'(R/T, M) = 0 for every n-generated left ideal T in I.

(3) ras, lpn (@) = aM for all o € I,.

@) If = (my1,ma,...,my) € M, and o € I, satisfy lgn(c) C 1gn(2), then x = ay for some
y € M.

(5) ra, (R"BN1pn(a)) =1, (B) + oM forall o € I, and B € R™™".

(6) M is I-P-injective and rp (K N L) = rp(K) + ry (L), where K and L are left ideals in 1
such that K + L is n-generated.

(7) M is I-P-injective and ry (K N L) = ray(K) + ra (L), where K and L are left ideals in 1
such that K is cyclic and L is (n — 1)-generated.

(8) For each n-generated left ideal T in I and any f € Hom(T, M), if (o, g) is the pushout of
(f,7) in the following diagram:
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T%R

SR
M —=— P
where 1 is the inclusion map, then there exists a homomorphism h: P — M such that ha = 1,;.

Proof. (1) < (2) and (8) = (1) are clear.

(1) = (3). Always aM C rp lpn(a). If € rpy 1gn(a), then the mapping f: R"a — M;
Ba — Pz is a well-defined left R-homomorphism. Since M is I-n-injective and R"« is an n-
generated left ideal in I, f can be extended to a homomorphism ¢ of R to M. Let g(1) = y, then
x=ay € aM. Sory,lpn () C aM. And thus ryz, 1z (o) = oM.

3)= (). Let T" = Zjﬂ Ra; be an n-generated left ideal in I and f be a homomorphism
from T to M. Write u; = f(a;), i =1,2,..., n,u = (ug,ug,...,u,)’, @« = (ai,as,...,a,), then
u € ryr, lpn (). By (3), there exists some x € M such that u = ax. Now we define g: R — M;
r — rx, then g is a left R-homomorphism which extends f.

(3) = (4). If 1gn(a) C 1pn(x), where o € I, x € My, then © € rpg 1pn(z) C ray, lgn(a) =
= aM by (3). Thus (4) is proved.

(4) = (5). Let x € rpy, (R"B N 1gn(a)), then 1gn(Ba) C lgn(Bz). By (4), Bx = Bay for
some y € M. Hence © — ay € rpy, (B), proving that ryz, (R"B(1gn(a)) C ray, (B) + oM. The
other inclusion always holds.

(5) = (3). By taking B = E in (5).

(1) = (6). Clearly, M is I-P-injective and

ra(K) +ryu(L) Cru(KNL).

Conversely, let x € rp (K N L). Then f: K + L — M is well defined by f(k + 1) = kx for
all k € K and [ € L. Since M is I-n-injective, f = -y for some y € M. Hence, for all £k € K and
l € L, we have ky = f(k) = kz and ly = f(I) = 0. Thus x —y € ry(K) and y € rp (L), so
r=(x—-y)+yecrm(K)+ru(L).

(6) = (7) is trivial.

(7) = (1). We proceed by induction on n. If n = 1, then (1) is clearly holds by hypothesis.
Suppose n > 1. Let T' = Raj; + Ras + ... + Ra, be an n-generated left ideal in I, 77 = Ra;
and 7> = Ras + ... + Ray. Suppose f: T — M is a left R-homomorphism. Then f|p, = ‘1
by hypothesis and f|p, = -y2 by induction hypothesis for some y;,y2 € R. Thus y; — y2 €
€ ’I”M(Tl ﬂTQ) = TM(Tl) —I—TM(TQ). So y1 — y2 = 21 + 2o for some z; € TM(Tl) and 2o € TM(TQ).
Lety = y1 — 21 = y2+ 22. Then for any a € T, let a = by + bo, by € T, ba € T3, we have b1z; = 0,
bozg = 0. Hence f(a) = f(b1)+ f(b2) = biyi +baye = bi(y1 — 21) + ba(y2 + 22) = by +bay = ay.
So (1) follows.

(1) = (8). Without loss of generality, we may assume that P = (M @& R)/W, where W =
={f(a),—i(a) |a €T}, g(r) = (0,7)+ W, a(z) = (x,0) + W for z € M and r € R. Since M is
I-n-injective, there is ¢ € Homp(R, M) such that pi = f. Define h[(z,r) + W] = z + ¢(r) for all
(z,r) + W € P. It is easy to check that h is well-defined and ha = 1.

Theorem 2.1 is proved.

Corollary 2.1. Let M be a left R-module. Then the following statements are equivalent:

(1) M is n-injective.

(2) ExtY(R/T, M) = 0 for every n-generated left ideal T.
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(3) ralpn () = aM for all o« € Ry,.

4) If x = (m1,ma,...,my) € M, and o € Ry, satisfy 1gn(a) C lgn(z), then z = ay for
some y € M.

(5) rar,, (R"BN1gn(a)) =rp, (B) + oM forall o € Ry, and B € R ™.

(6) M is P-injective and ryf(K N L) = rp(K) + rar(L), where K and L are left ideals such
that K + L is n-generated.

(7) M is P-injective and ryf(K N L) = rp(K) + rar (L), where K and L are left ideals such
that K is cyclic and L is (n — 1)-generated.

(8) For each n-generated left ideal T and any f € Hom(T, M), if (c, g) is the pushout of (f,1)
in the following diagram:

T — 5 R

b
M —— P
where 1 is the inclusion map, there exists a homomorphism h: P — M such that ha = 1.
We note that the equivalence of (1), (3), (6), (7) in Corollary 2.1 appears in [6] (Corollaries 2.5
and 2.10).
Corollary 2.2. Let {M,}oca be a family of right R-modules. Then H ca M,, is I-n-injective
(03
if and only if each M, is I-n-injective.
. . 1 ~ 1
Proof. 1t follows from the isomorphism Ext <N, HaeA Ma> = HaeA Ext (N, M,).

Recall that an element a € R is called left I-semiregular [18] if there exists e2 = e € Ra such
that a — ae € I, and R is called left I-semiregular if every element is /-semiregular. A ring R is
called semiregular if R/J(R) is regular and idempotents lift modulo J(R). It is well known that
a ring R is semiregular if and only if it is left (equivalently right) J-semiregular [19]. Next, we
consider a case when [-n-injective modules are n-injective.

Theorem 2.2. Let R be a left I-semiregular ring. Then a left R-module M is n-injective if and
only if M is I-n-injective.

Proof. Necessity is clear. To prove sufficiency, let T' be an n-generated left ideal and f: T — M
be a left R-homomorphism. Since R is left [-semiregular, by [18] (Theorem 1.2(2)), R = H ¢ L,
where H<Tand TNLCI.Hence R=T+L,T=H®& (T'NL),andso T N L is n-generated.
Since M is I-n-injective, there exists a homomorphism g: R — M such that g(z) = f(x) for all
x € TNL. Nowlet h: R — M;r— f(t)+g(l), where r =t +1,t € T, € L. Then h is a
well-defined left R-homomorphism and h extends f.

Theorem 2.2 is proved.

Corollary 2.3. Let R be a left semiregular ring. Then:

(1) A left R-module M is P-injective if and only if M is J P-injective.

(2) A left R-module M is F-injective if and only if M is J-injective.

Theorem 2.3. Every pure submodule of an I-n-injective module is I-n-injective. In particular,
every pure submodule of an n-injective module is n-injective.

Proof. Let N be a pure submodule of an I-n-injective left R-module M. For any n-generated
left ideal 7" in I, we have the exact sequence

Hom(R/T, M) — Hom(R/T, M/N) — Ext'(R/T, N) — Ext'(R/T, M) = 0.
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Since R/T is finitely presented and N is pure in M, the sequence Hom(R/T, M) — Hom(R/T,
M/N) — 0 is exact. Hence Ext!(R/T, N) = 0, and so N is I-n-injective.

Theorem 2.3 is proved.

3. I-n-flat modules. Recall that a right R-module V is said to be n-flat [1, 9], if for every
n-generated left ideal 7, the canonical map V ® T' — V ® R is monic. 1-flat modules are called
P-flat by some authors such as Couchot [7]. A right R-module V is said to be J-flat [8], if for every
finitely generated left ideal 7" in J(R), the canonical map V ® ' — V ® R is monic. We extend the
concepts of n-flat modules and J-flat modules as follows.

Definition 3.1. A right R-module V is said to be I-n-flat, if for every n-generated left ideal T
in I, the canonical map V @ T — V ® R is monic. Vg is said to be I-P-flat if it is I-1-flat. Vg is said
to be I-flat if it is I-n-flat for every positive integer n.

It is easy to see that direct sums and direct summands and of I-n-flat modules are /-n-flat.

Theorem 3.1. For a right R-module V, the following statements are equivalent:

(1) Vis I-n-flat.

(2) Tory(V,R/T) = 0 for every n-generated left ideal T in I.

(3) V't is I-n-injective .

(4) For every n-generated left ideal T in I, the map pr: VT — VT, Z v; Q a; — Z Vi;
is a monomorphism.

(5) Forallx € V" a € I, if ra = 0, then exist positive integer m and y € V™, C € R™*™,
such that Ca = 0 and x = yC.

Proof. (1) < (2) follows from the exact sequence 0 — Tor;(V,R/T) -V T -V ® R.

(2) & (3) follows from the isomorphism Tory (M, R/T)" = Ext'(R/T, M+).

(1) & (4) follows from the commutative diagram

ly ®ip

Vel —— VOR

MTl la
vr Y, v
where ¢ is an isomorphism.
n
4) = (5). Let 2 = (v1,v2,...,vp), a = (a1,a9,...,a,), T = ijl Ra;. Write e; be the

element in R™ with 1 in the jth position and 0’s in all other positions, j = 1,2, ..., n. Consider the
short exact sequence

0 KSR 5150
. . n n
where f(e;) = a; foreach j = 1,2,...,n. Since za = 0, by (4), ijl(vj ® f(e;)) = ijl('l)j ®
® aj) = 0 as an element in V ®p T So in the exact sequence

VoKVS*ver S ver 50

we have Z (v; ®e;) € Ker(ly ® f) = Im(ly ® ik). Thus there exist u; € V, k; € K,

m

1=1,2,...,m, suchthatzl l(vj®ej) , 1(Uz‘®ki)- Let k; = Zn 1cijej,j =1,2,...,m.
j= i=

1=

Ehen OZ:I cija; = Z:Zl cijflej) = f(ki) = 0,4 =1,2,...,m. Write C' = (¢ij)mn, then
a=0.
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. . n m m n
Moreover, this also gives ijl(vj ®ej) = Zizl(ui ®k;) = Zizl (uz ® (ijl cijej>) =
n m m .
= ijl ((Zizl uicij) ® ej>. So vj = Zi:l wicij, j = 1,2,...,n. Let y = (u1,ug, ..., un),

then y € V™ and z = yC.
n 3 A n
S)=@). LetT = ijl Rb; be an n-generated left ideal in I and suppose a; = ZFI rijbj €

k k
e T, v; € V with E Vit = 0. Then E n . < E - vir,-j> bj = 0. By (5), there exists elements
1= 1= 1=

n
Ut,..., Uy € V and elements ¢;; € R, = 1,...,m, j = 1,...,n, such that ijlcijbj =0,

m k k k
i=1,...,m, and E _, icij = g _ Uity = 1,...,n. Thus, E ) lvi®ai: E ‘ 1v¢®
1= 1= 1= 1=

n n k n m m

© (ijl ”jbj) B ijl (Z“wzj> ®h = ijl (Zm“i%) @b =D <u’ ©
® Z::1 cijbj) = 0. Thus (4) is proved.

Theorem 3.1 is proved.

Corollary 3.1. For a right R-module V, the following statements are equivalent:

(1) V is n-flat.

(2) Tory(V,R/T) = 0 for every n-generated left ideal T.

(3) V' is n-injective.

(4) For every n-generated left ideal T of R, the map ur: VT — VT, Z V;  Ti > Z ViZ;
is a monomorphism.

(5) Forallz € V", a € Ry, if za = 0, then exist positive integer m and y € V'™ C € R™*™,
such that Ca = 0 and x = yC.

Corollary 3.2. Let R be a left I-semiregular ring. Then:

(1) A right R-module M is n-flat if and only if M is I-n-flat.

(2) A right R-module M is flat if and only if M is I-flat.

Proof. (1) follows from Corollary 3.1, Theorems 2.3 and 3.1.

(2) follows from (1).

Corollary 3.3. Let R be a left semiregular ring. Then:

(1) A right R-module M is n-flat if and only if M is J-n-flat.

(2) A right R-module M is flat if and only if M is J-flat.

We note that Corollary 3.3(2) improves the result of [8] (Proposition 2.17).

Corollary 3.4. Let {M,}oca be a family of right R-modules and n be a positive integer. Then

(1) @ M, is I-n-flat if and only if each M, is I-n-flat.
acA

2) H M, is I-n-injective if and only if each M, is I-n-injective.
acA

Proof. (1) follows from the isomorphism Tory ( ay, Ma,N) ~ @ Tori(M,, N).
a€cA acA

(2) follows from the isomorphism Ext' (N, I1 Ma> > T _ Ext'(N,M,).
aeA aeA . . . . .
Remark 3.1. From Theorem 3.1, the I-n-flatness of Vi can be characterized by the /-n-injectivity
of V. On the other hand, by [5] (Lemma 2.7(1)), the sequence Tor; (V*t, M) — Ext!(M, V)t — 0
is exact for all finitely presented left R-module M, so if V' is I-n-flat, then V' is I-n-injective.
Theorem 3.2. Every pure submodule of an I-n-flat module is I-n-flat. In particular, pure sub-
modules of n-flat modules are n-flat.

ISSN 1027-3190. Ykp. mam. scypn., 2014, m. 66, Ne 6



I-n-COHERENT RINGS, I-n-SEMIHEREDITARY RINGS AND /-REGULAR RINGS 773

Proof. Let A be a pure submodule of an I-n-flat right R-module B. Then the pure exact sequence
0 —+ A— B — B/A — 0 induces a split exact sequence 0 — (B/A)* — BT — AT — 0. Since
B is I-n-flat, by Theorem 3.1, B is I-n-injective, and so A" is I-n-injective. Thus A is I-n-flat
by Theorem 3.1 again.

Definition 3.2. Given a right R-module U with submodule U'. If a = (a1,az,...,a,) € Ry,
and T = ZTLI Ra;, then U’ is called a-pure in U if the canonical map U' @ R/T — U ®r R/T
is a monomo;gyhism; U’ is called I-n-pure in U if U’ is a-pure in U for every a € I,,. U’ is called
I-P-pure in U if U’ is I-1-pure in U.

Clearly, if U’ is I-n-pure in U then U’ is I-m-pure in U for every positive integer m < n.

Theorem 3.3. Let Uy, < Ug and a = (ai,a2,...,a,) € R,, T = Zj_l Ra;. Then the
following statements are equivalent:

(1) U is a-pure in U.

(2) The canonical map Tory(U, R/T) — Tor1(U/U’, R/T) is surjective.

B) U'nU"a=(U")"a

@ U'nUT=U0T

(5) The canonical map Hompg(R,,/aR,U) — Hompg(R,/aR,U/U’) is surjective.

(6) Every commutative diagram

aR —efiy R,

fl | lg

LA i)
there exists h: R, — U’ with f = hiyg.
(7) The canonical map Ext'(R,/aR,U’) — Ext!(R,/aR,U) is a monomorphism.
(8) 1. (a) = (U™ + 1y (a), where 1Y, (a) = {x € U"|za € U'}.
Proof. (1) & (2). This follows from the exact sequence

Tory (U, R/T) — Tor1(U/U',R/T) - U' @ R/T — U ® R/T.

(1) = (3). Suppose that z € U’ N U™a. Then there exists y = (y1,%2,-.-,yn) € U™ such
that + = ya, and so we have = ® ( +Z Rai> = (Z ylaz) ® <1+Z Rai> =
_Z (y; ®0) —Oan®(R/Z Raz> Since U’ is a-pure in U, x®<1+z Raz> =0
mU' ® (R/ Zi:l Rai). Lete: Zi:l Ra; — R be the inclusion map and 7: R — R/ Zi:l Ra;
be the natural epimorphism. Then we have z® 1 € Ker(1yy ® ) = im (17 ®¢), it follows that there

. , ;. N n / o n ’ : /
exists z; € U ,s =1,2,...,n,suchthat z ® 1 = Zizlxi ®a; = (Zizlxial) ®1inU ® R,
and so z = Z‘_l ria; € (U)"a. But (U")"a CU' NU"a, so U' NU"a = (U')"a

(3) & (4) is obvious.

(3) = (5). Consider the following diagram with exact rows:

0 — aR &% R, —™ R,/aR —— 0

|7

0 — U Wy U ", g ——0
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where f € Hompg(R,/aR,U/U’). Since R, is projective, there exist g € Hompg(R,,U) and h €
€ Homp(aR,U’) such that the diagram commutes. Now let u = g(a), Then u = g(a) = h(a) € U’.
Note that u = (g(e1), g(e2), ..., g(en))a € Uma, where e; € R,,, with 1 in the ith position and 0’s in
all other positions. By (3), u € (U’)"a. Therefore, u = Z?_l wja; for someu;, € U',i=1,2,...,n.
Define 0 € Homp(R,,,U’) such that o(e;) = u}, i = 1, 2,...,n, then oigp = h. Finally, we define
7: Ry/aR — U by 7(x + aR) = g(z) — o(x), then 7 is a well-defined right R-homomorphism and
m7 = f. Whence Homp (R, /aR,U) — Hompg(R,/aR,U/U’) is surjective.

(5) = (3). Suppose that x € U’ N U™a. Then z = ya for some y = (y1,y2,...,yn) € U™. Thus
we have the following commutative diagram with exact rows:

0 — aR &% R, —™ R,/aR —— 0

v s

0 — U Yy U ", g ——0

where f5 is defined by fa(e;) = vi, i = 1,2,...,n and fi = fa|sg. Define f3: R,/aR — U/U’
by f3(z + aR) = m f2(2). It is easy to see that f3 is well defined and fsmo = 7 fo. By hypothesis,
f3 = m7 for some 7 € Hompg (R, /aR,U). Now we define o: R,, — U’ by 0(2) = fa(2) — 7ma(2).
Then o € Hompg(R,,U’) and o(a) = f2(a) since ma(a) = 0. Hence = = fa(a) = o(a) =
= (o(e1),0(e2),...,0(en))a € (U")™a. Therefore U' N U"a = (U')"a.
S / n ) . . n )
(3) = (1). Suppose that Zk:l up, ® (bk + Zi:l Ral) =0inU® (R/ Zi:l Raz), where
, , s , n B . n ‘

up, € U', by, € R, then (Zkzl ukbk) ® (1 +Zi:1 Rai) =0inU® (R/ Zi:l Raz>. By
the exactness of the sequence U ® (Zz‘:1 Rai) - UR®R—->U® (R/ Zi:l Rai) — 0, we

have that Zzzl ujby = xa for some x € U™ By (3), there exists some y € (U’)" such that

s s n n .
Zk:l ulby = ya. Thus, Zk:l uj, ® <bk + Zi:l Rai) =ya® (1 + Zi:l Rai) =0inU' ®

© (R/ Zi:l Rai)
(5) & (6). By diagram lemma (see [21, p. 53]).
(5) & (7). It follows from the exact sequence

Hompg(R,/aR,U) — Hompg(R,/aR,U/U’) = Ext'(R,/aR,U’) — Ext'(R,/aR,U).

(5) = (8). It is sufficient to show that 1., (a) C (U")" + lyn(a). Let z = (z1,29,...,2,) €
€1Y..(a). Define f: R, /aR — U/U’ via a + aR + za + U’, then f € Hompg(R,,/aR,U/U’). By
(5), f = mg for some g € Homp (R, /aR,U), where w: U — U/U’ is the natural epimorphism. Let
gle;+aR) =y, i=1,2,....n,y = (y1,Y2,---,Yn). Then y € lyn(a), x; + U' = f(e; + aR) =
=rng(e; + aR) = y; + U, and so x; —y; € U', i = 1,2,...,n, this implies that x — y € (U")".
Therefore, z = (x —y) +y € (U")" + lyn(a).

(8) = (6). Let = = (g(e1), g(e2),--.,g(en)). Then za = g(a) = f(a) € U’, so = € 1¥,,(a). By
(8), z = y + z for some y € (U')" and z € lyn(a). Now we define h: R, — U’; b — yb, then
h(a) = ya = xa = f(a). And thus f = hi,p.

Theorem 3.3 is proved.

Let M be a right R-module, K be a submodule of M and X a subset of M, then we write
X/K={z+ K|z € X}.
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Corollary 3.5. Suppose that E, F and G are right R-modules such that E C F C G, and
a € R,. Then:

(1) If E is a-pure in F and F is a-pure in G, then E is a-pure in G.

(2) If E is a-pure in G, then E is a-pure in F.

(3) If F is a-pure in G, then F/FE is a-pure in G/E.

(4) If E is a-pure in G and F/FE is a-pure in G/E, then F is a-pure in G.

Proof. (1). Since F is a-pure in F' and F' is a-pure in GG, we have F N G"a = F"a and
ENF"a= E". Thus, ENG"a = EN(FNG"a) =ENF"a = E"a, and therefore E is a-pure
in G.

(2) Since E is a-pure in G, E N G"a = E™a. Note that ENG™a O EN F"a O E"a, we get
that £ N F"a = E™a, and (2) follows.

(3) Since F'is a-pure in G, F N G"a = F™a, and so (F/E)N (G/E)"a = (FNG"a)/E =
= (F"a)/E = (F/E)™a. This follows that F'/FE is a-pure in G/E.

(4) By hypothesis, we have (F/E)N(G/E)"a = (F/E)"a, ie., (FNG"a)/E = (F"a)/E, and
ENG"a = E™a. For any f € F N G"a, write f = ga, where g € G™. Then there exists f; € F"
such that (g — f1)a = ga — fia = f — fia € ENG"a = E™a, so f — fia = ea for some ¢ € E™.
This implies that f = fia + ea = (f1 + e)a € F"a, and hence F is a-pure in G.

Corollary 3.6. Let Uy, < U and a € R. Then the following statements are equivalent:

(1) U’ is a-pure in U.

(2) The canonical map Tor1(U, R/Ra) — Tor1(U/U’, R/ Ra) is surjective.

B) U nUa=U.

(4) The canonical map Homg(R/aR,U) — Hompg(R/aR,U/U’) is surjective.

(5) Every commutative diagram

aRia—R>R

fl | lg

v U
there exists h: R — U’ with f = hiyg.

(6) The canonical map Ext'(R/aR,U’) — Ext'(R/aR,U) is a monomorphism.

(7) ' (a) = U’ +1y(a), where 1 (a) = {x € U | za € U'}.

Corollary 3.7. Let U be an n-generated right R-module with submodule U’. If U’ is I-n-pure
in U, then U’ is I-m-pure in U for each positive integer m. In particular, if a right ideal T of R is
I-P-pure in R, then it is I-m-pure in R for each positive integer m.

Proof. For any a € I, if x € U' N U™a, then z = (x1,x2,...,%m)a, where each z; € U.
Suppose that uy, ug, ..., u, is a generating set of U. Then (z1, z2,...,Ty) = (u1,us, ..., u,)C for
some C' € R™™ and so x = (uy,us,...,u,)(Ca) € U NU"(Ca). Since U’ is I-n-pure in U, by
Theorem 3.3, x € (U")"(Ca) = ((U')"C)a C (U')"a. Thus U' N U™a = (U')™a and therefore U’
is I-m-pure in U.

Proposition 3.1. Let Up, < Ug.

() IfUJU" is I-n-flat, then U' is I-n-pure in U.

(2) IfU" is I-n-pure in U and U is I-n-flat, then U/U’" is I-n-flat.
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Proof. 1t follows from the exact sequence
Tory (U, R/T) — Tory(U/U',R/T) - U’ ® R/T — U ® R/T

and Theorem 3.1(2).

Theorem 3.4. n-Generated I-n-flat module is I-flat.

Proof. Suppose V is an n-generated /-n-flat module, there exists an exact sequence 0 — K —
— F — V — 0 with F free and rank(F) = n. Then K is I-n-pure in F' by Proposition 3.1(1)
and hence I-m-pure for every positive integer m by Corollary 3.7. So, by Proposition 3.1(2), V' is
I-m-flat for every positive integer m. Hence, V' is I-flat.

Theorem 3.4 is proved.

Corollary 3.8. (1) n-Generated n-flat module is flat.

(2) I-P-flat cyclic module is I-flat.

4. I-n-coherent rings.

Definition 4.1. A ring R is called left I-n-coherent if every n-generated left ideal in I is finitely
presented.

Clearly, a ring R is left n-coherent if and only if R is left R-n-coherent.

Lemma 4.1. Let a € R,,. Then 1gn(a) & P*, where P = R, /aR.

Proof. This is a corollary of [23] (Lemma 5.3).

Theorem 4.1. The following statements are equivalent for a ring R:

(1) R is left I-n-coherent.

2 Ifo—-K 4, R™ % I is an exact sequence of left R-modules, then K is finitely generated.

(3) 1gn(a) is a finitely generated submodule of R" for any a € I,.

(4) For any a € I,,, (R, /aR)* is finitely generated.

Proof. (1) = (2). Since R is left I-n-coherent and Im(g) is an n-generated left ideal in I, Im(g)
is finitely presented. Noting that the sequence 0 — Ker(g) — R" — Im(g) — 0 is exact, so Ker(g)
is finitely generated. Thus K = Im(f) = Ker(g) is finitely generated.

(2) = (3). Let a = (ay,...,ay). Then we have an exact sequence of left R-modules 0 —
— 1gn(a) = R* 2 I, where g(r1,...,1m) = 27—1 ria;. By (2), 1gn(a) is a finitely generated left
R-module. -

(3) = (1) is obvious. (3) & (4) follows from Lemma 4.1.

Theorem 4.1 is proved.

Let F be a class of right R-modules and M a right R-module. Following [10], we say that
a homomorphism ¢: M — F where F' € F is an F-preenvelope of M if for any morphism
f: M — F' with F’ € F, there is a g: F — F”’ such that go = f. An F-preenvelope ¢: M — F
is said to be an F-envelope if every endomorphism g: F' — F' such that gy = ¢ is an isomorphism.
Dually, we have the definitions of an F-precover and an F-cover. F-envelopes (F-covers) may not
exist in general, but if they exist, they are unique up to isomorphism.

Theorem 4.2. The following statements are equivalent for a ring R:

(1) R is left I-n-coherent.

) li_n;Extl(R/T, M,) = Extl(R/T,lignMa) for every n-generated left ideal T in I and
direct system (M) e of left R-modules.

(3) Tory (H Na,R/T> = HTorl(Na,R/T) Sor any family { Ny} of right R-modules and
any n-generated left ideal T in I.

(4) Any direct product of copies of Ry is I-n-flat.
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(5) Any direct product of 1-n-flat right R-modules is [-n-flat.

(6) Any direct limit of I-n-injective left R-modules is I-n-injective.

(7) Any direct limit of injective left R-modules is I-n-injective.

(8) A left R-module M is I-n-injective if and only if M is I-n-flat.

(9) A4 left R-module M is I-n-injective if and only if M is I-n-injective.

(10) 4 right R-module M is I-n-flat if and only if M+ is I-n-flat.

(11) For any ring S, Tor;(Homg(B,C), R/T) = Homg(Ext!(R/T, B),C) for the situation
(r(R/T),r Bs, Cs) with T n-generated left ideal in I and Cys injective.

(12) Every right R-module has an I-n-flat preenvelope.

(13) For any U € I,,U(R) is a finitely generated left ideal, where U(R) = {r € R: (r,ra,...
cooymn)U =0 for some ra, ..., 1, € R}.

Proof. (1) = (2) follows from [5] (Lemma 2.9(2)).

(1) = (3) follows from [5] (Lemma 2.10(2)).

2) = (6) = (7); B) = (5) = (4) are trivial.

(7) = (1). Let T be an n-generated left ideal in I and (M, ).c 4 a direct system of injective left
R-modules (with A directed). Then lim M, is I-n-injective by (7), and so Ext!'(R/T, limg M,) =0.
Thus we have a commutative diagram with exact rows:

lim Hom(R/T, Ma) —— lim Hom(R, M,) —— ling Hom(T', Ms) —— 0

I L J»

Hom(R/T,liﬂMa) —— Hom(R, hﬂMa) —— Hom(T, @Ma) — 0.

Since f and g are isomorphism by [21] (25.4(d)), & is an isomorphism by the Five lemma. So 7' is
finitely presented by [21] (25.4(e)) again. Hence R is left I-n-coherent.

(4) = (1). Let T be an n-generated left ideal in I. By (4), Tory (IIR, R/T) = 0. Thus we have
a commutative diagram with exact rows:

0 — IR)®T —— (IIR)® R —— (IIR)®@ R/T —— 0

lfl lfs
Ir

f2
0 — — IR — II(R/T) —— 0

Since f3 and fo are isomorphism by [10] (Theorem 3.2.22), f; is an isomorphism by the Five lemma.
So T is finitely presented by [10] (Theorem 3.2.22) again. Hence R is left /-n-coherent.

(5) = (12). Let N be any right R-module. By [10] (Lemma 5.3.12), there is a cardinal number X,
dependent on Card (V) and Card(R) such that for any homomorphism f: N — F with F' I-n-flat,
there is a pure submodule S of F' such that f(N) C S and Card S < X,,. Thus f has a factorization
N — S — F with S I-n-flat by Theorem 3.2. Now let {¢3}3cp be all such homomorphisms
pg: N — Sg with Card Sg < R, and Sz I-n-flat. Then any homomorphism N — F' with F'
I-n-flat has a factorization N — S; — F' for some ¢ € B. Thus the homomorphism N — IlgcpSg
induced by all g is an I-n-flat preenvelope since 1lgcSg is I-n-flat by (5).

(12) = (5) follows from [4] (Lemma 1).

(1) = (11). For any n-generated left ideal 7" in I, since R is left I-n-coherent, R/T is 2-
presented. And so (11) follows from [5] (Lemma 2.7(2)).

(11) = (8). Let S = Z, C = Q/Z and B = M. Then Tor(M*, R/T) = Ext'(R/T, M)* for
any n-generated left ideal 7" in I by (11), and hence (8) holds.
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(8) = (9). Let M be a left R-module. If M is I-n-injective, then M ™ is I-n-flat by (8), and so
M7 is I-n-injective by Theorem 3.1. Conversely, if M+ is I-n-injective, then M, being a pure
submodule of M+ (see [20, p. 48], Exercise 41), is I-n-injective by Theorem 2.3.

(9) = (10). If M is an I-n-flat right R-module, then M is an [-n-injective left R-module by
Theorem 3.1, and so M ™" is I-n-injective by (9). Thus M+ is I-n-flat by Theorem 3.1 again.
Conversely, if M*T is I-n-flat, then M is I-n-flat by Theorem 3.2 as M is a pure submodule
of M+,

(10) = (5). Let {Np}aca be a family of I-n-flat right R-modules. Then by Corollary 3.4(1),

1 ++
@ N, is I-n-flat, and so (H N;) & (@ Na) is I-n-flat by (10). Since @ N, is a
acA a€A acA acA

+
pure submodule of [T N by [3] (Lemma 1(1), (H o N;) L (@, V)T 0 split

° +

n T ++ o~ + is I-n- i

and hence (QGGBA N ) is I-n-flat. Thus HaeA NIT = (634 N] ) is I-n-flat. Since HaeA N,
«

is a pure submodule of [] N} by [3] (Lemma 12)), [] _, Na is I-n-flat by Theorem 3.2.
acA a€A

(1) = (13). Let U = (u1,ug,...,uy) € I,. Write Ty = Ruy + Rug + ... + Ru, and T, =
= Rusa+...+ Ruy. Then R/U(R) = Ty /Ts. By (1), T} is finitely presented, and so T} /7% is finitely
presented. Therefore U (R) is finitely generated.

(13) = (1). Let 71 = Ruj + Rug + ... + Ru, be an n-generated left ideal in I. Let 15 =
= Rua + ...+ Ruy, T35 = Rus + ... + Ruy,...,T, = Ru,. Then T} /T> = R/U(R) is finitely
presented by (13). Similarly, 75/T5, ..., Ty—1/Ty, T, are finitely presented. Hence 7} is finitely
presented, and (1) follows.

Theorem 4.2 is proved.

Corollary 4.1. The following statements are equivalent for a ring R:

(1) R is left n-coherent.

(2) lim Ext'(R/T, M,) = Ext'(R/T, hﬂMa) for every n-generated left ideal T and direct
system (Mey)aca of left R-modules.

(3) Tori([] Na, R/T) = [[ Tor1(Ng, R/T) for any family {N,} of right R-modules and any
n-generated left ideal T

(4) Any direct product of copies of Rg is n-flat.

(5) Any direct product of n-flat right R-modules is n-flat.

(6) Any direct limit of n-injective left R-modules is n-injective.

(7) Any direct limit of injective left R-modules is n-injective.

(8) A left R-module M is n-injective if and only if M is n-flat.

(9) A4 left R-module M is n-injective if and only if M is n-injective.

(10) A4 right R-module M is n-flat if and only if M is n-flat.

(11) For any ring S, Tor;(Homg(B,C), R/T) = Homg(Ext!(R/T, B),C) for the situation
(r(R/T),r Bs, Cs) with T n-generated left ideal and Cs injective.

(12) Every right R-module has an n-flat preenvelope.

(13) For any U € R,,,U(R) is a finitely generated left ideal, where

UR)={reR: (r,ra,...,m)U =0 for some ro,...,1, € R}.

Corollary 4.2. The following statements are equivalent for a ring R:
(1) R is left coherent.
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(2) lim Ext!(R/T, M,) = Extl(R/T,ligMa) for every finitely generated left ideal T and
direct system (My)aca of left R-modules.

(3) Tory (H Na,R/T> = HTorl(Na,R/T) Sor any family { Ny} of right R-modules and
any finitely generated left ideal T.

(4) Any direct product of copies of Rp is flat.

(5) Any direct product of flat right R-modules is flat.

(6) Any direct limit of F-injective left R-modules is F-injective.

(7) Any direct limit of injective left R-modules is F-injective.

(8) A left R-module M is F-injective if and only if M is flat.

(9) A left R-module M is F-injective if and only if M is F-injective.

(10) 4 right R-module M is flat if and only if M is flat.

(11) For any ring S, Tor;(Homg(B,C), R/T) = Homg(Ext!(R/T, B),C) for the situation
(r(R/T),r Bs,Cs) with T finitely generated left ideal and Cs injective.

(12) For any positive integer n and any U € R,,, U(R) is a finitely generated left ideal, where

UR)={reR: (r,ra,...,m)U =0 for some ro,...,1, € R}.

(13) Every right R-module has a flat preenvelope.

Proof. The equivalence of (1)—(12) is a consequence of Corollary 4.1. The proof of (5) < (13)
is similar to that of (5) < (12) in the proof of Theorem 4.2.

Corollary 4.3. Let R be a left I-n-coherent ring. Then every left R-module has an I-n-injective
cover.

Proof. Let 0 > A — B — C — 0 be a pure exact sequence of left R-modules with B [-n-
injective. Then 0 — C* — BT — AT — 0 is split. Since R is left I-n-coherent, B is [-n-flat
by Theorem 4.2, so C'" is I-n-flat, and hence C is I-n-injective by Remark 3.1. Thus, the class of
I-n-injective modules is closed under pure quotients. By [12] (Theorem 2.5), every left R-module
has an I-n-injective cover.

Corollary 4.4. Let R be a left n-coherent ring. Then every left R-module has an n-injective cover.

Proposition 4.1. Let R be a left coherent ring. Then every left R-module has a F-injective
cover.

Proof. 1t is similar to the proof of Corollary 4.3.

Corollary 4.5. The following are equivalent for a left I-n-coherent ring R:

(1) Every I-n-flat right R-module is n-flat.

(2) Every I-n-injective left R-module is n-injective.

In this case, R is left n-coherent.

Proof. (1) = (2). Let M be any I-n-injective left R-module. Then M ™ is I-n-flat by Theo-
rem 4.2, and so M is n-flat by (1). Thus M ™ is n-injective by Corollary 3.1. Since M is a pure
submodule of M T, and pure submodule of an n-injective module is n-injective by Theorem 2.3, so
M is n-injective.

(2) = (1). Let M be any I-n-flat right R-module. Then M™ is I-n-injective left R-module by
Theorem 3.1, and so M ™ is n-injective by (2). Thus M is n-flat by Corollary 3.1.

In this case, any direct product of n-flat right R-modules is n-flat by Theorem 4.2, and so R is
left n-coherent by Corollary 4.1.

Corollary 4.6. Left I-semiregular left I-n-coherent ring is left n-coherent.

Proof. By Corollaries 3.2(1) and 4.5.

Corollary 4.7. Semiregular left J-coherent ring is left coherent.
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Proposition 4.2. The following statements are equivalent for a left I-n-coherent ring R:

(1) rR is I-n-injective.

(2) Every right R-module has a monic I-n-flat preenvelope.

(3) Every left R-module has an epic I-n-injective cover.

(4) Every injective right R-module is I-n-flat.

Proof. (1) = (2). Let M be any right R-module. Then M has an I-n-flat preenvelope f: M — F
by Theorem 4.2. Since (g R)" is a cogenerator, there exists an exact sequence 0 — M 5 H( rR)T.

Since rR is I-n-injective, by Theorem 4.2, H( RR)+ is I-n-flat, and so there exists a right R-

homomorphism h: F — H( rR)™ such that g = hf, which shows that f is monic.

(2) = (4). Assume (2). Then for every injective right R-module F, E has a monic [-n-flat
preenvelope F, so E is isomorphism to a direct summand of F|, and thus £ is [-n-flat.

(4) = (1). Since (grR)™ is injective, by (4), it is I-n-flat. Thus grR is I-n-injective by Theo-
rem 4.2.

(1) = (3). Let M be a left R-module. Then M has an I-n-injective cover ¢: C' — M by
Corollary 4.3. On the other hand, there is an exact sequence F — M — 0 with F free. Since F is
I-n-injective by (1), there exists a homomorphism 5: F' — C' such that « = f. This follows that
(p is epic.

(3) = (1). Let f: N — RrR be an epic I-n-injective cover. Then the projectivity of pR implies
that p R is isomorphism to a direct summand of IV, and so pR is I-n-injective.

Proposition 4.2 is proved.

Corollary 4.8. The following statements are equivalent for a left n-coherent ring R:

(1) grR is n-injective.

(2) Every right R-module has a monic n-flat preenvelope.

(3) Every left R-module has an epic n-injective cover.

(4) Every injective right R-module is n-flat.

Proposition 4.3. The following statements are equivalent for a left coherent ring R:

(1) rR is F-injective.

(2) Every right R-module has a monic flat preenvelope.

(3) Every left R-module has an epic F-injective cover.

(4) Every injective right R-module is flat.

Proof. 1t is similar to the proof of Proposition 4.2.

5. I-n-semihereditary rings.

Definition 5.1. 4 ring R is called left I-n-semihereditary if every n-generated left ideal in I
is projective. A ring R is called left I-semihereditary if every finitely generated left ideal in I is
projective. A ring R is called left IPP if every principal left ideal in I is projective. A ring R is called
left JPP if every principal left ideal in J is projective.

Recall that a ring R is called left PP [13] if every principal left ideal is projective. It is easy
to see that a ring R is left PP if and only if R is left R-1-semihereditary, a ring R is left JPP if
and only if R is left J-1-semihereditary, a ring R is left n-semihereditary if and only if R is left
R-n-semihereditary, a ring R is left J-semihereditary if and only if R is left J-n-semihereditary for
every positive integer n.

Theorem 5.1. The following statements are equivalent for a ring R:

(1) R is a left I-n-semihereditary ring.

(2) R is left I-n-coherent and submodules of I-n-flat right R-modules are I-n-flat.
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(3) R is left I-n-coherent and every right ideal is I-n-flat.

(4) R is left I-n-coherent and every finitely generated right ideal is I-n-flat.

(5) Every quotient module of an I-n-injective left R-module is I-n-injective.

(6) Every quotient module of an injective left R-module is I-n-injective.

(7) Every left R-module has a monic I-n-injective cover.

(8) Every right R-module has an epic I-n-flat envelope.

(9) For every left R-module A, the sum of an arbitrary family of I-n-injective submodules of A
is I-n-injective.

Proof. (2) = (3) = (4), and (5) = (6) are trivial.

(1) = (2). R is clearly left I-n-coherent. Let A be a submodule of an I-n-flat right R-module B
and 1" an n-generated left ideal in 1. Then T is projective by (1) and hence flat. Then the exactness
of 0 = Tora(B/A, R) — Tora(B/A, R/T) — Tor1(B/A,T) = 0 implies that Tora(B/A, R/T) =
= 0. And thus from the exactness of the sequence 0 = Tora(B/A, R/T) — Tor1(A,R/T) —
— Tor1 (B, R/T) = 0 we have Tor;(A, R/T) = 0, this follows that A is I-n-flat.

(4) = (1). Let T be an n-generated left ideal in /. Then for any finitely generated right
ideal K of R, the exact sequence 0 - K — R — R/K — 0 implies the exact sequence
0 — Tore(R/K,R/T) — Tori(K,R/T) = 0 since K is I-n-flat. So Tors(R/K,R/T) = 0,
and hence we obtain an exact sequence 0 = Tory(R/K,R/T) — Tori(R/K,T) — 0. Thus,
Tor1(R/K,T) =0, and so T is a finitely presented flat left R-module. Therefore, T" is projective.

(1) = (5). Let M be an I-n-injective left R-module and N be a submodule of M. Then for
any n-generated left ideal T in I, since T is projective, the exact sequence 0 = Ext!(T,N) —
— Ext*(R/T,N) — Ext?(R,N) = 0 implies that Ext>(R/T, N) = 0. Thus the exact sequence
0 = Ext!(R/T, M) — Ext'(R/T, M/N) — Ext?>(R/T,N) = 0 implies that Ext'(R/T, M/N) =
= 0. Consequently, M /N is I-n-injective.

(6) = (1). Let T' be an n-generated left ideal in I. Then for any left R-module M, by hy-
pothesis, E(M)/M is I-n-injective, and so Ext*(R/T, E(M)/M) = 0. Thus, the exactness of the
sequence 0 = Ext!(R/T, E(M)/M) — Ext*(R/T,M) — Ext*(R/T, E(M)) = 0 implies that
Ext?(R/T, M) = 0. Hence, the exactness of the sequence 0 = Ext'(R, M) — Ext!(T, M) —
— Ext?(R/T, M) = 0 implies that Ext!(T, M) = 0, this shows that T is projective, as required.

(2), (5) = (7). Since R is left I-n-coherent by (2), for any left R-module M, there is an I-n-
injective cover f: E — M by Corollary 4.3. Note that im( f) is I-n-injective by (5), and f: £ — M
is an I-n-injective precover, so for the inclusion map i: im(f) — M, there is a homomorphism
g:im(f) — E such that i = fg. Hence f = f(gf). Observing that f: E — M is an I-n-injective
cover and g f is an endomorphism of F, so gf is an automorphisms of £, and hence f: £ — M is
a monic [-n-injective cover.

(7) = (5). Let M be an I-n-injective left R-module and N be a submodule of M. By (7), M /N
has a monic I-n-injective cover f: E — M/N. Let m: M — M /N be the natural epimorphism.
Then there exists a homomorphism g: M — E such that m = fg. Thus f is an isomorphism, and
whence M /N = E is I-n-injective.

(2) & (8). By Theorem 4.2 and [4] (Theorem 2).

(5) = (9). Let A be a left R-module and {A, | v € '} be an arbitrary family of I-n-injective
submodules of A . Since the direct sum of I-n-injective modules is I-n-injective and Z'yEF A, isa

homomorphic image of @©.,cr Ay, by (5), Z or A, is I-n-injective.
gl
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(9) = (6). Let E be an injective left R-module and K < E. Take Fy = Fo = E, N = FE1 P
® Ey,D = {(z,—x) | z € K}. Define f1: By — N/D by z1 — (21,0) + D, fa: Es — N/D by
w9+ (0,22) + D and writeE; = f;(E;), i = 1,2. Then E; = E; is injective, i = 1,2, and hence
N/D = Eq + E5 is I-n-injective. By the injectivity of E;, (N/D)/E; is isomorphic to a summand
of N/D and thus it is I-n-injective.

Theorem 5.1 is proved.

Corollary 5.1. The following statements are equivalent for a ring R:

(1) R is a left n-semihereditary ring.

(2) R is left n-coherent and submodules of n-flat right R-modules are n-flat.

(3) R is left n-coherent and every right ideal is n-flat.

(4) R is left n-coherent and every finitely generated right ideal is n-flat.

(5) Every quotient module of an n-injective left R-module is n-injective.

(6) Every quotient module of an injective left R-module is n-injective.

(7) Every left R-module has a monic n-injective cover.

(8) Every right R-module has an epic n-flat envelope.

(9) For every left R-module A, the sum of an arbitrary family of n-injective submodules of A is
n-injective.

Recall that a ring R is called left P-coherent [15] if it is left 1-coherent.

Corollary 5.2. The following statements are equivalent for a ring R:

(1) R is a left PP ring.

(2) R is left P-coherent and submodules of P-flat right R-modules are P-flat.

(3) R is left P-coherent and every right ideal is P-flat.

(4) R is left P-coherent and every finitely generated right ideal is P-flat.

(5) Every quotient module of a P-injective left R-module is P-injective.

(6) Every quotient module of an injective left R-module is P-injective.

(7) Every left R-module has a monic P-injective cover.

(8) Every right R-module has an epic P-flat envelope.

(9) For every left R-module A, the sum of an arbitrary family of P-injective submodules of A is
P-injective.

Corollary 5.3. The following statements are equivalent for a ring R:

(1) R is a left JPP ring.

(2) R is left J-P-coherent and submodules of J-P-flat right R-modules are J-P-flat.

(3) R is left J-P-coherent and every right ideal is J-P-flat.

(4) R is left J-P-coherent and every finitely generated right ideal is J-P-flat.

(5) Every quotient module of a J-P-injective left R-module is J-P-injective.

(6) Every quotient module of an injective left R-module is J-P-injective.

(7) Every left R-module has a monic J-P-injective cover.

(8) Every right R-module has an epic J-P-flat envelope.

(9) For every left R-module A, the sum of an arbitrary family of J-P-injective submodules of A
is J-P-injective.

Proposition 5.1. Let R be an left I-semiregular ring. Then:

(1) R is left n-semihereditary if and only if it is left I-n-semihereditary.

(2) R is left semihereditary if and only if it is left 1-semihereditary.

(3) R is left PP if and only if it is left IPP.
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Proof. (1). We need only to prove the sufficiency. Suppose R is left I-n-semihereditary, then
by Theorem 5.1, every quotient module of an injective left R-module is /-n-injective. Since R
is left I-semiregular, every [-n-injective left R-module is n-injective by Theorem 2.2. So every
quotient module of an injective left R-module is n-injective, and hence R is left n-semihereditary by
Corollary 5.1.

(2), (3) follows from (1).

Proposition 5.1 is proved.

From Proposition 5.1, we have immediately the following results.

Corollary 5.4. Let R be a semiregular ring. Then:

(1) R is left n-semihereditary if and only if it is left J-n-semihereditary.

(2) R is left semihereditary if and only if it is left J-semihereditary.

(3) R is left PP if and only if it is left JPP.

6. I-P-injective rings and I-regular rings. In this section we extend the concept of regular
rings to I-regular rings, give some characterizations of /-regular rings and [-P-injective modules,
and give some properties of left /- P-injective rings.

Definition 6.1. A ring R is called I-regular if every element in I is regular.

Clearly, every ring is O-regular, R is semiprimitive if and only if R is J-regular, R is regular if
and only R is R-regular.

We call a module M is absolutely I-P-pure if M is I-P-pure in every module containing M.

Theorem 6.1. Let M be a left R-module. Then the following statements are equivalent:

(1) M is I-P-injective.

(2) Ext'(R/Ra,M)=0forallacI.

(3) rulr(a) =aM foralla € I.

(4) 1r(a) Clg(z), where a € I, x € M, implies x € all.

(5) rp(RbN1R(a)) =rpr(b) +aM foralla € I and b € R.

(6) If v: Ra — M, a € 1, is R-linear, then y(a) € aM.

(7) M is absolutely I-P-pure.

(8) M is I-P-pure in its injective envelope E(M ).

(9) M is an I-P-pure submodule of an I-P-injective module.

(10) Foreach a € I and any f € Hom(Ra, M), if («, g) is the pushout of (f, 1) in the following
diagram:

aR —— R

AR
M —— P
where 1 is the inclusion map, then there exists a homomorphism h: P — M such that ha = 1y;.
Proof. (1) = (2) < (3) & @) < (5 < (10) are follows from Theorem 2.1. (7) = (8) = (9)
are clear.
(4) = (6). Let v: Ra — M be R-linear, where a € I. Then 1g(a) C lg(y(a)). By (4),
v(a) € alM.
(6) = (1). Let v: Ra — M be R-linear, where a € I. By (6), write v(a) = am, m € M. Then
~ = -m, proving (1).
(2) = (7). By Theorem 3.3(5).
(9) = (2). Let M be an I-P-pure submodule of an /-P-injective module N. Then (2) follows
from the the exact sequence
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Hompg(R/Ra, N) — Homg(R/Ra, N/M) — Exth(R/Ra, M) — 0

and Theorem 3.3(5).

Theorem 6.1 is proved.

Corollary 6.1. Let R = I, @ Iz, where 11, I> are ideals of R. Then R is left P-injective if and
only if rR is I1-P-injective and I2- P-injective.

Proof. We need only to prove the sufficiency. Let a = a1+as € R, where ay € Iy, as € I5. Then
by routine computations, we have rrlr(a1) = rp 17, (a1), rrlr(a2) = rplz, (a2), rrlr(a; + a2) =
=rr 1 (a1) + rplp (a2), a1 R + aaR = (a1 + a2)R. Since R is left I;-P-injective and left [o-P-
injective, rrlr(a1) = a1 R, rrlgr(a2) = a2 R. Hence, rglr(a) = aR, which shows that R is left
P-injective.

Proposition 6.1. Let R be a left I-P-injective ring. Then:

(1) Every left ideal in I that is isomorphic to a direct summand of rR is itself a direct summand
of rR.

Q) IfReNRf =0,e2=e € R, f>= f €1, then Re ® Rf = Ry for some g*> = g.

(3) If Rk is a simple left ideal in I, then kR is a simple right ideal.

(4) Soc(rI) C Soc(IR).

Proof. (1). If T is a left ideal in I and T = Re, where €2 = ¢ € R, then T = Ra for some
a € T and T is projective. Hence 1g(a) C® grR, say lg(a) = Rf, where f2 = f € R. Then
aR =rglg(a) = (1— f)R C® Rp, and so T = Ra C® RR.

(2). Observe that Re @ Rf = Re® Rf(1—e),so Rf(1—e) = Rf. Since R is left I- P-injective,
by (1), Rf(1 — e) = Rh for some idempotent element h € I. Let g = e + h — eh. Then g? = g such
that ge = g = eg and gh = h = hg. It follows that Re & Rf = Re ® Rh = Ryg.

(3). If Rk is a simple left ideal in I, and 0 # ka € kR, define v: Rk — Rka; rk — rka.
Then ~ is an isomorphism, and so, as R is left I-P-injective, y~! = -c for some ¢ € R. Then
k = ~~!(ka) = kac € kaR. Therefore, kR is a simple right ideal.

(4). 1t follows from (3).

Proposition 6.1 is proved.

A ring R is called left Kasch if every simple left R-module embeds in pR, or equivalently,
rr(T) # 0 for every maximal left ideal 7" of R. Right Kasch, right P-injective rings have been
discussed in [19]. Next, we discuss left Kasch left /- P-injective rings.

Proposition 6.2. Let R be a left 1-P-injective left Kasch ring. Then:

(1) SOC(IR) gess IR.

() r1(J) €% Ig.

Proof: (1). If 0 # a € I, let Ig(a) € T, where T is a maximal left ideal. Then rg(7T") C
C rrlgr(a) = aR, and (1) follows because rz(7") is simple by [19] (Theorem 3.31).

(2). If 0 # b € I. Choose M maximal in Rb, let 0: Rb/M — rR be monic, and define v: Rb —
— rR by v(x) = o(x+ M). Then v = -¢ for some ¢ € R by hypothesis. Hence bc = o(b+ M) # 0
because b ¢ M and o is monic. But Jbc = ~(Jb) = 0 because Jb C M (if Jb € M, then
Jb+ M = Rb. But Jb << Rb, so M = Rb, a contradition). So 0 # bc € bR Nry(J), as required.

Proposition 6.2 is proved.

Recall that a left R-module M is called mininjective [17] if every R-homomorphism from a
minimal left ideal to M extends to a homomorphism of R to M.

Proposition 6.3. If M is a JP-injective left R-module, then it is mininjective.
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Proof. Let Ra be a minimal left ideal of R. If (Ra)? # 0, then exists k € Ra such that
Rak # 0. Since Ra is minimal, Rak = Ra. Thus k = ek for some 0 # e € Ra, this shows that
e? —e € 1gy(k). But 1z, (k) # Ra because ek # 0, and note that Ra is simple, we have 1z, (k) = 0,
and so €2 = e and Ra = Re. Clearly, in this case, every homomorphism from Ra to M can be
extended to a homomorphism of R to M. If (Ra)? = 0, then a € J(R). Since M is JP-injective,
every homomorphism from Ra to M can be extended to R.

Proposition 6.3 is proved.

Theorem 6.2. The following statements are equivalent for a ring R:

(1) R is an I-regular ring.

(2) Every left R-module is I-F-injective.

(3) Every left R-module is I- P-injective.

(4) Every cyclic left R-module is I- P-injective.

(5) Every left R-module is I-flat.

(6) Every left R-module is I-P-flat.

(7) Every cyclic left R-module is I-P-flat.

(8) R is left I-semihereditary and left I-F-injective.

(9) R is left IPP and left I- P-injective.

Proof. (2) = (3) = (4); (5) = (6) = (7); and (8) = (9) are obvious.

(1) = (2), (5), (8). Assume (1). Then it is easy to prove by induction that every finitely generated
left ideal in [ is a direct summand of p R, so (2), (5), (8) hold.

(4) = (1). Let a € I. Then by (4), Ra is I-P-injective, so that Ra is a direct summand of pR.
And thus (1) follows.

(7) = (1). Let @ € I. Then by (5), R/Ra is I-P-flat. This follows that Ra is I-P-pure in R
by Proposition 3.1(1). By Theorem 3.3(3), we have Ra[)aR = aRa, and hence a = aba for some
b € R. Therefore, R is an I-regular ring.

(9) = (1). Let a € I. Since R is left I-P-injective, rglr(a) = aR by Theorem 6.1(3). Since R
is left IPP, Ra is projective, so 1g(a) = Re for some €? = e € R. Thus, aR = rg(Re) = (1 — ¢)R
is a direct summand of Rp, and hence a is regular.

Theorem 6.2 is proved.

Corollary 6.2. The following statements are equivalent for a ring R:

(1) R is a semiprimitive ring.

(2) Every left R-module is J-F-injective.

(3) Every left R-module is J-P-injective.

(4) Every cyclic left R-module is J-P-injective.

(5) Every left R-module is J-flat.

(6) Every left R-module is J-P-flat.

(7) Every cyclic left R-module is J-P-flat.

(8) R is left J-semihereditary and left J-F-injective.

(9) R is left JPP and left J-P-injective.

Corollary 6.3. The following statements are equivalent for a ring R:

(1) R is a regular ring.

(2) Every left R-module is F'-injective.

(3) Every left R-module is P-injective.

(4) Every cyclic left R-module is P-injective.

(5) Every left R-module is flat.
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(6) Every left R-module is P-flat.

(7) Every cyclic left R-module is P-flat.

(8) R is left semihereditary and left F-injective.

(9) R is left PP and left P-injective.

Theorem 6.3. The following statements are equivalent for a ring R:

(1) R is a regular ring.

(2) R is a left I-semiregular I-regular ring.

Proof. (1) = (2) is trivial.

(2) = (1). Let M be any left R-module. Since R is [-regular, by Theorem 6.2, M is I-P-
injective. But R is left /-semiregular, by Theorem 2.2, M is P-injective. Hence, R is a regular ring
by Corollary 6.3.
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