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ON SOME RAMANUJAN IDENTITIES FOR THE RATIOS OF ETA-FUNCTIONS

ITPO AEAKI TOTOKHOCTI PAMAHYIKAHA
JIJISI BITHOIEHD ETA-®YHKIIIA

The purpose of this paper is to provide direct proofs of some of Ramanujan’s P-Q modular equations based on simply
proved elementary identities of Chapter 16 of his Second Notebook.

Hageneno mpsimi noBefeHHs neskux P-Q MomynbHHX piBHAHBb PamaHymkaHa Ha MiACTaBI eIEMEHTapHUX TOTOXXHOCTEH 3
m1aBy 16 ioro [lpyroro 30mmura, mo IpocTo JOBOAATHCS.

1. Introduction. In the unorganized pages of his second notebook [11], Ramanujan recorded 23
identities involving ratios of Dedekind’s eta-function all of which have been proved by B. C. Berndt
and L.-C. Zhang [7] by employing Ramanujan’s modular identities of various degrees, or via his
mixed modular equations, or via the theory of modular forms. Similar 14 identities involving ratios
of Dedekind’s eta-function found on page 55 of Ramanujan’s lost notebook [12] have been proved
by Berndt [6] employing the above methods.

The purpose of this paper, consistent with Berndt’s often made call for continued efforts to
discern Ramanujan’s thinking (see, for example, his book [5, p. 1]), is to demonstrate amenability of
10 of the above mentioned identities proved in [3, 4] via modular and mixed modular equations, to
more direct proof based on simply proved identities of Chapter 16 of Ramanujan’s second notebook
[11], including his celebrated, so called, “remarkable identity with several parameters” [9], or “1¢
summation”. In the remainder of this section, we find it convenient, for our later use, to give a brief
account of relevant definitions and results of Chapter 16 of the second notebook [11] as well as some
results easily deducible there from. Significantly, the 1¢; summation, stated below as (1.1), is not
only the first of the entries (Entry 17, Chapter 16, Second Notebook [11]) with which Ramanujan
begins his development of classical theory of theta and elliptic functions but also a very important
tool all through his work in the classical theory as well as his own alternative theories:

10( = 1 ) -n
1+Z /qu = aq) Zn+z /Baq)q()ﬁq) _

n=1

_ (24216 0(=0/216%) (6% 4%) o (B4 ¢%) (wh)
(=425 ¢*) oo (—= B0/ % 4*) 00 (4?5 4?) 0 (BG?5 4% ) 0 '

where |¢| < 1, |Bq| < |z| < 1/|ag] and, as is customary,

n—1

(a;q)n == [J (1 - ag")

k=0
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and

oo
(@; @)oo = [ [ (1 — ag¥).

k=0
For instance, (1.1) contains as its special cases the well known Jacobi’s triple product identity and
the g-binomial theorem of Euler and Cauchy which are ubiquitous in theory of numbers and in
theory of special functions. More over, K. Venkatachaliengar [13] has given an elementary and self
contained proof of (1.1) giving it its pride of place in literature above its aforementioned special cases.
Venkatachalingar’s novel proof consists in first making the simple observation that the product side,
say f(z), satisfies a certain functional relationship which then readily yields a recurrence relation for
the coefficients in the power series expansion of f(z) in neighbourhood of z = 0. The recurrence
relation, in turn, gives all the coefficients except the constant term. Lastly, the constant term is
determined by an application of Abel’s theorem. Ramanujan’s equivalent of Jacobi’s theta function is

f(a,b) = Z @D 2pn(n=1)/2. lab| < 1. (1.2)

n=-—00
Note that Jacobi’s 03(q, z)is same as f(qz,q/z) and that Jacob’s triple product identity
flgz,q/2) = Z 0" = (=42 0*)oo(=0/ 2 ) oo (@%: P)oos (1.3)
n=—oo
is the special case @« = 0 = 3 of (1.1). Also, the Euler—Cauchy ¢-binomial theorem, in the form
(—a%¢°) 1/ a; q
A=A ey —agz)" (1.4)
(—agqz;¢?) Z )

is the special case § = 1 of (1.1). All through his work Ramanujan employs the following restrictions

©(q) , ¥(q) and f(—q) of (1.2):

P)i= flogma) = L2 Y (-1 = (L0 (15)
— 4 q)oo
o g = N 2 _ (@56 e
¥(q) = f(q. %) kz_oq TN (1.6)
and
f(=q) = f(=a, =) = Y (=1)"¢"®"D? = (g;q)oe. (1.7)

He also employs the functions

x(9) = (-¢; )0 (1.8)
and

3 X(=q) (1.9)
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The series representations in (1.5)—(1.7) including the first equation in (1.6) follow by simple
manipulations of the terms in the respective defining series. Similarly, the product forms in (1.5)-
(1.7) are obtained on employing (1.3) followed by manipulations of the factors involved. A simple
but often used identity obtained by such manipulation of factors is due to Euler, namely:

1
(¢ @)oo = o (1.10)
We find it convenient to gather in the the following Lemmas some of the elementary results of
Chapters 16—20 in Ramanujan’s Second Notebook [11] and briefly sketch their proofs. The proofs
are elementary and follow from some simple manipulations of series and products. One may see
C. Adiga’s doctoral thesis [1] for many of these proofs in the spirit of Ramanujan. Though Lemmas 1.2
and 1.3 are more general than we need, we feel that it is desirable to record them here because they

seem new and because the proofs are as elementary as those of their special cases.

Lemma 1.1. If|q| < 1 and |ab| < 1, then

. ) 2 (=¢*) L f(=9)
(@) o( Q)—f(_q2), Y(q) = g x( q)—f(_qz),
(1.11)
e()0(®) =v*(q),  e(@)e(—q) = *(—¢*);
(i) W(g) = f(@* ) +av(d®)  and () =2qf(¢*,¢”) +0(d”);  (1.12)
1 Y(q/?) " oy = 24,
o BT R e A e (1
. 1 9Yq) o gy = XD
) "R T i) @ = P (19
P TR o G 1 X9 |
L8 = G BT T
(v) f(a,b) = af(a(ab),b(ab)~"); (1.16)
(vi) f(a,ab?) f(b,a*b) = f(a,b)y(ab),
(1.17)
f(CL, b)f(_a’ _b) = fQ(_GQ’ _b2)90(_ab)§
(vii) F2(a,b) — f2(—a, —b) = daf <Z,Za2b2> »(a2b?); (1.18)
(viii)  if ab = cd, then
f(a,b)f(c,d) + f(—a,=b)f(—c,—d) = 2f(ac,bd) f (ad, bc) (1.19)
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and

Flab)f(ed) — F(—a,—b)f(—c, —d) = 2a f( abcd) f(z Zabcd) (1.20)

Proof- The identities in (1.11) and (1.16)—(1.20) merely follow from (1.5)—(1.8) on simple
manipulations of the series or products involved. For instance, the factors in the product rep-
resentation for ¢(—¢q) in (1.5) can be regrouped as (¢;¢%)oo(¢%;¢?)oo/(—q; q)oo Which becomes
(4% 6%) 00/ (@ @)oo (—q; @) on using (1.10). Recombining the factors in the denomlnator and em-
ploying the product representation in (1.7) twice we have the first of (1.11). Identity (1.16) is the well
known quasiperiodicity. To simply establish it, we have, from (1.2), the right-hand side of (1.16) to
be equal to

0 Y (alab)) V2 b(a) 12

or, what is the same

o

Za(n+1)(n+2)/2bn(n+1)/2’

—0o0
which is f(a,b), as per (1.2) again, with n + 1 change to n. The identity (1.17) is true, since its
right-hand side can be written as, with p = ab,

(=3 2)o0 (=05 D)oo (15 D)oo (075 9% oo/ (93 P oo
or, what is the same, on regrouping various factors,
(=3 ) oo (=ap; 1) oo (=3 P*) oo (=013 P) oo (P%: 1) 2
or

f(a,bp) f(b,ap).

But this is the same as the left-hand side of (1 17). For (1. 18) we need realize firstly that, by
virtue of (1.2), the left-hand side equals Z Z (ab)(™ P +n?)/2 (a/b)™+™/2 with m+n = odd.

Transforming the indices to (s, ¢) by means 0fm+n = 2s5+1,m—n = 2t+1, the double sum can be
) 0o b

rewritten as the product 2a Z_ (ab)*” (a)% Z_ (ab)’” (ab)! or, 2af <a ba2b2> f(1,a%b?). But

this is the same as right-hand side of (1.18). Proofs of (1.19) and (1.20) follow in the same vein. For

. . . o m?tn? g\ 2 (¢ 3 _
instance, with p = ab = cd, the left-hand side of (1.19) equals 2 Z_ p 2 <b> (d) , with

m + n =even. Transforming (m,n) to (s,t) by means of m +n = 2s and m — n = 2t, the double
S

0 2 o d\ 2

sum becomes the product 2 E ps2 <Z§> E pt2 <Z> ,or 2f(ac,bd) f (ad, bc). But this is
—00 —00 C

the right-hand side of (1.19).

Proofs of (1.12)—(1.15) are slightly different, but equally simple. For the first of (1.12), we may
n(n+1)
start with the defining series 2¢)(q) = f(1,q) = ZOO g 2 and regroup the terms according as
—0o0
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n =0,+1,—1 (mod 3). Similarly for the other identity of (1.12), we need only regroup the terms in
the series ¢(q) = Z(io q”2 according as n = 0,+1, —1 (mod 3).

Manipulating the factors appearing in the right-hand side of the definition (1.9) and employing the
product forms appearing in (1.5)—(1.7) and the first of (1.12) (respectively the second of (1.12)) one
gets the first of (1.13) (respectively the second). Now, following Berndt [3, p. 346], since changing
q*/3 to ¢"/3w, ¢'/3w? changes v(q) respectively to w?v(q) and wwv(q), as is clear from (1.8) and (1.9),
we have from (1.13)

1 1 w W\ _ (@) (g Pw)i(e! Pw?)
1+v3_<1+v>(1+v)<1+v3>_ o) .
This reduces to the first of (1.14), on repeated application of (1.6). Similarly, the second of (1.13)

and (1.5) yield the first of (1.15). That the second form of (1.14) is equivalent to the first form can
be seen by employing the definition (1.9) to eliminate the y-ratio involved. The second of (1.15)

follows similarly from the first.
Following lemma seems new to literature and simply follows from a few applications of (1.1)
and series and product manipulations. It contains Entry 10 (iv) of Chapter 19 of [11] as special case

(z=1).
Lemma 1.2.
5, 5
S e = S e R T SV FC R
« zf(—q1422, _q6/22) + Z_lf(_q6z2) _q14/22) ) (121)

f(=qz,—¢°/2) f(=¢®2,—q"/2) ~ f(=q°2,—q/2)f(—q"2,—q¢3/2)
Proof. Let
flqz,q/2)

P(z,q) := p*(—¢*) 22 (1.22)
(20) = o )f(—qz, —q/%)
which is the right-hand side of (1.1) when o = 8 = —1, and let
2q2f(—q2 —q'®) f(—q"122, —¢0/2?)
P*(z,q) = *(—q'° 1.23
) = ) e (a1 (29
Then (1.21) is the same as
P(qu)_P(Z>q5):P*(zaq)+P*(Z_17Q)' (124)
On putting o = = —1 in (1.1), we have
_ q"/z"
P(z,q) = S(z,q) _1+221+ 5o+ 1+q2”' (1.25)

Converting each series in this into double series by expanding each of the summands by geometric
series, interchanging the order of summation and summing the inner geometric series, we obtain

) 2n+1 —1 2n+1
P(z,q) = S(z,q) = S*(2,q) _1+2Z %H 22 1_z—1 %H . (1.26)
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Repeating the same procedure on each of the series obtained by grouping the terms in (1.26) according
asn =0,1,2,3,4 (mod 5) we get

P(z,q9) — P(2,¢°) = 5%(2,q) — §*(2,¢°) =

i +q9n Z 4oz n i q3n+q7n (Z 42 n)_
- 14+ q10n - 1 _|_q10n o
= [S(g7*2,¢°) = S(¢7*2,¢")] = [S(a*271,¢%) = S(¢*=7", ¢")]. (127)

Now, from (1.25) and (1.22),

S(a*2,¢°) = S(¢%2,¢°) = P(2q"*,¢°) — P(q"*2,¢°) =

10) flaz,d/2)  f(d*2,47/2)
f(=az,=¢/2)  f(=¢*z,—q"/2)
on using the identity (1.20) with @ = gz, b = ¢z, c = —¢32 and d = —¢"/z; P* being as in (1.23).
Now substituting (1.28) in (1.27) we have (1.24) which is the same as (1.21) by virtue of (1.22)
and (1.23).
Corollary 1.1 (Entry 10 (iv), Chapter 19, [11]).

¥ (a) — (") = 44f (¢, 4" f (@, 4"). (1.29)
Proof. Putting z =1 in (1.21), we obtain
P (=*)e@) P (=a")e(®) _ 499’ (=a")f(=* —a") f(=d° —¢")
e(—q) o(—4¢°) f(=a,—a*) f(=¢*,—q")
This reduces to (1.29) on applying the last of the identities in (1.11) twice and also the second of

(1.17) twice.
Following lemma also seems new to literature and follows from few applications of (1.1). Its

= P*(z,q), (1.28)

proof is similar to that of pervious lemma but slightly more involved. It contains Entry 10 (v) of
Chapter 19 of [11] as special case (z = 1).

Lemma 1.3.
2 f(ZMJQ/Z)_ 22, 5 J(2,4'%/2) 20,5 4
f(@?/z,¢°2) 2f(q%z,¢%/2)
f(q/2,¢°2) f (32,47 2) " flaz,¢°/2)f(32,47/2) | (139
Proof. Let
V4 2 z
Plg,2) = 92 () 12 L2) (131)

flaz,q/2)

which is indeed (1 — ¢)~! times the right-hand side of (1.1) with a = ¢ = 1/3 and z changed to
z/q, and let
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- AP f(a. ) [Pz, ¢52)
Pt = o (@ erds)

(1.32)

Then (1.30) is the same as
P(z.q) = ¢°P(2,¢°) = P(z,q) + 2P*(1/2,q). (1.33)

On changing z to z/q and putting « = ¢, § = 1/q in (1.1) and then dividing throughout by (1 — ¢),
we have

nnn

. R o0 ( o n n/z
P(z,q) = S(z,q) == Z 1 q2n+1 + Z 1 q2n+1 : (1.34)
0 0

Converting each series in this into double series by expanding the summands by geometric series,
interchanging the order of summation and summing the inner sums, we obtain

) 0 n

5 - ‘ 2q" q
P(z,q) = S(2,9) = 5(2,q) :ZW+ZHZ_—W (1.35)
0 0

Repeating the same procedure on each of the series obtained by regrouping the terms in (1.35)
according as n =0, 1,2,3,4 (mod 5) we get

P(z,q9) — ¢*P(z,¢°) = §*(2,9) — ¢*S*(2,¢°) =

3n+1 +q7n+3)(zn+1 _|_Z—n)

o In+4\( n+1 —n o
R T (136)
0 0

q10n+5 q10n+5

Now, we have from (1.25) and (1.22)
P(iz,iq) — P(iz"',iq) = S(iz,iq) — S(iz™ ", ig),

or

©*(¢°) f=az.4/2) _ flaz, _q/z)] _ 4i Pt (z72nmt - 2t

flaz,—q/z)  f(—qz,q/2) > 1 — g2Cn+D) )

or

(q2),¢(q4) f(—l/z27 —22(]4) _ 0o qzn(zQ” B 22(n+1))
® F(—222, —q2/22) d e

or, changing ¢ to ¢° and 2% to —z~!, and using fourth of the equations in (1.11)

¢2(q5) f(zaqlo/z)) _ i( 1) q ( ntl +Z_n).
1-

Pz ¢)z) - qlon+5

This gives, on changing z to ¢~ %z,

) i Jo(qn e 4 oty
f(qz, q9/z 5 1— q10n+5 .

In turn, this yields, on changing z to z~! and then multiplying throughout by z,
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11}2((]5) zf(qi z 761 Z i 27" 4+ q9n+4zn+1)
f(qz 17 q Z 0 1 _ q10n+5 .
Similarly, we have
fw%fyﬁigiEEZi, D@ g
7 — _10nt5 )

f(q 2% /Z o 1 qton

31/}2( S)Zf(q_ z- ,q Z i 3n+1 —n_|_q7n+3 7’L+1)

A 3271 — _10n+5
f(q z ,q Z o 1 qlon

Adding the last four identities and making four applications of (1.16) to rewrite ¢*f(¢ %z, ¢'*/2),
¢*f(a™/2.4"2), 6> f(a722,4"?/2), and ¢* f (¢ 7%/ 2, ¢ ) respectively as 2 f (¢°2, ¢* /2), 27 f(¢°/ 2,
q'z), q2f(¢°2,¢° /) and gz~ f(¢°/ 2, ¢°2), we get

2f (452, q*/2) +Jf‘"(qr6/f<776142) +qu(q82,q2/2) +qf(q8/zvq22)
flaz,d%/2)  fla/2,¢%)  f(®2,47/2)  f(d3/2,q4"2)

V(%) [

(1.37)

Tz 1 — q10n+5 '

or, on using the sum of (1.19) twice with (a,b,c,d) = (q,q* ¢*/2,¢*2) and (a,b,c,d) = (¢, q*,
¢*z,q/z), we obtain

O ) N 2f(q%z,¢%/2)

205 4
v () f(a,q7) |:f<q/z7q92)f(q3/z7q7z) flaz,a°/2) f(6*2,47 /2)

& <qn + q9n+4 4 q3n+1 4 q7n+3)(zn+1 4 an)
B 20: 1 — qlon+5

Using this in (1.36) gives (1.33) or what is the same (1.30).
Corollary 1.2 (Entry 10 (v), Chapter 19, [11]).

¥ (q) — qb*(¢°) = fla,q") (&, &) (1.38)

Proof. Putting z = 1 in (1.30), we have, on employing the fourth of the equations in (1.11) and
(1.3) several times and (1.6),

V(@) f (e, a) (e d%) _

fa:4°) f(¢3,q7)
(qlo;qlo)go(q5;q5)§o][ (=4 0°) oo (—0"; ¢°) oo (0% ¢°) oo (—*; ¢°)
(2% )% ("% @)% | L (=45 ¢'9) 0o (=475 ¢'9) 00 (=035 ¢'0) 00 (—¢75 ¢'0) o

V2 (q%) — v (¢'°) =
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y (_q2; qlo)oo(_q4; qlo)oo(_qi); qw)oo(—q6; qw)oo(—q8; q10>oo<_q10; qlo)oo _
(=4 @)oo

= (0% "% (=% ") oo (=0 ") 0 (— 0% 6" 00 (0% ¢') 0 =

= f(¢*,¢*) f(d*, ).

Changing ¢ to ¢ in this we have (1.38).

The first two identities in the following lemma are due to Ramanujan (Chapter 19, [11] and [3])
which we obtain as special cases of our general results in Lemmas 1.2 and 1.3. The other two results
are due to S.-Y. Kang [10] and our proofs are slightly different from hers. In what follows we also
employ repeatedly some additional notations, for brevity, without further mention.

Lemma 1.4. Let

M= g =020, sai= (=" and b= f(—g").  (139)

Then
S
M= X5 = —4qf(—q,—¢") f(—¢*, —¢") = —461?5?0 = —4gs1 505, (1.40)
s5 A5
i —qus = f(g, 4" f(d*, ¢*) = =t = —, (1.41)
S1 8185
485 2
)\1 - 5)\5 = —7t2 = —48185#1 (1.42)
S1
and
s A
1 — 5qus = 13 = . (1.43)
S5 8185

Proof. Identities in (1.40) follow from (1.21) on putting z = 1, changing ¢ to —q, employing
(1.11), (1.3) repeatedly and suitably manipulating the factors involved. Similarly, (1.41) follows
from (1.30).

Identities in (1.42) follow by simply eliminating w5 between (1.40) and (1.41) and then by
manipulating factors involved. Similarly, identities in (1.43) follow by eliminating A5 between (1.40)
and (1.41).

The following lemma seems new.

Lemma 1.5. We have
A — BAos = —4(s18501 4 5q°s5525015) (1.44)

and

A dgA
j — 50y = — 4 2472

. (1.45)
5185 55525
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Proof. Changing q to ¢° in (1.40) we get A5 — \o5 = —4¢°s5s95/105. Adding this to (1.40) and
using (1.43) we obtain

A1 — Aos = —4¢° 858250125 — %.9185 <M1 - )\1>'
S1S85

But this reduces to (1.44). Proof of (1.45) is similar. We need change ¢ to ¢° in (1.41) and add the
resulting identity to (1.41) and lastly use (1.42).

2. Main results. Theorem 2.1 below establishes four of Ramanujan’s P-() identities easily from
the v-identities (1.13), (1.14) and (1.15).

Theorem 2.1. [n the notations of (1.39) of Lemma 1.4 we have the following:

(1) ([11, p. 3271, [4, p. 204], Entry 51). Let

p._ 4 J Q= B
= an = .
ql/Gtg ql/?’t%
Then 5 3
9 P
f%@-+>ii§ = <§Z) + <C2) . (2.1)
(i) ([11, p. 3271, [4, p. 205], Entry 52). Let
p— t2 - —_— tl
= 7q1/24t3 and Q= eI
Then 5 5
9 Q P
2__ 7 _ (%) (L
P~ = (5) ~3(5) 22
(i) (Equivalent of Entry 5 (xii) of [11, p. 231] and [3, p. 230]). Let
Pp— tl Pp— t3
= 7q1/24t2 and Q= 7q1/8t6'
Then 6 6
8 Q P
3 R N e
"o+ g = (3) ~(5) 2
@iv) ([11, p. 327], [4, p. 210], Entry 56). If
t1 to
= d =
q'/3tg “ “ ¢*3tig’
then
P? 4+ Q® = P2Q? + 3PQ. (2.4)

Proof. (i) Eliminating v between the first of (1.14) and the first of (1.15) we have,
V(1o M) g
9413 )

Mg M
a3 au A}

or
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or, identically,

vy eo=ra) () v o (£)

on routinely employing the definitions of P, @), A1, p1, A3 and p3 and (1.11) and (1.39). This, on
dividing throughout by PQ), gives (2.1).
(i) Eliminating v between the second of (1.14) and the second of (1.15) we get

st V(L)
9,2 3)\2 -
S3H3 qs1A73

2
1</\1M1> g S st
q

A3f13 CogsiAd s3]

or

or, identically,
P

)t o=y (4) sz (L)

on routinely employing the definitions of P, @), A1, 1, A3 and p3 and (1.11) and (1.39). This
becomes (2.2) on dividing throughout by (PQ)2.
(iii)) From the first of (1.14) and the first of (1.15), we immediately have

R ) I N L ()
<1+03> ) (-8 >qw2(q3)_0’

or, on using the definition (1.9) of v,

942 3,2 2 2
S3A7 S1HY MY Al

gsiAg s3u3 qu3 A3

or
ST S TR UVIL:
gt A3t g5t siAZpt
or, identically,
P\? P\°¢
(PQ)° +8 = (PQ)° <Q) —(PQ)? <Q> :

on using the definitions P, @, A1, i1, A3 and pg and (1.11) and (1.39).
(iv) Eliminating v(¢3) from the two equations in (1.13) and expanding we obtain

v@e(=a) . @) e(=d)
ab(q”)p(—4) a(q®) (=g

or, identically,

1 1
PQ+3= P?+ Q>
(PQ) (PQ)
on using the definitions of P and ) and (1.11). This becomes (2.4) on multiplying throughout

by (PQ).
Theorem 2.1 is proved.
The following corollary is needed later in the proof of Theorem 2.4.
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Corollary 2.1. If

. q'Ptitis ,_ ¢*Ptats
= and V= —==
t3ts tet10
v\ 3 u\ 3 1
T = <—> + (—) and w = uv + —,
u v wUv
B — tonlan and D, — Inl3n
" qn/12tnt6n " qn/Gthth,
1 \? 4 \?
:= (B1B5)? d := (D1 D5)?
y1 = (B1DBs) +(B1Bs) an y2 = (D1Ds) +<D1D5> ;

then

(y3 — 3y1 — 9w? + 18)? = (y3 — 48y, + 128).

Proof. Setting

tnts 9 \?
Cpi= — | = (C1C5)* + : =
" qn/4t3nt6n Y ( ! 5) 0105 v
and
_ (DY (D5
Ys : D5 Dl )
we can write (2.1) as
9 1
C2 I B6 S
1 + 012 1 + B?
from which follows, on changing ¢ to ¢°,
9 1
C?+ — =B + —.
5 + 052 5 + Bg

Multiplying the last two equations, we obtain
Y3 :y?—?)yl — 9w? + z? + 16,

since, as can be easily shown,

Bi\’® Bs\® C
p— — —_— d [ —
! (st) - (Bl> o e "

Similarly (2.2) and (2.3) respectively yield
ys — 8ys = y3 — Yw” + 18

and
Y4+ 8ys = yi — 3y1 — 22 + 2.

Adding (2.5), (2.6) and (2.7), we have

ISSN 1027-3190.

4 3
Dy D;)?
(D1Ds) +<D1D5>

(2.5)
Cs
o
(2.6)
2.7)
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ON SOME RAMANUIJAN IDENTITIES FOR THE RATIOS OF ETA-FUNCTIONS 1023

Yq = yi)’ —3y1 — 9w? + 18.
From our definitions of y5 and y4 we get
Y3 = ys — 48yy + 128.

Eliminating y4 between the last two equations, we have the required result.

The following theorem establishes some P — () identities of Ramanujan that simply follow from
the results of Ramanujan [12] and Kang [10], which we have recollected in Lemma 1.4.

Theorem 2.2. [n the notations (1.39) we have the following:

(1) ([11, p. 325], [4, p. 206], Entry 53). Let

__h 1
= Al and Q:= VT
Then o 5 3
5 P
rorng-(7) + (@) =Y
(i) ([12, p. 55], [6]). Let
__t _ ts
Then 5 5
4 Q P
PQ)? :()—() 2.9
PR+ par=(5) (& 2.9)
(i) ([11, p. 3271, [4, p. 207], Entry 54). Let
_ b ok
= i and Q= TR
Then o ) )
5 P

Proof. (1) Eliminating s;s5 by multiplying (1.40) and (1.41) we get

A A
L 5 2L AL
qAs s M5 qps

But this is precisely, identically,

2 Q\’ P’
P =(P — P —
rar+5=rQ) () + ) (5)
on routinely using the definitions of P, ), A1, u1, As and us (1.11) and (1.39). Dividing this
throughout by P() we have (2.8).
Proof. (ii) Dividing (1.42) by A5 and (1.43) by qus and subtracting the resulting equations one
from the other, we have

aus  As  qsspis $1257

M1 ﬁ _ Slt% 48575%
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1024 S. BHARGAVA K. R. VASUKI, K. R. RAJANNA

or

85to

1 t A A
(811>+4:~91M215 51 21’
q sstahs  Ssth

or, identically,

)i ca=rar (2) ~rar (L)

on routinely using the definitions of P, @, A1, u1, As and ps (1.11) and (1.39). Dividing this
throughout by (PQ)?, we have (2.9).
(iii) Dividing (1.40) by A5 and (1.43) by u1 and adding the resulting equations, we obtain

At Bgus _ sitp Agsissis

As 1 S5441 As
or
A1 5 s1t _ 451850
qAsH45 qSs5H5 As
or, identically, , ,
2 Q p
(rQr-s5-rQ)(3) ~1re(y) -

on routinely using the definitions of P, (), A1, u1, As and ps (1.11) and (1.39). Dividing this
throughout by (PQ), we have (2.10).
Theorem 2.2 is proved.
The following corollary, along with Corollary 2.1, is useful in the proof of Theorem 2.4.
Corollary 2.2. In the notations of Corollary 2.1, we have

4y =dbw —x

and
8y = Jw? — 40w — z? — 16.

Proof. Setting

B = tntan - lonlsn
g Ptsntion " St tion
and o5
= Fy+ ———
Y6 13 + F1Es’
we can rewrite (2.8) as
5 1
Ei+—=F+—.
B, VTR
Changing ¢ to ¢> in this, we get
5 1
Ey+ — =F3 4+ —.
TE TR

Multiplying the last two equations we have, employing the notations of Corollary 2.1,
Y6 + dw = ys + x, (2.11)

since, as is easily verified,
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ON SOME RAMANUIJAN IDENTITIES FOR THE RATIOS OF ETA-FUNCTIONS 1025

E, Ej \? [ F3\* 5 1
w s +E1’ x <F3> + 2 an s ( 1 3) + (F1F3)3

Similarly, (2.9) and (2.10) respectively yield
Yo +4y1=ys —x (2.12)
and
Y6 + 4y1 = y2 + dw. (2.13)

Subtracting (2.11) from the sum of (2.12) and (2.13), we obtain the first of the required results.
Subtracting (2.7) from the sum of (2.5) and (2.6) yields

8ys = 9w? — z? — 16.

Using this in the sum of (2.11) and (2.12) and then subtracting (2.13) from the resulting equation
gives the second of the required results.
The following theorem establishes a P — () identity of Ramanujan simply from our Lemma 1.5.
Theorem 2.3 ([11, p. 325], [4, p. 212], Entry 58). Let

f(=q) (=)
Sy M T Enp gy
Then X ) ) X
25 (Q Q P P
ra+25=(3) -1(3) (o) +(g) -

Proof. Multiplying (1.44) and (1.45) and then dividing throughout by gA25 25 and then expanding
we have \ \ \
1H1 H1 S1H1 52571 1
— 4+ 25 = —4 —4 +—,
q5 a5 125 Opas  ¢°saspas gsidas Az

or, identically,

B Q 3 Q 2 P 2 P 3
(PQ)* + 25 = PQ <P> —4PQ <P> —4PQ (Q> +PQ <Q> ,

on using the definitions of P, (), A1, u1, Aos and uos (1.11) repeatedly. This becomes (2.14) on
dividing throughout by PQ).

The proof of the following theorem is elementary and is so devised as to circumvent any temptation
to use computer packages.

Theorem 2.4. (i) ([11, p. 3301, [4, p. 314], Entry 59). If

. lsls and . _ tetio
- ¢YBtats ¢ 3tatsy’
then 5 5
1 0 P
P — = = — 4. 2.15
Ut Pg (P> +<Q> * 219
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(i) ([11, p. 3301, [4, p. 218], Entry 61). If

tels t3t10
Pi=—— d =—_,
g4 tatys o @ g3/t ts0
then ) )
1 9) P
PQ+1+ 7 <P> + <Q> . (2.16)
(iii) ([11, p. 213], [4, p. 230], Entry 65). If
t1to t3ts
= ——— d = ——--
q*/2tst10 o © ¢ 2tistso’
then ) )
25 Q P Q P
PQ+<> +<> —3< + = +2> 2.17
o \r) T\@ P 0 (@17)

Proof. (i) Substituting in the result of Corollary 2.1, the expressions for y; and y» obtained in
Corollary 2.2 we obtain

{8(9w2 — 40w — 22 — 16)3 — 6.84(9w? — 40w — 2 — 16) + 2.82}—

2
—{(Bw — )% — 48(5w — x) — 9.8%w? + 18,82} = 0.
Or, in terms of the analytic functions
W = qw and X :=qu, lg| < 1,

with W (q) — 1 and X (q) — 1, as can be seen from our definitions of w and = in Corollary 2.1, we
have

F(W,X) :=8(9W?2 —40Wq — X2 — 16¢%)% — 6.8*(9W? — 40Wq — X% — 16¢°)¢*+

2
42.80.45 — {(5W X 48(5W — X)? — 9.82 W + 18.82q3} —0.

Now, for W = Wy := X + 4q, we have F (W, X) = 0 as can be easily verified. In fact, after slight
simplification, we get

F(Wp, X) = & [(X2 FAXq - 4¢%)% — 48(X2 + 4Xq — 4g%)gt + 128q6] .

This in turn is seen to be identically 0 by further simplification.
Thus we can write
FW.X) = (W — Wo)G(W, X),

where G(W(q), X (q)) is analytic in |g| < 1. In fact, we can realize G(W, X) as, by applying Taylor’s
formula to F'(W, X), or otherwise,

G(W, X)

OF <~ (W — WoklakF
+Z o

k=2
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Further, from this form of G(W, X) and the definition of F'(W, X), and since W(q), X (¢q) and
W(q) — 1 as ¢ — 0, we have

. _oF
él_{% G(W(q), X(q)) = él_rf(l)ai% =

:m%Pg@wﬁ—xﬁ%wwq—sme—XP+o@ﬂ:-3m2¢0
q—

This implies, because of continuity of G(W (q), X (¢)) in |g| < 1, that there exists a neighborhood
N of ¢ = 0, where G(W(q),X(q)) # 0. This in turn gives, since F(W(q),X(q)) = (W(q) —
—Wo(q))G(W(q), X (q)) is identically O in |g| < 1, that

W(q) — Wolq) =0
identically in N. Since W (q) —Wy(q) is analytic in all of |g| < 1, this implies by analytic continuation
0=Wi(q) — Wo(q) = q(w(q) —2(q) —4)  throughout |g| <1,
or
w(q) = x(q) + 4, in 0<qg<1, (2.18)

or

1 3 3
uv+f=<3> +(E) +4, in 0<]|¢l <L
uv u v

This is the same as the required result (2.15) since P = 1/u and Q = 1/v.
(i) In the notations of Corollaries 2.1 and 2.2, the required result is easily seen to be the same as
Cs Cr

=24 = 4+1=(BBs)?
Cl+C5+ (B1Bs5)” +

1
(B1B5)?

or
w+1=y.

But this at once follows by adding (2.18) to the first of the results of Corollary 2.2.
(iii) In the notations of Corollaries 2.1 and 2.2, the required result is seen to be the same as

25 Es\® [(E\° E; E
1 EE3 <E1> * (E:s Eq * E3

ye = w> — 3w — 8.

or

To obtain this, we first rewrite, on using (2.18), the results of Corollary 2.2 as
n=w+1

and
Yo = w? — 3w — 4.

It now suffices to use the last two equations in (2.17).
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