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A CLASS OF p-VALENT MEROMORPHIC FUNCTIONS
DEFINED BY THE LUI-SRIVASTAVA OPERATOR

PO KJAC p-BAJIEHTHUX MEPOMOP®HUNX ®YHKIIIH,
IO BUBHAYEHI OITIEPATOPOM JIYI-LIPIBACTABU

We introduce a subclass of p-valent meromorphic functions involving the Lui - Srivastava operator and investigate various
properties of this subclass. We also indicate the relationships between various results presented in the paper with the results
obtained in earlier works.

BBeneHo migkiac p-BaJeHTHUX MepoMopdHHX (QYHKIIH, oo BU3Ha4YaloThes oneparopoM Jlyi—IllpiBactaBu, Ta BUBYEHO
PI3HOMaHITHI BIaCTHBOCTI IBOTO MiAKiIacy. TakoX BKa3aHO CIBBITHOIICHHS MK Pi3HOMAaHITHHMHU pe3ylbTaTaMH, IO
oTpuMaHi B poOoTi, Ta pe3yJIbraraMi, OTPUMAHUMH paHille.

1. Introduction. Let X, denote the class of all meromorphic functions f of the form
[e.e]
f2) =27 +> P, peN={12..1}, (1.1)
k=1

which are analytic and p-valent in the punctured disc U* = {z € C: 0 < |z| < 1} = U\{0}. Let
Y8, (A) denote the class of all meromorphic p-valent starlike of order A (0 < A < p) in U.
For functions f € X, given by (1.1), and g € X, defined by

o
g(2) =2P+ > 2P, peN,
k=1
then the Hadamard product (or convolution) of f and g is given by

(fxg) =277+ abz® P = (g% f)(2).

k=1

For complex parameters a1, ...,aqgand 81, ..., 8 (8 € Zy, ={0,—1,-2,...}; i =1,2,...,5),
we now define the generalized hypergeometric function (Fi(a1,...,aq; 51, ..., Bs; 2) by (see, for
example, [9, p.19])

k

(

Oél)k “. (
B)k---(Bs)k k!

gk z"

o0
oFs(on,...,aq61,..., B 2) :Z

k=0(
qg<s+1, q,s € Ng=NU{0}, ze€U,

where (), is the Pochhammer symbol defined, in terms of the Gamma function I, by

) :F(9+u): 1, v=0, 60ecC"=C\{0},
Y T() 60 —1)...0+v—1), veN, feC.
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Corresponding to the function hy (a1, ..., aq; 01, ..., Bs; 2), defined by

hp(Oél,...,Oéq;/Bl,...,ﬁs;Z) :Zﬁqus(alu"'7aq;ﬂl7"‘7/88;z)7

we consider a linear operator
Hy(on,...,0q;61,...,8s) 1 Xp = Xy,

which is defined by the following Hadamard product (or convolution):

Hp(alv" . 704(1;617"' >Bs)f(z) = hp(ah' . 'aaq;ﬁlv" . 7/38;2) * f(Z)

We observe that, for a function f(z) of the form (1.1), we have

Hy(aq,...,aqB1,...,0:)f(z) =277 + ZFWLS (o) agz"?, (1.2)
k=1
where
(Oq)k . (aq)k
Tpos(aq) = . 1.3
pas (1) Bk - (Bs)k k! (1.3)
If, for convenience, we write
Hp,qys[o‘l] = Hp(alv s 7O¢q§ 617 s 758) )
then one can easily verify from the definition (1.2) that (see [5])
2(Hpgsla1]f(2)) = a1Hpgslon + 1)f(2) — (a1 + p)Hp g5 [a1] f(2). (1.4)

The linear operator Hy, 4 [a1] was investigated recently by Liu and Srivastava [5] and Aouf [2].
In particular, for g =2, s =1, a1 > 0, 81 > 0 and g = 1, we obtain the linear operator

Hy(on,1;81) f(2) = £y(aa, B1) f(2),

which was introduced and studied by Liu and Srivastava [4] .
We note that,

1

W*JC(Z): n > —p,

Hyz(np, DS(2) = D7) =

where D"P~! is the differential operator studied by Uralegaddi and Somanatha [10] and Aouf [1].
Making use of the operator H, 4 s[cv1], we now introduce a subclass of the function class
%, as follows:
we say that a function f € ¥, is in the class €, ; s(cv1; A), if it satisfies the following inequality:

Re {al Hp,q7s[a1 + 1]f(2’)
Hp,q,s[al]f(z)
or, in view of (1.4), if it satisfies the following inequality:

o Z(Hp,q,s[al]f(z))/
i { Hp,q,s[al]f(z)

—(a1+p)}<—)\, 0<A<p, peN,

}<—)\, 0<A<p, peN
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2. Main results. In order to establish our main results, we need the following lemma.

1237

Lemma 2.1 [3]. Let w(z) be a non-constant analytic in U with w(0) = 0. If |w(z)| attains its

maximum value on the circle |z| = r < 1 at a point zy, then we have

zow'(20) = Cw(z0),

where ( > 1 is a real number.
Theorem 2.1. Let oy > 0 and 0 < X\ < p, then

Qp,%s(al + 1; )\) C an,s(al; )\)

Proof. Let f € Q, 4 s(c1 +1; A), then

Hyqslon +1]f(2)

Re{Z(H”"Z’S[O‘1 * l]f(z))/} <A zel.

We have to show that implies the inequality

o Z(Hp:qu[al}f(z))/ ) ]
R{ Hp,q,sl0n]f(2) }< A, zel.

Define the function w(z) in U by

Z(Hp,q,S[al]f(Z))/ __p+t (p —2N)w(z)
Hp,q,s[al]f(z) 1—w(z) '

Clearly, w(z) is analytic in U and w(0) = 0. Using the identity (1.4), (2.4) may be written as

Hpgslon +1f(2) _ an = [ +2(p — N]w(z)

Hpgslaa]f(z) 1—w(z)

Differentiating (2.5) logarithmically with respect to z and using (1.4), we obtain

!/

Z(Hp,q,S[al + 1]f(2))

+A=
Hp,q,s[al + 1]f(2:)
1+w(z 22w (2
RN EESTOM 2
L—w(z)  (1—w(2)) (a1 —[oq +2(p— N)]w(z))
We claim that |w(z)| < 1 in U. For otherwise, there exists a point 29 € U such that
max |w(z)| = |w(z0)| = 1.
|21<] ol

2.1)

2.2)

2.3)

2.4)

2.5)

(2.6)

Applying Lemma 2.1 to w(z) at the point zg, we have zow'(z9) = w(zp) where ¢ > 1. So, (2.6)

yields

2(Hpgslor +1]f(20)) _
Re{ Hy gslar + 1] f(20) i )\} N
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— (p— NRed LT W(20) 26w (z0)
- AH{{1—w@®+f1—w@®ﬂar—hr+ﬂp—ﬂh“m»}Z
p—A

> P74 o,
T 2(ar+p— )

which contradicts the inequality (2.2). Hence, w(z)’ < 1in Uand it follows that f € Q, , s(a1; ).
Theorem 2.1 is proved.

Theorem 2.2. Let 6 > 0 and f(z) € ¥, satisfy the following inequality:

H(Hpgolod /) p-A
- { Hpqsloalf(z) } ST o

Then the function Fs,(f) defined by

zeU. 2.7)

Fsp(f)(z) = Z%p /t5+p—1f(t)dt, 6 >0, (2.8)

0

belongs to €, 4 s(o1; N).
Proof. From (2.8), we readily have

2(Hygsl0n)Fsp(£)(2)) = 6Hpgalonlf(2) = (04 p)Hpg ol Fop(£)2). (29)
Using the identity (1.4) and (2.9), condition (2.7) may be written as

Z(an,S[al + 1] Fs,(f)(2 ),

Hp,g,slon + 1]F5,p(f)(z) Hyq,s[a1 + 1]F5,p(f)(z)

Hy g [01] Fop(£)(2)  2(Hpqsla1] Fsp(f)(2))
Hy gsla1]Fsp(f)(2)

+o+p
Re

—o1 —p g <
+d+p

—
<A+ P (2.10)

(0+Ap—A)

We have to prove that Fs ,(f) € Qp q.s(a1; A) implies the inequality

2 (Hy gulcn Fsp(£)(2))
Re{ ol Fon (7)) }<‘A’ VsAsp 2el 1D

Consider the function w(z) in U defined by

Z(Hp7q75[a1]f5,p(f)(z))/ __p+t (p—2N)w(z)
Hp,q,slon]Fsp(f)(2) 1—w(z) ,

Clearly, w(z) is analytic and w(0) = 0. (2.12) may be written as

0<A<p, zeU. (2.12)

Hyqslon + 1) F5p(f)(2) _ a1 — [on +2(p — A)]“’(Z), (2.13)

Hy gs[a]Fsp(f)(2) 1 —w(2)
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Differentiating (2.13) logarithmically with respect to z and using (2.12), we obtain

2(Hp,g,s[on1 + 1]]:6,p(f)(z))/ _
Hy g slar + 1] Fsp(f)(2)

__prp-2u(z) 2p — Nzw'(2) , (2.14)

T-wz) (- w(@)(ar - a1+ 200~ Nw()

Using (2.12)—(2.14) and (2.10), we get

2(Hpgslon + 1] F5,(f)(2)]

Hp,q,s[al + 1}f6,p(f)(2) Hp,q,s[al =+ 1]]:571,(f)(2)
Hpgsl0a]Fsp(£)(2)  2(Hpgsl0n)Fsp(£)(2))
Hy g5 [an] Fop(f)(2)

+d+p
—a1—p+A=

aq

+o+p
z

o 1+ w(2) 220 (2)
=—lp=2) { T—w() (= w() -0 +2p—Nw) } @19

The remaining part of the proof is similar to that of Theorem 2.1.

Theorem 2.2 is proved.

According to Theorem 2.2, we have the following corollary.

Corollary 2.1. If f € Q4 s(a1;A), then the function Fs,(f) defined (2.8) also belongs to
Qp g.s(a1; A).

Theorem 2.3. If f € Q, , s(a1; ) if and only if the function g defined by

z

g(z) = Z%p /talﬂ’lf(t) dt, a1 >0, (2.16)
0
belongs to Uy g.s(a1 + 15 \).
Proof. From (2.16), we have
2 (Fop(£)(2)) = a1 (2) = (1 +p) Fsp(f)(2)- (2.17)
Using identity (1.4) and (2.17), hence
Hpqslon]f(2) = Hpg,s [01] Fsp(f)(2) (2.18)

and the result follows.

To prove Theorem 2.4, we need the following lemmas.

Lemma 2.2 [8]. The function (1 — z)7 = exp (ylog(1 — 2)), v € C* = C\{0}, is univalent in
U if and only if vy is either in the closed disk |y — 1| < 1 or in the closed disc |y + 1] < 1.

Lemma 2.3 [7]. Let q(2) be univalent in U and let Q(w) and ¢(w) be analytic in a domain D
containing q(U ), with ¢(w) # 0 when w € q(U). Set Q(z) = z¢'(2)¢(q(2)), h(z) = 0(q(2)) + Q(z)
and suppose that

(1) Q(z) is starlike (univalent) in U,

) Re{g/((j))} >0,2¢U.
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If g(2) is analytic in U, with p(0) = ¢q(0), p(U) C D, and

0(9(2)) +29'(2)8(g(2)) < 0(a(2)) + 2d'(2)¢(a(2)) = h(z), (2.19)

then g(z) < q(z), and q(z) is the best dominant of (2.19).
Theorem 2.4. Let f € Q4 s(c1; A) and v € C* and satisfy either

2v(p—=N) -1 <1 or |29(p-N+1| <1 (2.20)

Then
(Zp[lrwz,s[Oél]f(?«’))7 <(1- Z)Qv(p_’\) =q(2), (2.21)

and q(z) is the best dominant.
Proof. Set

g(z) = (szpg,S[al]f(z))v, zeU, (2.22)

then ¢(z) is analytic in U with ¢g(0) = 1. Differentiating (2.22) logarithmically with respect to z, we

obtain

2g'(z) Z(Hp7q75[al]f(z)),
o0 T et (229

Since f € §, 4.s(a1; A), this is equivalent to

Z(Hp,q,s[aﬂf(z))/ - pTt (p—2X\)z

2.24
Hp,q,S[al]ﬂz) 1—2z ’ ( )
from (2.23), (2.24) can be rewritten as
/
24’ (2) z((1- 2)27(17*)\))
P e TP T = ey (2.25)

On the other hand, if we take

1

07 = (=270, 6 =p o) =

in Lemma 2.3, then ¢(z) is univalent by the condition (2.20) and Lemma 2.2. It is easy to see that
q(2), O(w), and ¢(w) satisfy the conditions of Lemma 2.3. Since

Q(z) = 2¢'(2)9(q(2)) = —2(’1_2)2
is univalent starlike in U and
h(z) =0(q(2)) +Q(z) = p+ (117_—22)\)27

from (2.25) and Lemma 2.3, then
9(z) < (1 =2)27N = g(z)

and the function (1 — 2)2YP=Y is the best dominant.
Theorem 2.4 is proved.
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Corollary 2.2. Let f € Q, 4 s(a1; ). Then

Re{(szp,qﬁ[al]f(z))W} > o= N e,

1
——— 0 |. The result is sharp.
2(p—A) ) v

Proof. From Theorem 2.4, we have

where v is a real number and v € [—

Re { (P Hpg.sla1]f(2))"} = Re{(1 - w(z))”(?"”} . zel, (2.26)
where w(z) is analytic in U, w(0) = 0, and |w(z)| < 1 for z € U. In view of
Re (t°) > (Ret)’,  Re(t) >0, 0<b<1,

(2.26) yields

Re{ (ZpHp,q,s[Oél]f(Z))v} > {Re <1(z)> _27(1)_/\)} > 220=2 ey,

1—w

for =1 < 2y(p — A) < 0. To see that the bound 227(P~*) cannot be increased, we consider the
function f(z) which satisfies

2P Hp g sloa]f(z) = (1 — 2)2(277)‘), 0<A<p, =zel.
We easily have f € ©, ,s(a1;A) and
Re{ (" Hygslaal /() "} = 2270 a5 Re(z) > —1.

Corollary 2.2 is proved.

3. Convolution conditions. We give some necessary and sufficient condition in terms of
convolution operator for meromorphic functions to be in the classes S, (\) and €, 4 s(a1; ).

Lemma 3.1. The function f(z) € %, belongs to the class ¥.S; (A) (0 < X\ < p) if and only if

1—e4+2(p—))
<1 R ESY )
2| f(2) % Zp(lp_ P £0, 0<6<2m zel.

Proof. A function f(z) € XS, (A) if and only if

2f'(z) , p+(p—2)¢€"”
- : 0<f<?2 U
) # o0 ) <0 <2m, zel,
which is equivalent to
P [ (1 — e”) 2f'(2) + [p+ (p — 2)) eiﬂ f(z)] £0, 0<f<2m zel. 3.1)
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Since
1

f(z)zf(z)*m

and ﬁ%@:f@ﬂ<@+1v_p>

2P(1 — 2)2

Therefore, we may write (3.1) as

2P [(1 - ew) 2f'(2) + [p + (p—2X) eie} f(z)} =

. {f(z) " Lpl(l—_eij)2 P +Z£1()1—_22))6i0] }

—6”+2@—AQ>
2(p—A)
2P(1 — 2)?

( 1
1—
=2(p— Ne 2P | f(2) # 0.

Lemma 3.1 is proved.
Theorem 3.1. A necessary and sufficient condition for the function f(z) defined by (1.1) to be
in the class Q4 s(o1; A) is that

b= Z 2(p—N) Lpgs (1) akzk # 0, 0<f6<2m, zeU,

k=1

where I'), , s (1) is given by (1.3).
Proof. From Lemma 3.1, we find that f € Q,, , s(o1; A) if and only if

<1_1_e;ét§§—xk> .

2P(1 — 2)?

2P Hp,q,s[al]f(z) *

, 0<f<2m, 0<A<p, =zeUl.

(3.2)
From (1.2), the left-hand side of (3.2) may be written as

(=)

2P Hp,q,s[al}f(z) * Zp(l — 2)2 =

X (1—e ) k—2(p— A
=1— Z ( € 2();0 Y (p )Fp,q,s (1) arz® # 0.
k=1

Theorem 3.1 is proved.

Remarks. 3.1. Putting ¢ =2, s = a3 = 1 = 1 and @3 = n + p(n > —p) in Theorem 2.1, we
obtain the results obtained by Aouf [1] (Theorem 1).

32. Puttingg=2,s=a =01 =1,0=c—p+1(ec>p—1)andag =n+p (n > —p)in
Theorem 2.2, we obtain the results obtained by Aouf [1] (Theorem 2).
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3.3. Putting g =2, s = g = 1 = 1 and oy = n+ p(n > —p) in Theorem 2.3, we improve the
result obtained by Aouf [1] (Theorem 2.3).

3.4. Taking ¢ = 2, s = ag = 1 and ay,51 > 0 in Theorems 2.1-2.4, Corollaries 2.1 and
2.2, respectively, we obtain the results obtained by Liu and Owa [6] (Theorems 2.2, 2.3, 2.5, 2.9,
Corollaries 2.4 and 2.10, respectively).

3.5. Taking e = —z in Lemma 3.1, we obtain the results obtained by Liu and Owa [6]
(Lemma 3.1).
3.6. Taking ¢ =2, s = as = 1, a1, 81 > 0 and e~ = —z in Theorem 3.1, we obtain the result

obtained by Liu and Owa [6] (Theorem 3.2).
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