UDC 512.5

Y. Xu (School Math. and Statist., Henan Univ. Sci. and Technol., China),
X. H. Li (School Math. Sci., Soochow Univ., China)

s-CONDITIONALLY PERMUTABLE SUBGROUPS
AND p-NILPOTENCY OF FINITE GROUPS *

s-YMOBHO INEPECTABHI IIIAT'PYIIN
TA p-HIUVIBIIOTEHTHICTD CKIHYEHHHUX I'PYII

We study the p-nilpotency of a group such that every maximal subgroup of its Sylow p-subgroups is s-conditionally
permutable for some prime p. By using the classification of finite simple groups, we get interesting new results and
generalize some earlier results.

BUBYEHO p-HUIBIIOTEHTHICTH TPYNH, IS SIKOI KOXKHA MakCHMallbHAa HiArpymna ii CHJIOBCBKHX p-IIIATPYI € S-yMOBHO Ie-
PECTaBHOIO UIS AESKOrO MPOCTOTO p. 3a JOMOMOTOK Kiacudikamii CKIHYEHHHX MPOCTHX TPyNl OTPHMAHO ITiKaBi HOBI
pe3ysbTaTu Ta y3arajibHEeHO [esKi pe3y/bTaTy, 0 OTPHUMaHi paHilie.

1. Notation and introduction. In this paper, all groups are finite and G stands for a finite group.
Let 7(() be the set of all prime divisors of |G]. Let G, and Syl,,(G) be a Sylow p-subgroup and the
set of Sylow p-subgroups of G respectively. Let F denote a formation, ¢/ the class of supersolvable
groups. Let n, be the p-part of a nature number n, that is, n, = p® such that p® | n but p®*1 { n.
Let G be a Lie-type simple group over the finite field F},. To collect some useful information and
for convenience in narrating, we define n(G) in Table 1.1. The other notation and terminology are
standard (see [11, 13]).

Table 1.1
G n(G) G n(G)
An(q) (n+1)f | *Au(g)(k>2) (4k+2)f
B (q)(p # 2) 2nf B, (27) 2nf
Cn(q)(p # 2) 2nf 2Aogpi1(q)(k>2) 2(k+1)f
Dy (q) 2n f Di(q) 2(n—1)f
Es(q) 30f Er(q) 18 f
Es(q) 12f “Eg(q) 18f
Fu(q) 12f 2Fa(q) 12f
Ga(q) 6f ®Dy(q) 12f
*Ga(q) 6f °Bs(q) 4f

Many authors have investigated the structure of a group when maximal subgroups of Sylow
subgroups of the group are well situated in the group. Srinivasan [28] showed that a group G is
supersolvable if all maximal subgroups of every Sylow subgroup of G are normal. Later, several
authors obtain the same conclusion if normality is replaced by some weaker property (see [25, 27]).

* This work was supported by the National Natural Science Foundation of China (Grant N.11171243, 11326056), the
Scientific Research Foundation for Doctors, Henan University of Science and Technology (N.09001610).

© Y. XU, X. H. LI, 2014
858 ISSN 1027-3190. Yxp. mam. srcyph., 2014, m. 66, Ne 6



5s-CONDITIONALLY PERMUTABLE SUBGROUPS AND p-NILPOTENCY OF FINITE GROUPS 859

In particular, these results indicate that the generalized normality of some maximal subgroups of
Sylow subgroups give a lot of useful information on the structure of groups.

In this paper, we obtain some sufficient conditions on p-nilpotency and supersolvability of groups
by using the s-conditional permutability of maximal subgroups of Sylow subgroups. Some earlier
results on this topic are generalized.

2. Basic definitions and preliminary results. Let H and K be two subgroups of G. We say
that H permutes with K if HK = K H. Recently, Huang and Guo [10] introduced a new embedding
property, namely, the s-conditional permutability of subgroups of a group.

Definition. A subgroup H of G is s-conditionally permutable if for every prime p € 7(G), there
exists a Sylow p-subgroup P of G such that HP = PH.

For the sake of convenience, we list here some known results which will be useful in the sequel.
Lemma 2.1 ([10], Lemma 2.3). Let H and K be subgroups of G. Then the following hold:

(1) If H is s-conditionally permutable in G and K is normal in G, then H K/ K is s-conditionally
permutable in G.

2) If H £ K <G and H is s-conditionally permutable in G, then H is s-conditionally
permutable in K.

Lemma 2.2 ([24], Lemma 6). Suppose that G is a non-Abelian simple group. Then there exists
an odd prime r € 7(QG) such that G has no Hall {2, r}-subgroup.

Lemma 2.3 ([29], Theorem 3.1). Let F be a saturated formation containing U, and G a group
with a normal subgroup N such that G/N € F. If all Sylow subgroups of F*(N) are cyclic, then
GeF.

Lemma 2.4 ([26], Lemma 1.6). Let P be a nilpotent normal subgroup of a group G. If P N
N ®(G) = 1, then P is the direct product of some minimal normal subgroups of G.

Recall that a prime divisor d of @™ — 1 is called primitive, if d does not divide a’ — 1
for 1 < ¢ < m — 1. For primitive prime divisors, an important property is due to Zsigmondy,
refer to [8].

Lemma 2.5 [8]. Let b and n be positive integers.

(1) There are primitive prime divisors of b™ — 1 unless (b,n) = (2,6) or b is a Mersenne prime
and n = 2.

(2) Each primitive prime divisor p of b™ — 1 is at least n + 1. Moreover, if p = n + 1, then p?
divides b — 1 except for the following cases:

) n=2and b=2°—-1 or 3-2°—-1;

(i) b=2 and n=4,6, 10,12 or 18;

(iii)) b=3 and n=4 or 6;

(iv) b=5 and n =6.

(3) For a positive integer s, if a primitive prime divisor of b° — 1 divides b"™ — 1, then s divides n.

3. Main results and their proofs.

Theorem 3.1. Let G be a non-Abelian simple group and |G|o = 2¢. If G has a subgroup of
order 2171 G|, for every r € w(G) \ {2}, then G = PSLy(q), where q is a power of an odd prime
and t = 2.
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Proof. Let r € w(G) \ {2}, H be a subgroup of G of order 2!71|G|,, A € Syly(H) and
R € Syl.(H). Then |A| = 2!=! and R € Syl.(G) and H = AR. Let M be a maximal subgroup
of G containing H. Then |M|y = 2! or |M|y = 2171 If | M|y = 2171, then A € Syly(M) and H
is a Hall {2, r}-subgroup of M; if | M|y = 2%, then My € Syly(G), |G : M| is odd and so G has
a faithful primitive permutation representation of odd degree and M is listed in [20] (Theorem). By
the classification of finite simple groups, we divide the argument into the following cases.

(1) G is a sporadic simple group.
Let 7 = max7(G). Then by [5] and http://brauer.maths.qmul.ac.uk/Atlas/v3, 2=t t |M], a
contradiction.

(2) G is an alternating A,,.

1 1

We have 2! = <2n!> . Let r = max7(G). By [3], R4 = R and 27! 2(r— 1)(n—r)!,
2

this is impossible.

(3) G is a Lie-type simple group over GF(q), where ¢ = p/ and p is a prime.

Suppose that G = PSLs(q) and |G|y > 4. If ¢ = 27, then G has no subgroup of order
1
§|G\2|R| by [14], a contradiction. Hence ¢ = p/ with p odd. Thus (¢ — 1)2 = 2 or (¢ + 1)2 = 2.

If (g+1)2 =2, lett =maxm(¢g+1)and V € Syl,(G), then G has no subgroup of order %|G\2|V|
by [14]; if (¢ — 1)2 = 2, let u = max7w(q — 1) and U € Syl,(G), then G has no subgroup of
order §|G lo|U| by [14], a contradiction. Hence |G|y = 22, the result holds. From now, we assume
that n(G) > 2f.

Assume that (n(G),p) = (6,2). Then (n(G )/f f) is one of (3,2) and (6,1), and so G is one
of the groups PSL3(22), PSU4(2), PSLg(2), D4(2). Suppose that G € {PSL3(2?), PSU4(2),
D4(2)}. Let r = 3. Since M, € Syl.(G ) by [5, p.23, 26, and 85], M € {Ag, 3° - Qg} f
G = PSL3(2%), M € {37% : 244, 3% . Sy} if G = PSU4(2) and M = 3% : 23 .5, if
G = Dy4(2), hence 4 | |G : M|, a contradiction. Suppose that G = PSLg(2). Let r =T
By http://brauer.maths.qmul.ac.uk/Atlas/lin/L62, M € {29 : (L3(2) x L3(2)), (L3(2) x L3(2)) :
(La(8) x 7) : 3}. If M € {(L3(2) x L3(2)): 2, (L2(8) x7) :3},thend | |G : M|; if M =
=29 : (L3(2) x L3(2)), since the maximal subgroup A of L3(2) satisfying 7 | |A| is isomorphic to
7 :3, M has no the maximal subgroup of order 2!4 - 72, a contradiction. Hence (n(G),p) # (6,2).
By Lemma 2.5, p™©) —1 has at least one primitive prime divisor. Let r be the largest primitive prime
divisor of p"&) — 1 and M a maximal subgroup of G of order 2!=1G|,.. Then M is not a parabolic
subgroup of G.

Suppose that G € {PSL3(q), PSUs(q), >F4(2*™ 1), Sz(q), 3Da(q), Da(27), 2G2(q), G2(q)}.
The maximal subgroups or orders of maximal subgroups of 2By(22™+1), PSL3(q) and PSU;(q) are
listed in the proof of Lemmas 1-4 in [7]; the maximal subgroups of 2F4(22™*1), 2Gy(q), G2(27),
3D4(q) and D4(2/) are listed in [6, 15-17, 23]. A simple checking shows that 4 | |G : M|, a
contradiction. Suppose that G = G(q) with ¢ odd. Since |M,.| = |G|, by [16], the possibilities of
M are SL3(q) : 2, SUs(q) : 2, L2(13), G2(2) and J;. It is easy to prove that if M € {SL3(q) : 2,
SUs(q) : 2, Lo(13), G2(2), J1}, then M has no the subgroup of order 2:71|G|,.

Next, we deal with the remaining Lie-type simple group G in the previous argument. Let H
be maximal subgroups of G containing a subgroup of G of order 2!~!|G|,. Then H is a parabolic
subgroup of G.

—

no
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Suppose that G is an exceptional Lie-type simple group and the notation K(G) is defined in
[21] (Theorem). Suppose that p = 2. It is easy to see that the maximal subgroup in Table 1 [21]
don’t contain a subgroup of order 2!~!|G|,. Thus by [21] (Theorem), |M| < 2K(%)f On the other
hand, by [12], |[M| > (|M|3)? > 22(K@-DI if G #£ Eg(27) or [M| > (|M])? > 22E(G)-10)f
if G = Eg(2/), a contradiction. Suppose that p > 2 and G is one of simple groups Fy(q), Es(q),
2FEe(q), F7(q), Es(q). Then 4 | |G : H], this is impossible. Thus we have proved that there is no
exceptional Lie-type simple group satisfying the condition of Theorem 3.1.

Suppose that G is a classical simple group on n-dimension vector space V and n > 3. We
shall use the notation of the book [13] in the following argument. Aschbacher [1] classified maximal
subgroups of a classical simple group into 9 types: C;, where 1 < ¢ < 8, and S, see [13] for the
description.

Suppose that p = 2. If 3 < n < 12, using [14] and [15], it is easy to see that 4 | |G : M|, G
doesn’t satisfy the condition of Theorem 3.1. Hence we assume that n > 12. Assume that M is an
almost simple group. Since 2!=1 | [M|s, by [18], [M]| < 23/m < 227(n=2/=2 < (|M1],)2. On the
other hand, by [12], |[M| > (|M|2)?, a contradiction. Suppose that M is a C; subgroup. By [15]
(Table A-E), a simple checking shows that 4 | |G : M|, G doesn’t satisfy the hypothesis.

Assume that p > 2. Since 4 { |G : K|, we have 4 { n if G = PSL,(q); 2{n if G = PSL,(q)
with4 | (¢+1); 41 (g+ 1) if G # PSL,(q); 4 1 n(n — 1) if G € {Un(q), PSpn(q)}; 2 1 k if
G € {PQ3,(q), PQoky1(q)}; 21 (k— 1) if G = PQ, (q). Suppose that 2 < n < 12. From [14] and
[15], it is easy to see that either 2=1 { | M| or M, ¢ Syl.(G), a contradiction. Hence we may assume
that n > 12. By Lemma 2.5, we may assume that 7 > n(G) 41 or = n(G) + 1 and r2 | p™(©) —1.
By [20], it is easy to see that |G : M| is not odd, hence M has a Hall {2, r}-subgroup. Suppose that
M is a S subgroup of G. Then the covering group of M is a subgroup of GL,(q) and there is a
non-Abelian simple group S such that S < M < Sut(S). Moreover, if N is the preimage of S in
G, then N is absolutely irreducible on V' and N is not a classical group defined over a subfield of
GF(q)(in its natural representation). All possibilities of S have given in Examples 2.6-2.9 in [9].
For all possible S either 2/=1 { |M| or r2 { |M| when 7 = n(G) + 1, this is impossible. Suppose that
M is not a S subgroup of G. Since r | |M]|, by [14] (Table 3.5.A-F), it is easy to see that M must
be one of C3, Cs and Cg subgroups of G. Since r > n(G) + 1 or 72 | | M| if r = n(G) + 1, M is
not a Cg subgroup. If M is C3 and Cg subgroups, a simple calculation shows that 2/=1 { | M|, a final
contradiction.

Theorem 3.1 is proved.

Let M be a class of groups. If there is no the section in a group G to be isomorphic to a member
of M, then G is called M-free. For the convenience, write & for the set of all PSLs(q), where
q = p/ is odd and the order of Sylow 2-subgroup of PSLs(q) is 4.

Theorem 3.2. Let G be a group and N a normal subgroup of G, p € m(G) and P € Syl ,(N).
Suppose that (|G|,p — 1) = 1 and G/N is p-nilpotent. If G is S-free and all maximal subgroups of
P are s-conditionally permutable in G, then G is p-nilpotent.

Proof. Assume that the result is false. Let (G, N) be a counterexample with |G|+ | N | minimal.

(1) G has a unique minimal normal subgroup L contained in N, G/L is p-nilpotent and L £
£« ®(@), and so L is not a p’-group.

Let L be a minimal normal subgroup of G contained in N. Consider the quotient group G = G/ L.
Clearly G/N =2 G/N is p-nilpotent and P = PL/L is a Sylow p-subgroup of N, where N = N/L.
Let P, = P,L/L be a maximal subgroup of P. We may assume that P is a maximal subgroup
of P. By Lemma 2.1(1), P is s-conditionally permutable in G. The choice of G implies that G is
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p-nilpotent. Since the class of p-nilpotent groups is a saturated formation, we may assume that L is
a unique minimal normal subgroup of G contained in N and L £ ®(G), and so L is not a p’-group.

(2) Op(N) =1

If not, then by (1), L < O,(N) and, there is a maximal subgroup M of G such that G = LM
and LNM =1,s0 N=GNN =L(MNN)and LN(MNN) = 1. Itis clear that LM, € Syl,(G)
and we may let (M N N), < P, where (M N N), € Syl,(M N N). Let P, be a maximal subgroup
of P containing (M N N),. Then P = P, L. By the hypothesis, P, is a s-conditionally permutable
subgroup of G, then there exists a Sylow g-subgroup @ of G such that P,Q) = QP for any ¢ € 7(G),
where ¢ # p. Let L1 = L N P;. Then |L : L1| = ’L : LﬂP1| = ‘LPl : P1| = |PP1| =p.So Ly is
a maximal subgroup of L. If L < P, @, then P = LP; < P1(@, a contradiction. Hence LN PiQ < L
and L1 = L N P,Q. Consequently, L1 = LN PQ < P1Q, P1Q < Ng(Lq). It is clear that L; <1 L.
So P = LP; < Ng(L1). By the arbitrariness of ¢ € 7(G), we have L1 < G, hence L1 = 1 by
the minimal normality of L in G. This means that L is a cyclic subgroup of prime order. Since
G/Cg(L) is isomorphic to a subgroup of Aut(L) and |Aut(L)| = p — 1, by (|G|,p —1) = 1, we
have Cq(L) = G, and L < Z(G). Hence G = L x M. Since M = G/L, we get M is p-nilpotent
by (1), so G is p-nilpotent, a contradiction.

(3) End of the proof.

By (1) and (2), L is not solvable and so p = 2 by the Odd Order Theorem. Let L =177 xTs X ...
... x Ts, where T; are non-Abelian simple groups with 7; = T3, 1 < i < s. Since PN L € Syly(L),
we have PN L = K; X Ko x ... x K, where K; € Syl,(7;). Now we claim that there exists a
maximal subgroup P; of P and ¢ such that K; < P;. If PNL < P, itis clear. Assume that PNL = P.
Then (L, L) satisfies the hypothesis by Lemma 2.1(2). If L is a non-Abelian simple group, then every
maximal subgroup of P is s-conditionally permutable in L. By the hypothesis and Theorem 3.1, we
get L € S, a contradiction. Hence L is not a non-Abelian simple group. Therefore, we can choose
the maximal subgroup P, of P and i such that K; < P;. By the hypothesis, there exists a Sylow
g-subgroup @ of G such that P;QQ = QP for any g € 7(G), where ¢ # 2. Hence T; N P1(Q is a Hall
{2, ¢}-subgroup of T; for any g € m(T") with ¢ # 2. This contradicts the Lemma 2.2.

Theorem 3.2 is proved.

Corollary 3.1. Suppose that G is S-free. If for every prime p dividing the order of G and P €
€ Syl,(G), every maximal subgroup of P is s-conditionally permutable in G, then G is a Sylow
tower group of supersolvable type.

Theorem 3.3. Let F be a saturated formation containing U, and G a group with a normal
subgroup N such that G/N € F. If N is S-free and all maximal subgroups of every noncyclic Sylow
subgroup P of N are s-conditionally permutable in G, then G € F.

Proof. Assume that the result is false and let (G, N) be a counterexample with |G| + |N]|
minimal.

If all Sylow subgroups of N are cyclic, then all Sylow subgroups of F*(N) are cyclic. By
Lemma 2.3, G € F. Therefore, when we want to prove G € F in the following arguments, we
always assume that N has a noncyclic Sylow subgroup if (G, N) satisfies the hypothesis of (G, V)
in Theorem 3.3. By Lemma 2.1(2) and Corollary 3.1 NV is a Sylow tower group of supersolvable type.
Let r be the largest prime in 7w(N) and R € Syl,(N). Then R is normal in G and (G/R)/(N/R) =
=~ G/N € . By Lemma 2.1(1), every maximal subgroup of any Sylow subgroup of N/R is s-
conditionally permutable in G/R. Therefore, G/R satisfies the hypotheses for the normal subgroup
N/R. Thus, by induction, G/R € F, so R is noncyclic by Lemma 2.3. By Lemma 2.1(1), we may
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assume that G has a unique minimal normal subgroup L which is contained in R and G/L € F. If
L < ®(G), then it follows that G € F, a contradiction. Thus, we may further assume that RN®(G) =
= 1. Then, by Lemma 2.4, R = F(R) = L is an elementary abelian minimal normal subgroup of G.
Since R = L £ ®(G), we may choose a maximal subgroup M of G such that R < M. Let M, be a
Sylow r-subgroup of M. Then G = RM, RN M =1 and G, = RM, is a Sylow r-subgroup of G.
Let GG; be a maximal subgroup of G, containing M,. Then R N G is a maximal subgroup of R. By
the hypothesis, 2 N G is s-conditionally permutable in G, so there exists a @ € Syl,(G) such that
(RNG1)Q = Q(RNG1) with ¢ # r, thus RNG; = (RNG1)(RNQ) = RN(RNG1)Q<(RNG1)Q,
hence (RN G1)Q < Ng(RN Gy). Clearly, RN G < G,. Therefore, RN G < G. By the minimal
normality of R in G, we have RN G; = 1. Hence |R| = r, R is cyclic, a contradiction.
Theorem 3.3 is proved.

Corollary 3.2 ([10], Theorem 4.2). Let F be a saturated formation containing U, and G a group
with a solvable normal subgroup N such that G/N € F. If all maximal subgroups of every noncyclic
Sylow subgroup P of N are s-conditionally permutable in G, then G € F.
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