DOI: 10.37863/umzh.v73i3.222 UDC 515.12

S. Jafarizad, A. Ranjbari (Univ. Tabriz, Iran)

SOME APPLICATIONS OF THE OPEN MAPPING THEOREM IN LOCALLY CONVEX CONES ДЕЯКІ ЗАСТОСУВАННЯ ТЕОРЕМИ ПРО ВІДКРИТЕ ВІДОБРАЖЕННЯ У ЛОКАЛЬНО-ОПУКЛИХ КОНУСАХ

We show that a continuous open linear operator preserves the completeness and barreledness in locally convex cones. Specially, we prove some relations between an open linear operator and its adjoint in uc-cones (locally convex cones which their convex quasi-uniform structures are generated by one element).

Показано, що неперервний відкритий лінійний оператор зберігає повноту та бочкуватість у локально-опуклих конусах. Зокрема, доведено деякі співвідношення між відкритим лінійним оператором та його суміжним у *uc*конусах (локально-опуклих конусах, у яких опуклі квазірівномірні структури генеруються одним елементом).

1. Introduction. The theory of locally convex cones deals with ordered cones that are not necessarily embeddable in vector spaces. A topological structure is introduced using an order theoretical concept or a convex quasiuniform structure. In this paper we use the latter. These cones developed in [4, 8]. For recent researches see [1, 9]. We shall review some of the concepts and refer to [4, 8] for details.

A cone is defined to be a commutative monoid \mathcal{P} together with a scalar multiplication by nonnegative real numbers satisfying the same axioms as for vector spaces; that is, \mathcal{P} is endowed with an addition $(a,b) \mapsto a + b : \mathcal{P} \times \mathcal{P} \to \mathcal{P}$ which is associative, commutative and admits a neutral element $0 \in \mathcal{P}$, and with a scalar multiplication $(r,a) \mapsto r \cdot a : \mathbb{R}_+ \times \mathcal{P} \to \mathcal{P}$ satisfying the usual associative and distributive properties, where \mathbb{R}_+ is the set of nonnegative real numbers. We have $1 \cdot a = a$ and $0 \cdot a = 0$ for all $a \in \mathcal{P}$.

Let \mathcal{P} be a cone. A convex quasiuniform structure on \mathcal{P} is a collection \mathfrak{U} of convex subsets $U \subseteq \mathcal{P}^2 = \mathcal{P} \times \mathcal{P}$ such that the following properties hold:

- (U₁) $\Delta \subseteq U$ for every $U \in \mathfrak{U}$, where $\Delta = \{(a, a) : a \in \mathcal{P}\};$
- (U₂) for all $U, V \in \mathfrak{U}$ there is a $W \in \mathfrak{U}$ such that $W \subseteq U \cap V$;
- (U₃) $\lambda U \circ \mu U \subseteq (\lambda + \mu)U$ for all $U \in \mathfrak{U}$ and $\lambda, \mu > 0$;
- (U₄) $\alpha U \in \mathfrak{U}$ for all $U \in \mathfrak{U}$ and $\alpha > 0$.

Here, for $U, V \subseteq \mathcal{P}^2$, by $U \circ V$ we mean the set of all $(a, b) \in \mathcal{P}^2$ such that there is some $c \in \mathcal{P}$ with $(a, c) \in U$ and $(c, b) \in V$.

Let \mathcal{P} be a cone and \mathfrak{U} be a convex quasiuniform structure on \mathcal{P} . We shall say $(\mathcal{P}, \mathfrak{U})$ is a locally convex cone if

(U₅) for each $a \in \mathcal{P}$ and $U \in \mathfrak{U}$ there is some $\lambda > 0$ such that $(0, a) \in \lambda U$.

© S. JAFARIZAD, A. RANJBARI, 2021

With every convex quasiuniform structure \mathfrak{U} on \mathcal{P} we associate two topologies on \mathcal{P} : the neighborhood bases for an element a in the upper and lower topologies are given by the sets

$$U(a) = \{b \in \mathcal{P} : (b, a) \in U\}, \quad \text{resp.}, \quad (a)U = \{b \in \mathcal{P} : (a, b) \in U\}, \quad U \in \mathfrak{U}.$$

The common refinement of the upper and lower topologies is called symmetric topology. A neighborhood base for $a \in \mathcal{P}$ in this topology is given by the sets

$$U(a)U = U(a) \cap (a)U, \quad U \in \mathfrak{U}.$$

The extended real numbers system $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\}$ is a cone endowed with the usual algebraic operations, in particular $a + (+\infty) = +\infty$ for all $a \in \overline{\mathbb{R}}$, $\alpha \cdot (+\infty) = +\infty$ for all $\alpha > 0$ and $0 \cdot (+\infty) = 0$. We set $\widetilde{\mathcal{V}} = \{\widetilde{\varepsilon} : \varepsilon > 0\}$, where

$$\tilde{\varepsilon} = \{(a,b) \in \overline{\mathbb{R}}^2 : a \le b + \varepsilon\}.$$

Then $\widetilde{\mathcal{V}}$ is a convex quasiuniform structure on \mathbb{R} and $(\mathbb{R}, \widetilde{\mathcal{V}})$ is a locally convex cone. For $a \in \mathbb{R}$ the intervals $(-\infty, a + \varepsilon]$ are the upper and the intervals $[a - \varepsilon, +\infty]$ are the lower neighborhoods, while for $a = +\infty$ the entire cone \mathbb{R} is the only upper neighborhood, and $\{+\infty\}$ is open in the lower topology. The symmetric topology is the usual topology on \mathbb{R} with as an isolated point $+\infty$.

For cones \mathcal{P} and \mathcal{Q} , a mapping $T: \mathcal{P} \to \mathcal{Q}$ is called a *linear operator* if T(a + b) = T(a) + T(b) and $T(\alpha a) = \alpha T(a)$ hold for all $a, b \in \mathcal{P}$ and $\alpha \geq 0$. If both $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ are locally convex cones, the operator T is called *(uniformly) continuous* if for every $W \in \mathcal{W}$ one can find $U \in \mathfrak{U}$ such that $(T \times T)(U) \subseteq W$. Uniform continuity implies continuity for the operator $T: \mathcal{P} \to \mathcal{Q}$ with respect to the upper, lower and symmetric topologies on \mathcal{P} and \mathcal{Q} , respectively.

A *linear functional* on \mathcal{P} is a linear operator $\mu : \mathcal{P} \to \mathbb{R}$. We note that $\mu : \mathcal{P} \to \mathbb{R}$ is continuous if and only if there is $U \in \mathfrak{U}$ such that $\mu(a) \leq \mu(b) + 1$ for all $(a, b) \in U$. We denote the set of all linear functional on \mathcal{P} by $\mathcal{L}(\mathcal{P})$ (the algebraic dual of \mathcal{P}). For a subset F of \mathcal{P}^2 , we define polar F° as follows:

$$F^{\circ} = \left\{ \mu \in \mathcal{L}(\mathcal{P}) : \mu(a) \le \mu(b) + 1 \quad \text{for all} \quad (a,b) \in F \right\}.$$

The dual cone \mathcal{P}^* of a locally convex cone $(\mathcal{P}, \mathfrak{U})$ consists of all continuous linear functionals on \mathcal{P} and is the union of all polars U° of neighborhoods $U \in \mathfrak{U}$.

2. Some applications of the open mapping theorem. An open linear operator was defined in [2] as follows:

Definition 2.1. Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be locally convex cones. A linear operator $T : (\mathcal{P}, \mathfrak{U}) \rightarrow (\mathcal{Q}, \mathcal{W})$ is called (uniformly) open if for every $U \in \mathfrak{U}$ one can find $W \in \mathcal{W}$ such that $W \subseteq \subseteq (T \times T)(U)$.

If $T : (\mathcal{P}, \mathfrak{U}) \to (\mathcal{Q}, \mathcal{W})$ is open, then it is open under the upper, lower and symmetric topologies. Also if $T : \mathcal{P} \to \mathcal{Q}$ is open, then T is surjective (see [2]).

A Cauchy net in locally convex cones was defined in [5] as follows.

Definition 2.2. Let $(\mathcal{P}, \mathfrak{U})$ be a locally convex cone. A net $(x_{\alpha})_{\alpha \in \mathcal{I}}$ in \mathcal{P} is called lower (upper) Cauchy if for every $U \in \mathfrak{U}$ there is some $\gamma_U \in \mathcal{I}$ such that $(x_{\beta}, x_{\alpha}) \in U$ (resp., $(x_{\alpha}, x_{\beta}) \in U$) for all $\alpha, \beta \in \mathcal{I}$ with $\beta \geq \alpha \geq \gamma_U$. Also $(x_{\alpha})_{\alpha \in \mathcal{I}}$ is called symmetric Cauchy if for each $U \in \mathfrak{U}$ there is some $\gamma_U \in \mathcal{I}$ such that $(x_{\beta}, x_{\alpha}) \in U$ for all $\alpha, \beta \in \mathcal{I}$ with $\alpha, \beta \geq \gamma_U$. We call that a net $(x_i)_{i \in \mathcal{I}}$ in $(\mathcal{P}, \mathfrak{U})$ is lower (upper) convergent to $x \in \mathcal{P}$ if for every $U \in \mathfrak{U}$ there is some $\gamma_U \in \mathcal{I}$ such that $(x, x_i) \in U$ (resp., $(x_i, x) \in U$) for all $i \geq \gamma_U$. Also $(x_i)_{i \in \mathcal{I}}$ is called symmetric convergent to x if for each $U \in \mathfrak{U}$ there is some $\gamma_U \in \mathcal{I}$ such that $(x_i, x) \in U$ and $(x, x_i) \in U$ for all $i \geq \gamma_U$.

A locally convex cone $(\mathcal{P}, \mathfrak{U})$ is called lower (upper or symmetric) complete if every lower (resp., upper or symmetric) Cauchy net in \mathcal{P} converges in the lower (resp., upper or symmetric) topology to some element of \mathcal{P} .

Proposition 2.1. Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be locally convex cones. If there is a one-to-one open continuous linear mapping of \mathcal{P} into \mathcal{Q} , and \mathcal{P} is lower (upper or symmetric) complete, then so is \mathcal{Q} .

Proof. We prove for the symmetric case. Let the mapping be T and let $(y_i)_{i \in \mathcal{I}}$ be a symmetric Cauchy net in \mathcal{Q} . Since every open linear mapping is surjective (see [2]), for every $i \in \mathcal{I}$, there exists $x_i \in \mathcal{P}$ such that $y_i = T(x_i)$. We show that $(x_i)_{i \in \mathcal{I}}$ is a Cauchy net in \mathcal{P} . Let $U \in \mathfrak{U}$ be arbitrary. By the openness of T, there exists $W \in \mathcal{W}$ such that $W \subseteq (T \times T)(U)$. Since $(y_i)_{i \in \mathcal{I}}$ is symmetric Cauchy, there is γ_W such that $(y_i, y_j) \in W$ for all $i, j \geq \gamma_W$. Hence

$$(y_i, y_j) = (T(x_i), T(x_j)) \in (T \times T)(U)$$

for all $i, j \ge \gamma_W$. Since T is one-to-one, $(x_i, x_j) \in U$ for all $i, j \ge \gamma_W$, i.e., $(x_i)_{i \in \mathcal{I}}$ is symmetric Cauchy. Since \mathcal{P} is symmetric complete, there is $x \in \mathcal{P}$ such that $(x_i)_{i \in \mathcal{I}}$ converges to x in the symmetric topology. The continuity of T renders that $(T(x_i))_{i \in \mathcal{I}}$ is convergent to $T(x) \in \mathcal{Q}$. This shows that $(y_i)_{i \in \mathcal{I}}$ is convergent to T(x) in the symmetric topology.

The notions of a barrel and a barreled locally convex cone were introduced in [10] as follows: a *barrel* is a convex subset B of \mathcal{P}^2 with the following properties:

(B1) For every $b \in \mathcal{P}$ there is $U \in \mathfrak{U}$ such that for every $a \in U(b)U$ there is $\lambda > 0$ such that $(a,b) \in \lambda B$.

(B2) For all a, b such that $(a, b) \notin B$ there is $\mu \in \mathcal{P}^*$ such that $\mu(c) \leq \mu(d) + 1$ for all $(c, d) \in B$ and $\mu(a) > \mu(b) + 1$.

A locally convex cone $(\mathcal{P}, \mathfrak{U})$ is said to be *barreled* if for every barrel $B \subseteq \mathcal{P}^2$ and every element $b \in \mathcal{P}$ there are neighborhood $U \in \mathfrak{U}$ and $\lambda > 0$ such that $(a, b) \in \lambda B$ for all $a \in U(b)U$.

Theorem 2.1. Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be two locally convex cones. Let T be a linear continuous and open mapping of \mathcal{P} into \mathcal{Q} . If $(\mathcal{P}, \mathfrak{U})$ is barrelled, then $(\mathcal{Q}, \mathcal{W})$ is barrelled too.

Proof. Let B be a barrel in Q^2 and $y \in Q$. We show that there are $W \in W$ and $\lambda > 0$ such that $(x, y) \in \lambda B$ for all $x \in W(y)W$. There is an element $b \in \mathcal{P}$ such that T(b) = y, because T is surjective (see [2]). Since T is continuous, $(T \times T)^{-1}(B)$ is a barrel in \mathcal{P}^2 (see [6]). Since \mathcal{P} is barrelled, there are $U \in \mathfrak{U}$ and $\lambda > 0$ such that $(a, b) \in \lambda(T \times T)^{-1}(B)$ for all $a \in U(b)U$. There is $W \in W$ such that

$$W \subseteq (T \times T)(U), \tag{2.1}$$

because T is open by the hypothesis. Now let $x \in W(y)W$. We have, by (2.1),

$$W(y)W = W(T(b))W \subseteq T(U(b)U).$$

Hence there is $a' \in U(b)U$ such that T(a') = x. Therefore $(a',b) \in \lambda(T \times T)^{-1}(B)$ and so $(x,y) \in \lambda B$.

Theorem 2.1 is proved.

A locally convex cone $(\mathcal{P}, \mathfrak{U})$ is called *upper-barreled* if for every barrel $B \subseteq \mathcal{P}^2$, there is $U \in \mathfrak{U}$ such that $U \subseteq B$ (see [6]). Proposition 2.11 from [2] yields that, every open continuous linear operator preserves the upper-barreledness between locally convex cones.

Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be locally convex cones and $T : \mathcal{P} \to \mathcal{Q}$ be a linear operator. The *adjoint* operator $T^* : \mathcal{Q}^* \to \mathcal{L}(\mathcal{P})$ is defined as follows: for any $\mu \in \mathcal{Q}^*$ define the linear functional $T^*(\mu)$ on \mathcal{P} by $T^*(\mu)(a) = \mu(T(a))$ for all $a \in \mathcal{P}$. If T is continuous, then T^* is a linear operator

Lemma 2.1. Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be locally convex cones and $T : \mathcal{P} \to \mathcal{Q}$ be a linear operator.

(1) If T is surjective, then T^* is one-to-one.

(2) If $\mathcal{L}(\mathcal{P})$ separates the elements of \mathcal{P} and T^* is surjective, then T is one-to-one.

Proof. (1) Suppose $T^*(\mu_1) = T^*(\mu_2)$. Then $T^*(\mu_1)(a) = T^*(\mu_2)(a)$ for all $a \in \mathcal{P}$, i.e., $\mu_1(T(a)) = \mu_2(T(a))$ for all $a \in \mathcal{P}$. Since T is surjective, $\mu_1(q) = \mu_2(q)$ for all $q \in \mathcal{Q}$. Hence $\mu_1 = \mu_2$.

(2) Suppose T(x) = T(y). Let $\mu \in \mathcal{L}(\mathcal{P})$. There is $\mu_1 \in \mathcal{Q}^*$ such that $T^*(\mu_1) = \mu$. We have $\mu_1(T(x)) = \mu_1(T(y))$ and so $T^*(\mu_1)(x) = T^*(\mu_1)(y)$. Therefore $\mu(x) = \mu(y)$ for all $\mu \in \mathcal{L}(\mathcal{P})$. Hence x = y, since $\mathcal{L}(\mathcal{P})$ separates the elements of \mathcal{P} by the hypothesis.

Lemma 2.1 is proved.

Lemma 2.2. Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be locally convex cones and T from \mathcal{P} onto \mathcal{Q} be a linear operator. Then for the adjoint operator T^* we have

$$\widetilde{T^*}(\widetilde{W^\circ}) = (T^* \times T^*)(\widetilde{W^\circ}),$$

where $\widetilde{W^{\circ}} = \{(\mu, \nu) \in \mathcal{Q}^* \times \mathcal{Q}^* : \nu \in \mu + W^{\circ}\}.$

Proof. Let $(\mu, \nu) \in (T^* \times T^*)(\widetilde{W^\circ})$. Then there is $(\mu', \nu') \in \widetilde{W^\circ}$ such that $\mu = T^*(\mu')$ and $\nu = T^*(\nu')$. Hence there is $\Lambda \in W^\circ$ such that $\nu' = \mu' + \Lambda$. Then $T^*(\nu') = T^*(\mu') + T^*(\Lambda)$. So $\nu = \mu + T^*(\Lambda)$, i.e., $(\mu, \nu) \in T^*(W^\circ)$. Conversely, let $(\mu, \nu) \in T^*(W^\circ)$. Then $\nu \in \mu + T^*(W^\circ)$. Hence there is $\Lambda \in W^\circ$ such that $\nu = \mu + T^*(\Lambda)$. Thus $T^{*-1}(\nu) = T^{*-1}(\mu) + \Lambda$ (by Lemma 2.1 (1), T^* is invertible). Hence $(T^{*-1}(\mu), T^{*-1}(\nu)) \in \widetilde{W^\circ}$, i.e., $(\mu, \nu) \in (T^* \times T^*)(\widetilde{W^\circ})$.

Lemma 2.2 is proved.

We recall the following results.

Lemma 2.3 ([2], Lemma 2.3). Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be locally convex cones and $T : \mathcal{P} \to \mathcal{Q}$ a linear operator. Then:

(1) for each subset F of \mathcal{P}^2 , $T^{*-1}(F^\circ) = ((T \times T)(F))^\circ$,

(2) if the polar E° being taken in Q^* , for each subset E of Q^2 , $T^*(E^{\circ}) \subseteq ((T \times T)^{-1}(E))^{\circ}$ and if T is invertible, then we have the inverse inclusion, i.e., $T^*(E^{\circ}) = ((T \times T)^{-1}(E))^{\circ}$.

Theorem 2.2 (Extension theorem [4], II.2.9). Let Q be a subcone of a locally convex cone $(\mathcal{P}, \mathfrak{U})$. Then every continuous linear functional on Q can be extended to a continuous linear functional on \mathcal{P} .

A locally convex cone $(\mathcal{P},\mathfrak{U})$ is called a *uc*-cone whenever $\mathfrak{U} = \{\alpha U : \alpha > 0\}$ for some $U \in \mathfrak{U}$. The *uc*-cones in locally convex cones play the role of normed spaces in topological vector spaces. If $(\mathcal{P},\mathfrak{U})$ is a *uc*-cone and $\mathfrak{U} = \{\alpha U : \alpha > 0\}$, then $(\mathcal{P}^*,\mathfrak{U}_\beta(\mathcal{P}^*,\mathcal{P}))$ is a *uc*-cone, where $\mathfrak{U}_\beta(\mathcal{P}^*,\mathcal{P}) = \{\alpha \widetilde{U^\circ} : \alpha > 0\}$ (see [1]). If $(\mathcal{P},\mathfrak{U})$ and $(\mathcal{Q},\mathcal{W})$ are *uc*-cones, then the definition of an open (continuous) linear operator T can be written as in the following simple case: an operator $T : \mathcal{P} \to \mathcal{Q}$ is open (continuous) if there is $\beta > 0$ such that $\beta W \subseteq (T \times T)(U)$ (resp., $(T \times T)(U) \subseteq \subseteq \beta W$).

Theorem 2.3. Let $(\mathcal{P}, \mathfrak{U})$ and $(\mathcal{Q}, \mathcal{W})$ be uc-cones. Suppose that T is a linear operator of \mathcal{P} onto a subcone \mathcal{Q}_1 of \mathcal{Q} such that

$$T(a) = T(b) \quad implies \quad a + N = b + N \tag{2.2}$$

for all $a, b \in \mathcal{P}$, where $N = \ker T$. If T is open and continuous, then T^* is an open continuous mapping of $(\mathcal{Q}^*, \mathfrak{U}_{\beta}(\mathcal{Q}^*, \mathcal{Q}))$ onto $((N \times N)^{\circ}, \mathfrak{U}_{\beta}(\mathcal{P}^*, \mathcal{P}))$. Hence:

(1) if, moreover, T is one-to-one, then T^* maps onto \mathcal{P}^* ;

(2) if T maps onto Q, then T^* is an isomorphism of Q^* onto $(N \times N)^\circ$;

(3) if T is an isomorphism of \mathcal{P} onto \mathcal{Q} , then T^* is an isomorphism of \mathcal{Q}^* onto \mathcal{P}^* .

Proof. Let $\mu \in \mathcal{Q}^*$ be arbitrary. If $(x, y) \in N \times N$, then $\mu(T(x)) = \mu(T(y)) = 0$. Thus

$$T^*(\mu)(x) \le T^*(\mu)(y) + 1.$$

Hence $T^*(\mu)$ is in $(N \times N)^\circ$. Conversely, choose an element f of $(N \times N)^\circ$. We must find an element μ of \mathcal{Q}^* such that $\mu \circ T = f$, that is, the values of μ on \mathcal{Q}_1 must be given by $\mu(T(x)) = f(x)$. It is, in fact, possible to use this formula to define μ on \mathcal{Q}_1 . Observe that if T(x) = T(y), then by the hypothesis we have x + N = y + N. So x + n = y + n' for some $n, n' \in N$. Since f vanishes on N, f(x) = f(y). (We note that N is a subcone of \mathcal{P} and $(N \times N)^\circ = \{\mu \in \mathcal{P}^* : \mu(n) = 0 \text{ for all } n \in N\}$.) Hence μ is well defined. We show next that the functional μ is continuous on \mathcal{Q}_1 . Since $f \in (N \times N)^\circ \subseteq \mathcal{P}^*$, there exists $\alpha > 0$ such that $f \in (\alpha U)^\circ$, that is, $(x, y) \in \alpha U$ implies $f(x) \leq f(y) + 1$. By openness of T, there is $\beta > 0$ such that $\beta W \subseteq (T \times T)(\alpha U)$. Now if $a, b \in \mathcal{Q}_1$ and $(a, b) \in \beta W$, then there is $(a', b') \in \alpha U$ such that T(a') = a and T(b') = b. We have $f(a') \leq f(b') + 1$, that is,

$$(\mu \circ T)(a') \le (\mu \circ T)(b') + 1.$$

Hence $\mu(a) \leq \mu(b) + 1$. Therefore $\mu \in (\beta W \cap (Q_1 \times Q_1))^\circ$ and so μ is continuous on Q_1 . By Theorem 2.2, we can extend μ to a continuous linear functional on Q. This shows that T^* is onto $(N \times N)^\circ$. We will now prove that T^* is an open mapping. We show that there exists $\beta > 0$ such that $\beta \widetilde{U}^\circ \subseteq (T^* \times T^*)(\widetilde{W}^\circ)$. Since T is open, there is $\beta > 0$ such that $\beta W \subseteq (T \times T)(U)$. Thus $\beta((T \times T)(U))^\circ \subseteq W^\circ$. By Lemma 2.3 (1), $T^{*-1}(U^\circ) = ((T \times T)(U))^\circ$. Hence $\beta T^{*-1}(U^\circ) \subseteq W^\circ$. Then $\beta T^*(T^{*-1}(U^\circ)) \subseteq T^*(W^\circ)$. Since T^* is surjective, $\beta U^\circ \subseteq T^*(W^\circ)$ and so $\beta \widetilde{U^\circ} \subseteq \widetilde{T^*(W^\circ)}$. By Lemma 2.2, we have $\beta \widetilde{U^\circ} \subseteq (T^* \times T^*)(\widetilde{W^\circ})$. Thus T^* is open. Now we show that T^* is continuous. We prove that there exists $\gamma > 0$ such that $(T^* \times T^*)(\widetilde{W^\circ}) \subseteq \gamma \widetilde{U^\circ}$. Since T is continuous, there exists $\gamma > 0$ such that $(T \times T)(U) \subseteq \gamma W$. Hence $W^\circ \subseteq \gamma((T \times T)(U))^\circ$. By Lemma 2.3 (1), $W^\circ \subseteq \gamma T^{*-1}(U^\circ)$. Thus $T^*(W^\circ) \subseteq \gamma U^\circ$. Therefore, by Lemma 2.2,

$$(T^* \times T^*)(\widetilde{W^{\circ}}) \subseteq \widetilde{T^*(W^{\circ})} \subseteq \gamma \widetilde{U^{\circ}}.$$

Hence T^* is continuous.

(1) If T is one-to-one, then $N = \{0\}$, so $(N \times N)^{\circ}$ is the whole of \mathcal{P}^* .

(2) If T maps onto Q, then by Lemma 2.1, T^* is one-to-one. Since it is also open and continuous, it is an isomorphism of Q^* onto $(N \times N)^{\circ}$.

(3) The result follows from (1) and (2).

Theorem 2.3 is proved.

The above theorem holds for a normed space without condition (2.2) (see, for example, [3], II.24.4). In the following example (similar to Example 2.2 of [7]) we show that if condition (2.2) does not hold, then the functional μ is not necessarily well defined, i.e., the mapping T^* is not necessarily onto $(N \times N)^{\circ}$.

Example 2.1. Let $\mathcal{P} = \{(x, y) \in \mathbb{R}^2 | x, y \ge 0\}$, endowed with the convex quasiuniform structure $\mathfrak{U} = \{\alpha(1, 1) : \alpha > 0\}$, where

$$\widetilde{(1,1)} = \left\{ \left((a,b), (c,d) \right) \in \overline{\mathbb{R}}_+^2 \times \overline{\mathbb{R}}_+^2 : (a,b) \le (c,d) + (1,1) \right\}$$

(the order in $\overline{\mathbb{R}}^2$ is coordinatewise) and let the subcone $\mathcal{Q}_1 = \overline{\mathbb{R}}_+ = [0, +\infty]$ of $\mathcal{Q} = \overline{\mathbb{R}}$, endowed with the convex quasiuniform structure $\widetilde{\mathcal{V}} = \{\widetilde{\varepsilon} : \varepsilon > 0\}$, where

$$\tilde{\varepsilon} = \left\{ (a, b) \in \overline{\mathbb{R}}^2_+ : a \le b + \varepsilon \right\}.$$

Let T be the linear mapping from \mathcal{P} onto \mathcal{Q}_1 defined by T(x, y) = x + y. Then we have $N = = \ker(T) = \{(0,0)\}$. The mapping $T: (\mathcal{P},\mathfrak{U}) \to (\mathcal{Q}_1,\widetilde{\mathcal{V}})$ is open and continuous. Let f be the linear functional on \mathcal{P} defined by f(x, y) = x. This functional is continuous and is an element of $(N \times N)^\circ$. But there exists no μ in \mathcal{Q}_1^* such that $\mu \circ T = f$ on \mathcal{Q}_1 . Indeed, the dual cone of $(\mathcal{Q}_1, \widetilde{\mathcal{V}})$ is the positive reals together with $\overline{0}$ which maps all $a \in \mathbb{R}_+$ to 0 and $+\infty$ to $+\infty$ and any of this functional does not satisfy in the relation $\mu \circ T = f$. We note that condition (2.2) does not hold for this T, for example, T(0,1) = T(1,0), but $(0,1) + N \neq (1,0) + N$.

Remark 2.1. For topological vector spaces, an operator T is one-to-one if and only if ker $(T) = \{0\}$, but in locally convex cones, this is not true. In locally convex cones if T is one-to-one, then ker $(T) = \{0\}$, but the converse is not true. For instance, in the Example 2.1 we have ker $(T) = \{(0,0)\}$, however, T is not one-to-one.

References

- 1. D. Ayaseh, A. Ranjbari, Bornological locally convex cones, Le Mat., 69, № 12, 267-284 (2014).
- 2. S. Jafarizad, A. Ranjbari, Openness and continuity in locally convex cones, Filomat, 31, № 16, 5093-5103 (2017).
- 3. G. J. O. Jameson, *Topology and normed spaces*, Chapman and Hall, London (1974).
- 4. K. Keimel, W. Roth, Ordered cones and approximation, Lect. Notes Math., 1517, Springer-Verlag, Berlin (1992).
- M. R. Motallebi, H. Saiflu, Products and direct sums in locally convex cones, Canad. Math. Bull., 55, № 4, 783-798 (2012).
- 6. A. Ranjbari, H. Saiflu, *Projective and inductive limits in locally convex cones*, J. Math. Anal. and Appl., **332**, № 2, 1097-1108 (2007).
- 7. A. Ranjbari, H. Saiflu, A locally convex quotient cone, Methods Funct. Anal., 12, № 3, 281-285 (2006).
- 8. W. Roth, *Operator-valued measures and integrals for cone-valued functions*, Lect. Notes Math., **1964**, Springer-Verlag, Berlin (2009).
- 9. W. Roth, Locally convex quotient cones, J. Convex Anal., 18, № 4, 903-913 (2011).
- 10. W. Roth, A uniform boundedness theorem for locally convex cones, Proc. Amer. Math. Soc., 126, № 7, 1973–1982 (1998).

Received 16.07.18, after revision – 03.07.19