SOME APPLICATIONS OF THE OPEN MAPPING THEOREM IN LOCALLY CONVEX CONES
 ДЕЯКІ ЗАСТОСУВАННЯ ТЕОРЕМИ ПРО ВІДКРИТЕ ВІДОБРАЖЕННЯ У ЛОКАЛЬНО-ОПУКЛИХ КОНУСАХ

We show that a continuous open linear operator preserves the completeness and barreledness in locally convex cones. Specially, we prove some relations between an open linear operator and its adjoint in $u c$-cones (locally convex cones which their convex quasi-uniform structures are generated by one element).

Показано, що неперервний відкритий лінійний оператор зберігає повноту та бочкуватість у локально-опуклих конусах. Зокрема, доведено деякі співвідношення між відкритим лінійним оператором та його суміжним у $u c$ конусах (локально-опуклих конусах, у яких опуклі квазірівномірні структури генеруються одним елементом).

1. Introduction. The theory of locally convex cones deals with ordered cones that are not necessarily embeddable in vector spaces. A topological structure is introduced using an order theoretical concept or a convex quasiuniform structure. In this paper we use the latter. These cones developed in $[4,8]$. For recent researches see $[1,9]$. We shall review some of the concepts and refer to $[4,8]$ for details.

A cone is defined to be a commutative monoid \mathcal{P} together with a scalar multiplication by nonnegative real numbers satisfying the same axioms as for vector spaces; that is, \mathcal{P} is endowed with an addition $(a, b) \mapsto a+b: \mathcal{P} \times \mathcal{P} \rightarrow \mathcal{P}$ which is associative, commutative and admits a neutral element $0 \in \mathcal{P}$, and with a scalar multiplication $(r, a) \mapsto r \cdot a: \mathbb{R}_{+} \times \mathcal{P} \rightarrow \mathcal{P}$ satisfying the usual associative and distributive properties, where \mathbb{R}_{+}is the set of nonnegative real numbers. We have $1 \cdot a=a$ and $0 \cdot a=0$ for all $a \in \mathcal{P}$.

Let \mathcal{P} be a cone. A convex quasiuniform structure on \mathcal{P} is a collection \mathfrak{U} of convex subsets $U \subseteq \mathcal{P}^{2}=\mathcal{P} \times \mathcal{P}$ such that the following properties hold:
$\left(\mathrm{U}_{1}\right) \Delta \subseteq U$ for every $U \in \mathfrak{U}$, where $\Delta=\{(a, a): a \in \mathcal{P}\}$;
$\left(\mathrm{U}_{2}\right)$ for all $U, V \in \mathfrak{U}$ there is a $W \in \mathfrak{U}$ such that $W \subseteq U \cap V$;
$\left(\mathrm{U}_{3}\right) \lambda U \circ \mu U \subseteq(\lambda+\mu) U$ for all $U \in \mathfrak{U}$ and $\lambda, \mu>0$;
($\left.\mathrm{U}_{4}\right) ~ \alpha U \in \mathfrak{U}$ for all $U \in \mathfrak{U}$ and $\alpha>0$.
Here, for $U, V \subseteq \mathcal{P}^{2}$, by $U \circ V$ we mean the set of all $(a, b) \in \mathcal{P}^{2}$ such that there is some $c \in \mathcal{P}$ with $(a, c) \in U$ and $(c, b) \in V$.

Let \mathcal{P} be a cone and \mathfrak{U} be a convex quasiuniform structure on \mathcal{P}. We shall say $(\mathcal{P}, \mathfrak{U})$ is a locally convex cone if
$\left(\mathrm{U}_{5}\right)$ for each $a \in \mathcal{P}$ and $U \in \mathfrak{U}$ there is some $\lambda>0$ such that $(0, a) \in \lambda U$.

With every convex quasiuniform structure \mathfrak{U} on \mathcal{P} we associate two topologies on \mathcal{P} : the neighborhood bases for an element a in the upper and lower topologies are given by the sets

$$
U(a)=\{b \in \mathcal{P}:(b, a) \in U\}, \quad \text { resp. }, \quad(a) U=\{b \in \mathcal{P}:(a, b) \in U\}, \quad U \in \mathfrak{U}
$$

The common refinement of the upper and lower topologies is called symmetric topology. A neighborhood base for $a \in \mathcal{P}$ in this topology is given by the sets

$$
U(a) U=U(a) \cap(a) U, \quad U \in \mathfrak{U}
$$

The extended real numbers system $\overline{\mathbb{R}}=\mathbb{R} \cup\{+\infty\}$ is a cone endowed with the usual algebraic operations, in particular $a+(+\infty)=+\infty$ for all $a \in \overline{\mathbb{R}}, \alpha \cdot(+\infty)=+\infty$ for all $\alpha>0$ and $0 \cdot(+\infty)=0$. We set $\widetilde{\mathcal{V}}=\{\tilde{\varepsilon}: \varepsilon>0\}$, where

$$
\tilde{\varepsilon}=\left\{(a, b) \in \overline{\mathbb{R}}^{2}: a \leq b+\varepsilon\right\}
$$

Then $\widetilde{\mathcal{V}}$ is a convex quasiuniform structure on $\overline{\mathbb{R}}$ and $(\overline{\mathbb{R}}, \widetilde{\mathcal{V}})$ is a locally convex cone. For $a \in \mathbb{R}$ the intervals $(-\infty, a+\varepsilon]$ are the upper and the intervals $[a-\varepsilon,+\infty]$ are the lower neighborhoods, while for $a=+\infty$ the entire cone $\overline{\mathbb{R}}$ is the only upper neighborhood, and $\{+\infty\}$ is open in the lower topology. The symmetric topology is the usual topology on \mathbb{R} with as an isolated point $+\infty$.

For cones \mathcal{P} and \mathcal{Q}, a mapping $T: \mathcal{P} \rightarrow \mathcal{Q}$ is called a linear operator if $T(a+b)=T(a)+$ $+T(b)$ and $T(\alpha a)=\alpha T(a)$ hold for all $a, b \in \mathcal{P}$ and $\alpha \geq 0$. If both $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ are locally convex cones, the operator T is called (uniformly) continuous if for every $W \in \mathcal{W}$ one can find $U \in \mathfrak{U}$ such that $(T \times T)(U) \subseteq W$. Uniform continuity implies continuity for the operator $T: \mathcal{P} \rightarrow \mathcal{Q}$ with respect to the upper, lower and symmetric topologies on \mathcal{P} and \mathcal{Q}, respectively.

A linear functional on \mathcal{P} is a linear operator $\mu: \mathcal{P} \rightarrow \overline{\mathbb{R}}$. We note that $\mu: \mathcal{P} \rightarrow \overline{\mathbb{R}}$ is continuous if and only if there is $U \in \mathfrak{U}$ such that $\mu(a) \leq \mu(b)+1$ for all $(a, b) \in U$. We denote the set of all linear functional on \mathcal{P} by $\mathcal{L}(\mathcal{P})$ (the algebraic dual of \mathcal{P}). For a subset F of \mathcal{P}^{2}, we define polar F° as follows:

$$
F^{\circ}=\{\mu \in \mathcal{L}(\mathcal{P}): \mu(a) \leq \mu(b)+1 \quad \text { for all } \quad(a, b) \in F\}
$$

The dual cone \mathcal{P}^{*} of a locally convex cone $(\mathcal{P}, \mathfrak{U})$ consists of all continuous linear functionals on \mathcal{P} and is the union of all polars U° of neighborhoods $U \in \mathfrak{U}$.
2. Some applications of the open mapping theorem. An open linear operator was defined in [2] as follows:

Definition 2.1. Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be locally convex cones. A linear operator $T:(\mathcal{P}, \mathfrak{U}) \rightarrow$ $\rightarrow(\mathcal{Q}, \mathcal{W})$ is called (uniformly) open if for every $U \in \mathfrak{U}$ one can find $W \in \mathcal{W}$ such that $W \subseteq$ $\subseteq(T \times T)(U)$.

If $T:(\mathcal{P}, \mathfrak{U}) \rightarrow(\mathcal{Q}, \mathcal{W})$ is open, then it is open under the upper, lower and symmetric topologies. Also if $T: \mathcal{P} \rightarrow \mathcal{Q}$ is open, then T is surjective (see [2]).

A Cauchy net in locally convex cones was defined in [5] as follows.
Definition 2.2. Let $(\mathcal{P}, \mathfrak{U})$ be a locally convex cone. A net $\left(x_{\alpha}\right)_{\alpha \in \mathcal{I}}$ in \mathcal{P} is called lower (upper) Cauchy if for every $U \in \mathfrak{U}$ there is some $\gamma_{U} \in \mathcal{I}$ such that $\left(x_{\beta}, x_{\alpha}\right) \in U\left(\right.$ resp., $\left.\left(x_{\alpha}, x_{\beta}\right) \in U\right)$ for all $\alpha, \beta \in \mathcal{I}$ with $\beta \geq \alpha \geq \gamma_{U}$. Also $\left(x_{\alpha}\right)_{\alpha \in \mathcal{I}}$ is called symmetric Cauchy if for each $U \in \mathfrak{U}$ there is some $\gamma_{U} \in \mathcal{I}$ such that $\left(x_{\beta}, x_{\alpha}\right) \in U$ for all $\alpha, \beta \in \mathcal{I}$ with $\alpha, \beta \geq \gamma_{U}$.

We call that a net $\left(x_{i}\right)_{i \in \mathcal{I}}$ in $(\mathcal{P}, \mathfrak{U})$ is lower (upper) convergent to $x \in \mathcal{P}$ if for every $U \in \mathfrak{U}$ there is some $\gamma_{U} \in \mathcal{I}$ such that $\left(x, x_{i}\right) \in U$ (resp., $\left(x_{i}, x\right) \in U$) for all $i \geq \gamma_{U}$. Also $\left(x_{i}\right)_{i \in \mathcal{I}}$ is called symmetric convergent to x if for each $U \in \mathfrak{U}$ there is some $\gamma_{U} \in \mathcal{I}$ such that $\left(x_{i}, x\right) \in U$ and $\left(x, x_{i}\right) \in U$ for all $i \geq \gamma_{U}$.

A locally convex cone ($\mathcal{P}, \mathfrak{U}$) is called lower (upper or symmetric) complete if every lower (resp., upper or symmetric) Cauchy net in \mathcal{P} converges in the lower (resp., upper or symmetric) topology to some element of \mathcal{P}.

Proposition 2.1. Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be locally convex cones. If there is a one-to-one open continuous linear mapping of \mathcal{P} into \mathcal{Q}, and \mathcal{P} is lower (upper or symmetric) complete, then so is \mathcal{Q}.

Proof. We prove for the symmetric case. Let the mapping be T and let $\left(y_{i}\right)_{i \in \mathcal{I}}$ be a symmetric Cauchy net in \mathcal{Q}. Since every open linear mapping is surjective (see [2]), for every $i \in \mathcal{I}$, there exists $x_{i} \in \mathcal{P}$ such that $y_{i}=T\left(x_{i}\right)$. We show that $\left(x_{i}\right)_{i \in \mathcal{I}}$ is a Cauchy net in \mathcal{P}. Let $U \in \mathfrak{U}$ be arbitrary. By the openness of T, there exists $W \in \mathcal{W}$ such that $W \subseteq(T \times T)(U)$. Since $\left(y_{i}\right)_{i \in \mathcal{I}}$ is symmetric Cauchy, there is γ_{W} such that $\left(y_{i}, y_{j}\right) \in W$ for all $i, j \geq \gamma_{W}$. Hence

$$
\left(y_{i}, y_{j}\right)=\left(T\left(x_{i}\right), T\left(x_{j}\right)\right) \in(T \times T)(U)
$$

for all $i, j \geq \gamma_{W}$. Since T is one-to-one, $\left(x_{i}, x_{j}\right) \in U$ for all $i, j \geq \gamma_{W}$, i.e., $\left(x_{i}\right)_{i \in \mathcal{I}}$ is symmetric Cauchy. Since \mathcal{P} is symmetric complete, there is $x \in \mathcal{P}$ such that $\left(x_{i}\right)_{i \in \mathcal{I}}$ converges to x in the symmetric topology. The continuity of T renders that $\left(T\left(x_{i}\right)\right)_{i \in \mathcal{I}}$ is convergent to $T(x) \in \mathcal{Q}$. This shows that $\left(y_{i}\right)_{i \in \mathcal{I}}$ is convergent to $T(x)$ in the symmetric topology.

The notions of a barrel and a barreled locally convex cone were introduced in [10] as follows: a barrel is a convex subset B of \mathcal{P}^{2} with the following properties:
(B1) For every $b \in \mathcal{P}$ there is $U \in \mathfrak{U}$ such that for every $a \in U(b) U$ there is $\lambda>0$ such that $(a, b) \in \lambda B$.
(B2) For all a, b such that $(a, b) \notin B$ there is $\mu \in \mathcal{P}^{*}$ such that $\mu(c) \leq \mu(d)+1$ for all $(c, d) \in B$ and $\mu(a)>\mu(b)+1$.

A locally convex cone ($\mathcal{P}, \mathfrak{U}$) is said to be barreled if for every barrel $B \subseteq \mathcal{P}^{2}$ and every element $b \in \mathcal{P}$ there are neighborhood $U \in \mathfrak{U}$ and $\lambda>0$ such that $(a, b) \in \lambda B$ for all $a \in U(b) U$.

Theorem 2.1. Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be two locally convex cones. Let T be a linear continuous and open mapping of \mathcal{P} into \mathcal{Q}. If $(\mathcal{P}, \mathfrak{U})$ is barrelled, then $(\mathcal{Q}, \mathcal{W})$ is barrelled too.

Proof. Let B be a barrel in \mathcal{Q}^{2} and $y \in \mathcal{Q}$. We show that there are $W \in \mathcal{W}$ and $\lambda>0$ such that $(x, y) \in \lambda B$ for all $x \in W(y) W$. There is an element $b \in \mathcal{P}$ such that $T(b)=y$, because T is surjective (see [2]). Since T is continuous, $(T \times T)^{-1}(B)$ is a barrel in \mathcal{P}^{2} (see [6]). Since \mathcal{P} is barrelled, there are $U \in \mathfrak{U}$ and $\lambda>0$ such that $(a, b) \in \lambda(T \times T)^{-1}(B)$ for all $a \in U(b) U$. There is $W \in \mathcal{W}$ such that

$$
\begin{equation*}
W \subseteq(T \times T)(U), \tag{2.1}
\end{equation*}
$$

because T is open by the hypothesis. Now let $x \in W(y) W$. We have, by (2.1),

$$
W(y) W=W(T(b)) W \subseteq T(U(b) U)
$$

Hence there is $a^{\prime} \in U(b) U$ such that $T\left(a^{\prime}\right)=x$. Therefore $\left(a^{\prime}, b\right) \in \lambda(T \times T)^{-1}(B)$ and so $(x, y) \in \lambda B$.

Theorem 2.1 is proved.

A locally convex cone $(\mathcal{P}, \mathfrak{U})$ is called upper-barreled if for every barrel $B \subseteq \mathcal{P}^{2}$, there is $U \in \mathfrak{U}$ such that $U \subseteq B$ (see [6]). Proposition 2.11 from [2] yields that, every open continuous linear operator preserves the upper-barreledness between locally convex cones.

Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be locally convex cones and $T: \mathcal{P} \rightarrow \mathcal{Q}$ be a linear operator. The adjoint operator $T^{*}: \mathcal{Q}^{*} \rightarrow \mathcal{L}(\mathcal{P})$ is defined as follows: for any $\mu \in \mathcal{Q}^{*}$ define the linear functional $T^{*}(\mu)$ on \mathcal{P} by $T^{*}(\mu)(a)=\mu(T(a))$ for all $a \in \mathcal{P}$. If T is continuous, then T^{*} is a linear operator

Lemma 2.1. Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be locally convex cones and $T: \mathcal{P} \rightarrow \mathcal{Q}$ be a linear operator.
(1) If T is surjective, then T^{*} is one-to-one.
(2) If $\mathcal{L}(\mathcal{P})$ separates the elements of \mathcal{P} and T^{*} is surjective, then T is one-to-one.

Proof. (1) Suppose $T^{*}\left(\mu_{1}\right)=T^{*}\left(\mu_{2}\right)$. Then $T^{*}\left(\mu_{1}\right)(a)=T^{*}\left(\mu_{2}\right)(a)$ for all $a \in \mathcal{P}$, i.e., $\mu_{1}(T(a))=\mu_{2}(T(a))$ for all $a \in \mathcal{P}$. Since T is surjective, $\mu_{1}(q)=\mu_{2}(q)$ for all $q \in \mathcal{Q}$. Hence $\mu_{1}=\mu_{2}$.
(2) Suppose $T(x)=T(y)$. Let $\mu \in \mathcal{L}(\mathcal{P})$. There is $\mu_{1} \in \mathcal{Q}^{*}$ such that $T^{*}\left(\mu_{1}\right)=\mu$. We have $\mu_{1}(T(x))=\mu_{1}(T(y))$ and so $T^{*}\left(\mu_{1}\right)(x)=T^{*}\left(\mu_{1}\right)(y)$. Therefore $\mu(x)=\mu(y)$ for all $\mu \in \mathcal{L}(\mathcal{P})$. Hence $x=y$, since $\mathcal{L}(\mathcal{P})$ separates the elements of \mathcal{P} by the hypothesis.

Lemma 2.1 is proved.
Lemma 2.2. Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be locally convex cones and T from \mathcal{P} onto \mathcal{Q} be a linear operator. Then for the adjoint operator T^{*} we have

$$
\widetilde{T^{*}\left(W^{\circ}\right)}=\left(T^{*} \times T^{*}\right)\left(\widetilde{W^{\circ}}\right)
$$

where $\widetilde{W^{\circ}}=\left\{(\mu, \nu) \in \mathcal{Q}^{*} \times \mathcal{Q}^{*}: \nu \in \mu+W^{\circ}\right\}$.
Proof. Let $(\mu, \nu) \in\left(T^{*} \times T^{*}\right)\left(\widetilde{W^{\circ}}\right)$. Then there is $\left(\mu^{\prime}, \nu^{\prime}\right) \in \widetilde{W^{\circ}}$ such that $\mu=T^{*}\left(\mu^{\prime}\right)$ and $\nu=T^{*}\left(\nu^{\prime}\right)$. Hence there is $\Lambda \in W^{\circ}$ such that $\nu^{\prime}=\mu^{\prime}+\Lambda$. Then $T^{*}\left(\nu^{\prime}\right)=T^{*}\left(\mu^{\prime}\right)+T^{*}(\Lambda)$. So $\nu=\mu+T^{*}(\Lambda)$, i.e., $(\mu, \nu) \in \widehat{T^{*}\left(W^{\circ}\right)}$. Conversely, let $(\mu, \nu) \in \widetilde{T^{*}\left(W^{\circ}\right)}$. Then $\nu \in \mu+T^{*}\left(W^{\circ}\right)$. Hence there is $\Lambda \in W^{\circ}$ such that $\nu=\mu+T^{*}(\Lambda)$. Thus $T^{*-1}(\nu)=T^{*-1}(\mu)+\Lambda$ (by Lemma 2.1 (1), T^{*} is invertible). Hence $\left(T^{*-1}(\mu), T^{*-1}(\nu)\right) \in \widetilde{W^{\circ}}$, i.e., $(\mu, \nu) \in\left(T^{*} \times T^{*}\right)\left(\widetilde{W^{\circ}}\right)$.

Lemma 2.2 is proved.
We recall the following results.
Lemma 2.3 ([2], Lemma 2.3). Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be locally convex cones and $T: \mathcal{P} \rightarrow \mathcal{Q}$ a linear operator. Then:
(1) for each subset F of $\mathcal{P}^{2}, T^{*-1}\left(F^{\circ}\right)=((T \times T)(F))^{\circ}$,
(2) if the polar E° being taken in \mathcal{Q}^{*}, for each subset E of $\mathcal{Q}^{2}, T^{*}\left(E^{\circ}\right) \subseteq\left((T \times T)^{-1}(E)\right)^{\circ}$ and if T is invertible, then we have the inverse inclusion, i.e., $T^{*}\left(E^{\circ}\right)=\left((T \times T)^{-1}(E)\right)^{\circ}$.

Theorem 2.2 (Extension theorem [4], II.2.9). Let \mathcal{Q} be a subcone of a locally convex cone $(\mathcal{P}, \mathfrak{U})$. Then every continuous linear functional on \mathcal{Q} can be extended to a continuous linear functional on \mathcal{P}.

A locally convex cone $(\mathcal{P}, \mathfrak{U})$ is called a $u c$-cone whenever $\mathfrak{U}=\{\alpha U: \alpha>0\}$ for some $U \in \mathfrak{U}$. The uc-cones in locally convex cones play the role of normed spaces in topological vector spaces. If $(\mathcal{P}, \mathfrak{U})$ is a $u c$-cone and $\mathfrak{U}=\{\alpha U: \alpha>0\}$, then $\left(\mathcal{P}^{*}, \mathfrak{U}_{\beta}\left(\mathcal{P}^{*}, \mathcal{P}\right)\right)$ is a $u c$-cone, where $\mathfrak{U}_{\beta}\left(\mathcal{P}^{*}, \mathcal{P}\right)=\left\{\alpha \widetilde{U^{\circ}}: \alpha>0\right\}$ (see [1]). If $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ are $u c$-cones, then the definition of an open (continuous) linear operator T can be written as in the following simple case: an operator T : $\mathcal{P} \rightarrow \mathcal{Q}$ is open (continuous) if there is $\beta>0$ such that $\beta W \subseteq(T \times T)(U)$ (resp., $(T \times T)(U) \subseteq$ $\subseteq \beta W)$.

Theorem 2.3. Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be uc-cones. Suppose that T is a linear operator of \mathcal{P} onto a subcone \mathcal{Q}_{1} of \mathcal{Q} such that

$$
\begin{equation*}
T(a)=T(b) \quad \text { implies } \quad a+N=b+N \tag{2.2}
\end{equation*}
$$

for all $a, b \in \mathcal{P}$, where $N=\operatorname{ker} T$. If T is open and continuous, then T^{*} is an open continuous mapping of $\left(\mathcal{Q}^{*}, \mathfrak{U}_{\beta}\left(\mathcal{Q}^{*}, \mathcal{Q}\right)\right)$ onto $\left((N \times N)^{\circ}, \mathfrak{U}_{\beta}\left(\mathcal{P}^{*}, \mathcal{P}\right)\right)$. Hence:
(1) if, moreover, T is one-to-one, then T^{*} maps onto \mathcal{P}^{*};
(2) if T maps onto \mathcal{Q}, then T^{*} is an isomorphism of \mathcal{Q}^{*} onto $(N \times N)^{\circ}$;
(3) if T is an isomorphism of \mathcal{P} onto \mathcal{Q}, then T^{*} is an isomorphism of \mathcal{Q}^{*} onto \mathcal{P}^{*}.

Proof. Let $\mu \in \mathcal{Q}^{*}$ be arbitrary. If $(x, y) \in N \times N$, then $\mu(T(x))=\mu(T(y))=0$. Thus

$$
T^{*}(\mu)(x) \leq T^{*}(\mu)(y)+1
$$

Hence $T^{*}(\mu)$ is in $(N \times N)^{\circ}$. Conversely, choose an element f of $(N \times N)^{\circ}$. We must find an element μ of \mathcal{Q}^{*} such that $\mu \circ T=f$, that is, the values of μ on \mathcal{Q}_{1} must be given by $\mu(T(x))=f(x)$. It is, in fact, possible to use this formula to define μ on \mathcal{Q}_{1}. Observe that if $T(x)=T(y)$, then by the hypothesis we have $x+N=y+N$. So $x+n=y+n^{\prime}$ for some $n, n^{\prime} \in N$. Since f vanishes on $N, f(x)=f(y)$. (We note that N is a subcone of \mathcal{P} and $(N \times N)^{\circ}=\left\{\mu \in \mathcal{P}^{*}\right.$: $\mu(n)=0$ for all $n \in N\}$.) Hence μ is well defined. We show next that the functional μ is continuous on \mathcal{Q}_{1}. Since $f \in(N \times N)^{\circ} \subseteq \mathcal{P}^{*}$, there exists $\alpha>0$ such that $f \in(\alpha U)^{\circ}$, that is, $(x, y) \in \alpha U$ implies $f(x) \leq f(y)+1$. By openness of T, there is $\beta>0$ such that $\beta W \subseteq(T \times T)(\alpha U)$. Now if $a, b \in \mathcal{Q}_{1}$ and $(a, b) \in \beta W$, then there is $\left(a^{\prime}, b^{\prime}\right) \in \alpha U$ such that $T\left(a^{\prime}\right)=a$ and $T\left(b^{\prime}\right)=b$. We have $f\left(a^{\prime}\right) \leq f\left(b^{\prime}\right)+1$, that is,

$$
(\mu \circ T)\left(a^{\prime}\right) \leq(\mu \circ T)\left(b^{\prime}\right)+1
$$

Hence $\mu(a) \leq \mu(b)+1$. Therefore $\mu \in\left(\beta W \cap\left(\mathcal{Q}_{1} \times \mathcal{Q}_{1}\right)\right)^{\circ}$ and so μ is continuous on \mathcal{Q}_{1}. By Theorem 2.2, we can extend μ to a continuous linear functional on \mathcal{Q}. This shows that T^{*} is onto $(N \times N)^{\circ}$. We will now prove that T^{*} is an open mapping. We show that there exists $\beta>0$ such that $\beta \widetilde{U^{\circ}} \subseteq\left(T^{*} \times T^{*}\right)\left(\widehat{W^{\circ}}\right)$. Since T is open, there is $\beta>0$ such that $\beta W \subseteq(T \times T)(U)$. Thus $\beta((T \times T)(U))^{\circ} \subseteq W^{\circ}$. By Lemma $2.3(1), T^{*-1}\left(U^{\circ}\right)=((T \times T)(U))^{\circ}$. Hence $\beta T^{*-1}\left(U^{\circ}\right) \subseteq W^{\circ}$. Then $\beta T^{*}\left(T^{*-1}\left(U^{\circ}\right)\right) \subseteq T^{*}\left(W^{\circ}\right)$. Since T^{*} is surjective, $\beta U^{\circ} \subseteq T^{*}\left(W^{\circ}\right)$ and so $\widetilde{\beta U^{\circ}} \subseteq \widetilde{T^{*}}\left(W^{\circ}\right)$. By Lemma 2.2, we have $\beta \widetilde{U^{\circ}} \subseteq\left(T^{*} \times T^{*}\right)\left(\widetilde{W^{\circ}}\right)$. Thus T^{*} is open. Now we show that T^{*} is continuous. We prove that there exists $\gamma>0$ such that $\left(T^{*} \times T^{*}\right)\left(\widetilde{W^{\circ}}\right) \subseteq \gamma \widetilde{U^{\circ}}$. Since T is continuous, there exists $\gamma>0$ such that $(T \times T)(U) \subseteq \gamma W$. Hence $W^{\circ} \subseteq \gamma((T \times T)(U))^{\circ}$. By Lemma 2.3 (1), $W^{\circ} \subseteq \gamma T^{*-1}\left(U^{\circ}\right)$. Thus $T^{*}\left(W^{\circ}\right) \subseteq \gamma U^{\circ}$. Therefore, by Lemma 2.2,

$$
\left(T^{*} \times T^{*}\right)\left(\widetilde{W^{\circ}}\right) \subseteq \widetilde{T^{*}\left(W^{\circ}\right)} \subseteq \gamma \widetilde{U^{\circ}}
$$

Hence T^{*} is continuous.
(1) If T is one-to-one, then $N=\{0\}$, so $(N \times N)^{\circ}$ is the whole of \mathcal{P}^{*}.
(2) If T maps onto \mathcal{Q}, then by Lemma $2.1, T^{*}$ is one-to-one. Since it is also open and continuous, it is an isomorphism of \mathcal{Q}^{*} onto $(N \times N)^{\circ}$.
(3) The result follows from (1) and (2).

Theorem 2.3 is proved.

The above theorem holds for a normed space without condition (2.2) (see, for example, [3], II.24.4). In the following example (similar to Example 2.2 of [7]) we show that if condition (2.2) does not hold, then the functional μ is not necessarily well defined, i.e., the mapping T^{*} is not necessarily onto $(N \times N)^{\circ}$.

Example 2.1. Let $\mathcal{P}=\left\{(x, y) \in \overline{\mathbb{R}}^{2} \mid x, y \geq 0\right\}$, endowed with the convex quasiuniform structure $\mathfrak{U}=\{\alpha \widetilde{(1,1)}: \alpha>0\}$, where

$$
\widetilde{(1,1)}=\left\{((a, b),(c, d)) \in \overline{\mathbb{R}}_{+}^{2} \times \overline{\mathbb{R}}_{+}^{2}:(a, b) \leq(c, d)+(1,1)\right\}
$$

(the order in $\overline{\mathbb{R}}^{2}$ is coordinatewise) and let the subcone $\mathcal{Q}_{1}=\overline{\mathbb{R}}_{+}=[0,+\infty]$ of $\mathcal{Q}=\overline{\mathbb{R}}$, endowed with the convex quasiuniform structure $\widetilde{\mathcal{V}}=\{\tilde{\varepsilon}: \varepsilon>0\}$, where

$$
\tilde{\varepsilon}=\left\{(a, b) \in \overline{\mathbb{R}}_{+}^{2}: a \leq b+\varepsilon\right\} .
$$

Let T be the linear mapping from \mathcal{P} onto \mathcal{Q}_{1} defined by $T(x, y)=x+y$. Then we have $N=$ $=\operatorname{ker}(T)=\{(0,0)\}$. The mapping $T:(\mathcal{P}, \mathfrak{U}) \rightarrow\left(\mathcal{Q}_{1}, \mathcal{V}\right)$ is open and continuous. Let f be the linear functional on \mathcal{P} defined by $f(x, y)=x$. This functional is continuous and is an element of $(N \times N)^{\circ}$. But there exists no μ in \mathcal{Q}_{1}^{*} such that $\mu \circ T=f$ on \mathcal{Q}_{1}. Indeed, the dual cone of $\left(\mathcal{Q}_{1}, \widetilde{\mathcal{V}}\right)$ is the positive reals together with $\overline{0}$ which maps all $a \in \mathbb{R}_{+}$to 0 and $+\infty$ to $+\infty$ and any of this functional does not satisfy in the relation $\mu \circ T=f$. We note that condition (2.2) does not hold for this T, for example, $T(0,1)=T(1,0)$, but $(0,1)+N \neq(1,0)+N$.

Remark 2.1. For topological vector spaces, an operator T is one-to-one if and only if $\operatorname{ker}(T)=$ $=\{0\}$, but in locally convex cones, this is not true. In locally convex cones if T is one-to-one, then $\operatorname{ker}(T)=\{0\}$, but the converse is not true. For instance, in the Example 2.1 we have $\operatorname{ker}(T)=$ $=\{(0,0)\}$, however, T is not one-to-one.

References

1. D. Ayaseh, A. Ranjbari, Bornological locally convex cones, Le Mat., 69, № 12, 267 - 284 (2014).
2. S. Jafarizad, A. Ranjbari, Openness and continuity in locally convex cones, Filomat, 31, № 16, 5093 - 5103 (2017).
3. G. J. O. Jameson, Topology and normed spaces, Chapman and Hall, London (1974).
4. K. Keimel, W. Roth, Ordered cones and approximation, Lect. Notes Math., 1517, Springer-Verlag, Berlin (1992).
5. M. R. Motallebi, H. Saiflu, Products and direct sums in locally convex cones, Canad. Math. Bull., 55, № 4, $783-798$ (2012).
6. A. Ranjbari, H. Saiflu, Projective and inductive limits in locally convex cones, J. Math. Anal. and Appl., 332, № 2, 1097-1108 (2007).
7. A. Ranjbari, H. Saiflu, A locally convex quotient cone, Methods Funct. Anal., 12, № 3, 281 - 285 (2006).
8. W. Roth, Operator-valued measures and integrals for cone-valued functions, Lect. Notes Math., 1964, SpringerVerlag, Berlin (2009).
9. W. Roth, Locally convex quotient cones, J. Convex Anal., 18, № 4, 903 - 913 (2011).
10. W. Roth, A uniform boundedness theorem for locally convex cones, Proc. Amer. Math. Soc., 126, № 7, 1973-1982 (1998).
