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SOME APPLICATIONS OF THE OPEN MAPPING THEOREM
IN LOCALLY CONVEX CONES

JAESAKI 3ACTOCYBAHHSA TEOPEMM ITPO BIIKPUTE BIIOBPA’KEHHSA
Y JIOKAJIBHO-OITYKJIUX KOHYCAX

We show that a continuous open linear operator preserves the completeness and barreledness in locally convex cones.
Specially, we prove some relations between an open linear operator and its adjoint in uc-cones (locally convex cones which
their convex quasi-uniform structures are generated by one element).

IMoka3zaHo, O HeNepepBHUH BIAKPUTHH JIHIHHUN omepartop 30epirac MOBHOTYy Ta OOYKYBAaTICTh y JIOKaJbHO-OIKIIMX
KOHycaX. 30KpeMa, JOBEICHO NesKi CHiBBIIHOLIEHHS MK BIAKPUTUM JiHIHHHM ONEpaTopoM Ta HOTO CyMDKHUM y ucC-
KOHYyCaX (JIOKJIbHO-OMYKJIMX KOHYCaX, y SIKMX OIyKJI KBa3ipiBHOMIpHI CTPYKTYPH I'€HEPYIOTbCSl OXHUM EJICMEHTOM).

1. Introduction. The theory of locally convex cones deals with ordered cones that are not necessarily
embeddable in vector spaces. A topological structure is introduced using an order theoretical concept
or a convex quasiuniform structure. In this paper we use the latter. These cones developed in [4, 8].
For recent researches see [1, 9]. We shall review some of the concepts and refer to [4, 8] for details.

A cone is defined to be a commutative monoid P together with a scalar multiplication by non-
negative real numbers satisfying the same axioms as for vector spaces; that is, P is endowed with
an addition (a,b) — a +b: P x P — P which is associative, commutative and admits a neutral
element 0 € P, and with a scalar multiplication (r,a) — 7 -a: Ry x P — P satisfying the usual
associative and distributive properties, where R is the set of nonnegative real numbers. We have
l-a=aand 0-a =0 forall a € P.

Let P be a cone. A convex quasiuniform structure on P is a collection &l of convex subsets
U C P? = P x P such that the following properties hold:

(Uy) ACU forevery U € A, WhereA:{(a,a): aEP};
(Up) forall U,V € U thereisa W € U suchthat W CUNV;
(U3) A\UouU C(A+p)U forall U € U and A\, u > 0;

(Ug) aU e U forall U € U and o > 0.

Here, for U,V C P2 by U o V we mean the set of all (a,b) € P? such that there is some ¢ € P
with (a,c) € U and (c,b) € V.
Let P be a cone and 4l be a convex quasiuniform structure on P. We shall say (P, ) is a locally

convex cone if

(Us) for each a € P and U € 4l there is some A > 0 such that (0,a) € \U.
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With every convex quasiuniform structure i{ on P we associate two topologies on P: the
neighborhood bases for an element a in the upper and lower topologies are given by the sets

U(a)={beP: (bya) eU}, resp., (a)U={beP:(a,b)eU}, UEeil

The common refinement of the upper and lower topologies is called symmetric topology. A neigh-
borhood base for a € P in this topology is given by the sets

U(a)U =U(a)N(a)U, U €l

The extended real numbers system R = R U {+oc} is a cone endowed with the usual algebraic
operations, in particular a + (+00) = +oo for all @ € R, a - (+00) = +oc for all @ > 0 and
0-(+00) =0. Weset V={: e >0}, where

e={(a,b) eR’:a<b+e}.

Then V is a convex quasiuniform structure on R and (R, 17) is a locally convex cone. For a € R
the intervals (—oo, a + €| are the upper and the intervals [a — &, 400] are the lower neighborhoods,
while for @ = +oo the entire cone R is the only upper neighborhood, and {-+occ} is open in the
lower topology. The symmetric topology is the usual topology on R with as an isolated point +oc.

For cones P and Q, a mapping T': P — Q is called a linear operator if T'(a + b) = T'(a) +
+ T(b) and T(aa) = aT'(a) hold for all a,b € P and o > 0. If both (P,4) and (Q,W) are
locally convex cones, the operator 1" is called (uniformly) continuous if for every W € W one can
find U € 4 such that (7" x T')(U) € W. Uniform continuity implies continuity for the operator
T: P — QO with respect to the upper, lower and symmetric topologies on P and O, respectively.

A linear functional on P is a linear operator ;: P — R. We note that 1: P — R is continuous
if and only if there is U € 4l such that p(a) < p(b) + 1 for all (a,b) € U. We denote the set of all
linear functional on P by L£(P) (the algebraic dual of P). For a subset F' of P2, we define polar
F*° as follows:

F°={peL(P): pla) <pu()+1 foral (a,b)eF}.

The dual cone P* of a locally convex cone (P,4l) consists of all continuous linear functionals
on P and is the union of all polars U° of neighborhoods U € 4l.

2. Some applications of the open mapping theorem. An open linear operator was defined
in [2] as follows:

Definition 2.1. Let (P,4) and (Q, W) be locally convex cones. A linear operator T : (P, 4l) —
— (Q, W) is called (uniformly) open if for every U € \ one can find W € W such that W C
C(TxT)U).

If7T: (P,U) — (Q,W) is open, then it is open under the upper, lower and symmetric topologies.
Also if T: P — Q is open, then T is surjective (see [2]).

A Cauchy net in locally convex cones was defined in [5] as follows.

Definition 2.2. Let (P, ) be a locally convex cone. A net (x4)act in P is called lower (upper)
Cauchy if for every U € U there is some vy € L such that (vg,x,) € U (resp., (o, xg) € U) for
all a, B € T with > « > y. Also (x4)act is called symmetric Cauchy if for each U € § there
is some yy € L such that (xg,x,) € U forall o, B € T with o, B > .
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We call that a net (x;);ez in (P,4) is lower (upper) convergent to x € P if for every U € 4
there is some vy € Z such that (z,z;) € U (resp., (x;,x) € U) for all i > ~y. Also (z;)ier is
called symmetric convergent to x if for each U € 4l there is some vy € Z such that (z;,2) € U and
(x,z;) € U forall i > .

A locally convex cone (P, i) is called lower (upper or symmetric) complete if every lower (resp.,
upper or symmetric) Cauchy net in P converges in the lower (resp., upper or symmetric) topology
to some element of P.

Proposition 2.1. Let (P,4) and (Q, W) be locally convex cones. If there is a one-to-one open
continuous linear mapping of P into Q, and P is lower (upper or symmetric) complete, then so
is Q.

Proof. We prove for the symmetric case. Let the mapping be 7" and let (y;);cz be a symmetric
Cauchy net in Q. Since every open linear mapping is surjective (see [2]), for every ¢ € Z, there
exists x; € P such that y; = T'(z;). We show that (z;);ez is a Cauchy net in P. Let U € 4 be
arbitrary. By the openness of 7', there exists W € W such that W C (T x T')(U). Since (y;);ez is
symmetric Cauchy, there is vy such that (y;,y;) € W for all 4, j > ~y. Hence

(i) = (T(x:), T(x;)) € (T x T)(U)

for all 4,5 > ~y . Since T is one-to-one, (z;,x;) € U for all 4,5 > v, ie., (z;)iez is symmetric
Cauchy. Since P is symmetric complete, there is € P such that (z;);ez converges to x in the
symmetric topology. The continuity of 7" renders that (7'(x;));ez is convergent to T'(x) € Q. This
shows that (y;);c7 is convergent to T'(z) in the symmetric topology.

The notions of a barrel and a barreled locally convex cone were introduced in [10] as follows: a
barrel is a convex subset B of P? with the following properties:

(B1) For every b € P there is U € 4l such that for every a € U(b)U there is A > 0 such that
(a,b) € AB.

(B2) For all a,b such that (a,b) ¢ B there is u € P* such that pu(c) < u(d) + 1 for all
(¢,d) € B and p(a) > pu(b) + 1.

A locally convex cone (P, 1) is said to be barreled if for every barrel B C P? and every element
b € P there are neighborhood U € i and A > 0 such that (a,b) € AB for all a € U(b)U.

Theorem 2.1. Let (P, ) and (Q, W) be two locally convex cones. Let T be a linear continuous
and open mapping of P into Q. If (P,) is barrelled, then (Q, W) is barrelled too.

Proof. Let B be a barrel in Q? and y € Q. We show that there are W € W and A > 0 such
that (x,y) € AB for all z € W (y)W. There is an element b € P such that T'(b) = y, because T is
surjective (see [2]). Since T is continuous, (T' x T)~!(B) is a barrel in P? (see [6]). Since P is
barrelled, there are U € & and A > 0 such that (a,b) € A\(T' x T)~Y(B) for all a € U(b)U. There
is W € W such that

W C (T x T)(U), 2.1)

because 71" is open by the hypothesis. Now let x € W (y)W. We have, by (2.1),
W (y)W =W(T(b))W C T(U(b)U).

Hence there is @’ € U(b)U such that T'(a’) = x. Therefore (a’,b) € N(T x T)"(B) and so
(xz,y) € AB.
Theorem 2.1 is proved.
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A locally convex cone (P,4) is called upper-barreled if for every barrel B C P2, there is
U € 4 such that U C B (see [6]). Proposition 2.11 from [2] yields that, every open continuous
linear operator preserves the upper-barreledness between locally convex cones.

Let (P,4) and (Q, W) be locally convex cones and 7": P — Q be a linear operator. The adjoint
operator T* : Q" — L(P) is defined as follows: for any p € Q* define the linear functional 7™ (u)
on P by T*(u)(a) = u(T(a)) for all @ € P. If T is continuous, then T is a linear operator

Lemma 2.1. Let (P,U) and (Q,W) be locally convex cones and T: P — Q be a linear
operator.

(1) If T is surjective, then T™* is one-to-one.

(2) If L(P) separates the elements of P and T* is surjective, then T is one-to-one.

Proof. (1) Suppose T*(u1) = T*(u2). Then T*(u1)(a) = T*(p2)(a) for all a € P, ie.,
w1(T'(a)) = p2(T(a)) for all @ € P. Since T is surjective, u1(q) = p2(q) for all ¢ € Q. Hence
H1 = pH2.

(2) Suppose T'(z) = T(y). Let p € L(P). There is p1 € Q* such that 7% (1) = p. We have
p1(T(x)) = pa(T(y)) and so T (1) (x) = T*(pa)(y). Therefore p(z) = p(y) for all € L(P).
Hence x = y, since L£(P) separates the elements of P by the hypothesis.

Lemma 2.1 is proved.

Lemma 2.2. Let (P, ) and (Q, W) be locally convex cones and T from P onto Q be a linear
operator. Then for the adjoint operator T* we have

P

T+(We) = (T* x T*)(W°),

where W° = {(n,v) € Q* x Q*:vepu+We}

Proof. Let (u,v) € (T* x T*)(W°). Then there is (i/,1/) € W° such that y = T*(¢/) and
v = T*(V'). Hence there is A € W*° such that v/ = ¢/ + A. Then T*(v") = T*(¢') + T*(A). So
v=p+T*A),ie., (u,v) € T*(W°). Conversely, let (u,v) € T*(W°). Then v € p + T*(W°).
Hence there is A € W° such that v = p+7*(A). Thus T*~!(v) = T*1(u) + A (by Lemma 2.1 (1),
T* is invertible). Hence (T*~ (), T* (v)) € we, ie., (n,v) € (T x T*)(ﬁfvo)

Lemma 2.2 is proved.

We recall the following results.

Lemma 2.3 ([2], Lemma 2.3). Let (P, ) and (Q, W) be locally convex cones and T': P — Q
a linear operator. Then:

(1) for each subset F of P2, T* 1 (F°) = ((T x T)(F))°,

(2) if the polar E° being taken in Q*, for each subset E of Q*, T*(E°) C ((T X T)_I(E))o
and if T is invertible, then we have the inverse inclusion, i.e., T*(E°) = ((T x T)"}(E))".

Theorem 2.2 (Extension theorem [4], 11.2.9). Let Q be a subcone of a locally convex cone
(P, ). Then every continuous linear functional on Q can be extended to a continuous linear func-
tional on P.

A locally convex cone (P,4l) is called a uc-cone whenever 4 = {aU: a > 0} for some
U € M. The uc-cones in locally convex cones play the role of normed spaces in topological vector
spaces. If (P,4l) is a uc-cone and U = {aU : o > 0}, then (P*,Llg(P*,P)) is a uc-cone, where
Ug(P*,P) = {oz(??’ sa >0} (see [1]). If (P,4) and (Q, W) are uc-cones, then the definition of an
open (continuous) linear operator 7' can be written as in the following simple case: an operator 1 :
P — Q is open (continuous) if there is 5 > 0 such that SW C (T x T)(U) (resp., (T x T)(U) C
C gW).
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Theorem 2.3. Let (P,4) and (Q, W) be uc-cones. Suppose that T is a linear operator of P
onto a subcone Q1 of Q such that

T(a)=T(b) implies a+ N=b+ N (2.2)

for all a,b € P, where N = kerT. If T is open and continuous, then 1™ is an open continuous
mapping of (Q*,Ug(Q*, Q)) onto (N x N)°,4g(P*, P)). Hence:

(1) if, moreover, T is one-to-one, then T maps onto P*,

(2) if T maps onto Q, then T™ is an isomorphism of Q* onto (N x N)°;

(3) if T is an isomorphism of P onto Q, then T* is an isomorphism of Q* onto P*.

Proof. Let € Q* be arbitrary. If (z,y) € N x N, then u(7T'(z)) = u(T(y)) = 0. Thus

T*(p)(x) < T*(u)(y) + L.

Hence T%(u) is in (N x N)°. Conversely, choose an element f of (/N x N)°. We must find an element
w of Q* such that o T = f, that is, the values of © on Q; must be given by u(7'(z)) = f(x).
It is, in fact, possible to use this formula to define ; on Q;. Observe that if T'(x) = T'(y), then
by the hypothesis we have 2 + N = y + N. So z +n = y + n’ for some n,n’ € N. Since f
vanishes on N, f(z) = f(y). (We note that N is a subcone of P and (N x N)° = {u € P*:
wu(n) =0 foralln € N}.) Hence p is well defined. We show next that the functional 4 is continuous
on Q;. Since f € (N x N)° C P*, there exists a > 0 such that f € (aU)°, thatis, (z,y) € aU
implies f(x) < f(y) + 1. By openness of 7', there is 8 > 0 such that 5W C (T' x T')(aU). Now if
a,b € Q; and (a,b) € W, then there is (a/,b") € aU such that T'(a’) = a and T'(V') = b. We have
fa) < f(¥') +1, that is,
(noT)(d) < (noT)(¥)+1.

Hence p(a) < p(b) + 1. Therefore p € (BW N (Q1 x Q1))° and so p is continuous on Q;. By
Theorem 2.2, we can extend p to a continuous linear functional on Q. This shows that 7™ is onto
(N x N)°. We will now prove that 7™ is an open mapping. We show that there exists 5 > 0 such
that BU° C (T™ x T*)(WV") Since 1" is open, there is 5 > 0 such that SW C (T' x T')(U). Thus
BT xT)(U))° € W°. By Lemma 2.3 (1), T*~1(U°) = ((T'x T)(U))°. Hence BT*~1(U°) C W°.
Then ST*(T*1(U®)) C T*(W®). Since T* is surjective, SU° C T*(W°) and so BU° C T*(W°).
By Lemma 2.2, we have SU° C (T* x T*)(W®). Thus T* is open. Now we show that T* is
continuous. We prove that there exists v > 0 such that (77 x T*)(WJO) C ~U°. Since T is
continuous, there exists v > 0 such that (7" x T')(U) C yW. Hence W° C ~((T x T)(U))°. By
Lemma 2.3 (1), W° C ~T*~}(U®). Thus T*(W°) C 4U°. Therefore, by Lemma 2.2,

—~—

(T* x T*)(W°) € T*(W°) C yU°.
Hence T™ is continuous.
(1) If T is one-to-one, then N = {0}, so (/N x N)° is the whole of P*.
(2) If T maps onto Q, then by Lemma 2.1, T™* is one-to-one. Since it is also open and continu-
ous, it is an isomorphism of Q* onto (N x N)°.
(3) The result follows from (1) and (2).

Theorem 2.3 is proved.
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The above theorem holds for a normed space without condition (2.2) (see, for example, [3],
11.24.4). In the following example (similar to Example 2.2 of [7]) we show that if condition (2.2)
does not hold, then the functional p is not necessarily well defined, i.e., the mapping 7™ is not
necessarily onto (N x N)°.

Example2.1. Let P = {(z,y) € ﬁzm, y > 0}, endowed with the convex quasiuniform structure

—_—~—

U={a(l,1): o> 0}, where

—

1,1) = {((a,b), (e,d)) €% xR : (a,b) < (c,d) + (1, 1)}

(the order in R is coordinatewise) and let the subcone Q) = Ry = [0,+00] of Q = R, endowed
with the convex quasiuniform structure V = {€: ¢ > 0}, where

éz{(a,b)eﬁi:agb—i—s}.

Let T be the linear mapping from P onto Q; defined by T'(x,y) = = + y. Then we have N =
= ker(T) = {(0,0)}. The mapping T: (P,4) — (Qi1,V) is open and continuous. Let f be the
linear functional on P defined by f(z,y) = x. This functional is continuous and is an element of
(N x N)°. But there exists no z in QF such that zoT = f on Q. Indeed, the dual cone of (Q1,V)
is the positive reals together with 0 which maps all @ € R to 0 and +oco to +oco and any of this
functional does not satisfy in the relation u o T" = f. We note that condition (2.2) does not hold for
this 7', for example, 7°(0,1) = 7'(1,0), but (0,1) + N # (1,0) + N.

Remark2.1. For topological vector spaces, an operator 1" is one-to-one if and only if ker(7") =
= {0}, but in locally convex cones, this is not true. In locally convex cones if 7" is one-to-one, then
ker(7') = {0}, but the converse is not true. For instance, in the Example 2.1 we have ker(7") =
= {(0,0)}, however, T is not one-to-one.
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