Lei Qiao (School Math. and Inform. Sci., Henan Univ. Economics and Law, Zhengzhou, China)

DIRICHLET PROBLEMS FOR HARMONIC FUNCTIONS IN HALF SPACES* ЗАДАЧІ ДІРІХЛЕ ДЛЯ ГАРМОНІЧНИХ ФУНКЦІЙ У НАПІВПРОСТОРАХ

In the paper, we prove that if the positive part $u^+(x)$ of a harmonic function u(x) in a half space satisfies a condition of slow growth, then its negative part $u^-(x)$ can also be dominated by a similar condition of growth. Moreover, we give an integral representation of the function u(x). Further, a solution of the Dirichlet problem in the half space for a rapidly growing continuous boundary function is constructed by using the generalized Poisson integral with this boundary function.

Доведено, що у випадку, коли додатна частина $u^+(x)$ гармонічної функції u(x) у напівпросторі задовольняє умову повільного зростання, її від'ємна частина $u^-(x)$ також може бути домінована подібною умовою зростання. Крім того, наведено інтегральне зображення для функції u(x). Більш того, розв'язок задачі Діріхле в напівпросторі для швидко зростаючої неперервної граничної функції побудовано за допомогою узагальненого інтеграла Пуассона з цією граничною функцією.

1. Introduction and results. Let \mathbf{R} and \mathbf{R}_+ be the sets of all real numbers and of all positive real numbers, respectively. Let \mathbf{R}^n , $n \geq 3$, denote the n-dimensional Euclidean space with points $x = (x', x_n)$, where $x' = (x_1, x_2, \dots, x_{n-1}) \in \mathbf{R}^{n-1}$ and $x_n \in \mathbf{R}$. The boundary and closure of an open set D of \mathbf{R}^n are denoted by ∂D and \overline{D} respectively. The upper half space is the set $H = \{(x', x_n) \in \mathbf{R}^n : x_n > 0\}$, whose boundary is ∂H .

For a set $E, E \subset \mathbf{R}_+ \cup \{0\}$, we denote $\{x \in H : |x| \in E\}$ and $\{x \in \partial H : |x| \in E\}$ by HE and ∂HE , respectively. We identify \mathbf{R}^n with $\mathbf{R}^{n-1} \times \mathbf{R}$ and \mathbf{R}^{n-1} with $\mathbf{R}^{n-1} \times \{0\}$, writing typical points $x, y \in \mathbf{R}^n$ as $x = (x', x_n), y = (y', y_n)$, where $y' = (y_1, y_2, \dots, y_{n-1}) \in \mathbf{R}^{n-1}$ and putting

$$x \cdot y = \sum_{j=1}^{n} x_j y_j = x' \cdot y' + x_n y_n, \qquad |x| = \sqrt{x \cdot x}, \qquad |x'| = \sqrt{x' \cdot x'}.$$

Let $B_n(r)$ denote the open ball with center at the origin and radius r(>0) in \mathbf{R}^n . We use the standard notations $u^+ = \max\{u,0\}$, $u^- = -\min\{u,0\}$ and [d] is the integer part of the positive real number d. In the sense of Lebesgue measure $dy' = dy_1 \dots dy_{n-1}$ and $dy = dy'dy_n$. Let σ denote (n-1)-dimensional surface area measure and $\partial/\partial n$ denote differentiation along the inward normal into H. For positive functions h_1 and h_2 , we say that $h_1 \lesssim h_2$ if $h_1 \leq dh_2$ for some positive constant d.

Given a continuous function f on ∂H , we say that h is a solution of the (classical) Dirichlet problem on H with f, if $\Delta h = 0$ in H and $\lim_{x \in H, x \to z'} h(x) = f(z')$ for every $z' \in \partial H$.

The classical Poisson kernel for H is defined by

$$P(x, y') = \frac{2x_n}{\omega_n |x - y'|^n},$$

where $\omega_n = 2\pi^{n/2}/\Gamma(n/2)$ is the area of the unit sphere in \mathbf{R}^n .

To solve the Dirichlet problem on H, as in [3, 4, 8, 11], we use the following modified Poisson kernel of order m defined by

^{*} This work was supported by the National Natural Science Foundation of China (Grant No. 11301140 and U1304102).

$$P_m(x,y') = \begin{cases} P(x,y') & \text{when } |y'| \le 1, \\ P(x,y') - \sum_{k=0}^{m-1} \frac{2x_n|x|^k}{\omega_n|y'|^{n+k}} C_k^{n/2} \left(\frac{x \cdot y'}{|x||y'|}\right) & \text{when } |y'| > 1, \end{cases}$$

where m is a nonnegative integer, $C_k^{n/2}(t)$ is the ultraspherical (Gegenbauer) polynomials [10]. The expression arises from the generating function for Gegenbauer polynomials

$$(1 - 2tr + r^2)^{-n/2} = \sum_{k=0}^{\infty} C_k^{n/2}(t)r^k,$$

where |r| < 1 and $|t| \le 1$. The coefficient $C_k^{n/2}(t)$ is called the ultraspherical (Gegenbauer) polynomial of degree k associated with n/2, the function $C_k^{n/2}(t)$ is a polynomial of degree k in t.

Put

$$U(f)(x) = \int_{\partial H} P(x, y') f(y') dy'$$
 and $U_m(f)(x) = \int_{\partial H} P_m(x, y') f(y') dy',$

where f(y') is a continuous function on ∂H .

For any positive real number α , we denote by \mathcal{A}_{α} the space of all measurable functions f(y) on H satisfying

$$\int_{H} \frac{y_n |f(y)| dy}{1 + |y|^{\alpha + 2}} < \infty \tag{1.1}$$

and \mathcal{B}_{α} the set of all measurable functions g(y') on ∂H such that

$$\int_{\partial H} \frac{|g(y')|dy'}{1+|y'|^{\alpha}} < \infty. \tag{1.2}$$

We also denote by \mathcal{C}_{α} the set of all continuous functions u(x) on \overline{H} , harmonic on H with $u^+(y) \in \mathcal{A}_{\alpha}$ and $u^+(y') \in \mathcal{B}_{\alpha}$.

Theorem A (see [1, 9]). If u(x) > 0 and $u \in C_n$, then there exists a positive constant d_1 such that $u(x) = d_1x_n + U(u)(x)$ for all $x \in H$.

Using the modified Poisson kernel $P_m(x, y')$, H. Yoshida (cf. [11], Theorem 1) and Siegel – Talvila (cf. [8], Corollary 2.1) obtained classical solutions of the Dirichlet problem on H respectively.

Theorem B. If $f \in \mathcal{B}_{n+m}$, then $U_m(f)(x)$ is a solution of the Dirichlet problem on H with f satisfying

$$\lim_{|x| \to \infty, x \in H} |x|^{-m-1} U_m(f)(x) = 0.$$

Motivated by Theorems A and B, we first prove the following theorem.

Theorem 1. If $\alpha \geq n$ and $u \in \mathcal{C}_{\alpha}$, then $u \in \mathcal{B}_{\alpha}$.

Then we concerned with the growth property of $U_m(f)(x)$ at infinity on H. In the half plane, this result for $\alpha = 2$ was obtained by Pan – Deng ([7], Theorem 1.1 and Remark 1.1).

Theorem 2. If $\alpha - n \le m < \alpha - n + 1$ and $f \in \mathcal{C}_{\alpha}$, then $U_m(f)(x)$ is a solution of the Dirichlet problem on H with f satisfying

$$\lim_{|x| \to \infty, x \in H} x_n^{n-1} |x|^{-\alpha} U_m(f)(x) = 0.$$
(1.3)

Then we are concerned with Dirichlet problems for harmonic functions of infinite order on H (see [5] (Definition 4.1) for the definition of the order). For this purpose, we define a nondecreasing and continuously differentiable function $\rho(R) \geq 1$ on the interval $[0, +\infty)$. We assume further that

$$\varepsilon_0 = \limsup_{R \to \infty} \frac{\rho'(R)R \ln R}{\rho(R)} < 1. \tag{1.4}$$

Let $\mathcal{D}(\rho,\beta)$ be the set of continuous functions f on ∂H such that

$$\int_{\partial H} \frac{|f(y')|dy'}{1 + |y'|^{\rho(|y'|) + n + \beta - 1}} < \infty,\tag{1.5}$$

where β is a positive real number.

Now we have the following theorem.

Theorem 3. If $f \in \mathcal{D}(\rho, \beta)$, then the integral $U_{[\rho(|y'|)+\beta]}(f)(x)$ is a solution of the Dirichlet problem on H with f.

Theorem B follows from Theorem 3 (the case $[\rho(|y'|) + \beta] = m$), Theorems 1 and 2 (the case $\alpha = n + m$).

About integral representations for harmonic functions of finite order on H, we have the following result.

Corollary 1. Let $u \in \mathcal{C}_{\alpha}$, $\alpha \geq n$, and let m be an integer such that $n + m < \alpha \leq n + m + 1$.

- (I) If $\alpha = n$, then U(u)(x) is a harmonic function on H and can be continuously extended to \overline{H} such that u(x') = U(u)(x') for $x' \in \partial H$. There exists a constant d_2 such that $u(x) = d_2x_n + U(u)(x)$ for all $x \in H$.
- (II) If $\alpha > n$, then $U_m(u)(x)$ is a harmonic function on H and can be continuously extended to \overline{H} such that $u(x') = U_m(u)(x')$ for $x' \in \partial H$. There exists a harmonic polynomial $Q_m(u)(x)$ of degree at most m-1 which vanishes on ∂H such that $u(x) = U_m(u)(x) + Q_m(u)(x)$ for all $x \in H$.

Finally, we have the following theorem.

Theorem 4. Let u be harmonic in H and continuous on \overline{H} . If $u \in \mathcal{D}(\rho, \beta)$, then we have

$$u(x) = U_{[\rho(|y'|)+\beta]}(u)(x) + \Pi(x)$$

for all $x \in \overline{H}$, where $\Pi(x)$ is harmonic on H and vanishes continuously on ∂H .

2. Lemmas. The Carleman's formula refers to holomorphic functions in a half space, which is due to T. Carleman (see [2]). Recently, Y. H. Zhang, G. T. Deng and K. Kou (see [12], Lemma 1) generalized it to harmonic functions on H, which plays an important role in our discussions.

Lemma 1. If R > 1 and u(y) is a harmonic function on H with continuous boundary on ∂H , then we have

$$m_{-}(R) + \int_{\partial H(1,R)} u^{-}(y') \left(\frac{1}{|y'|^n} - \frac{1}{R^n}\right) dy' =$$

$$= m_{+}(R) + \int_{\partial H(1,R)} u^{+}(y') \left(\frac{1}{|y'|^{n}} - \frac{1}{R^{n}} \right) dy' - d_{3} - \frac{d_{4}}{R^{n}},$$

where

$$m_{\pm}(R) = \int_{\{y \in H : |y| = R\}} u^{\pm}(y) \frac{ny_n}{R^{n+1}} d\sigma(y),$$

$$d_3 = \int_{\{y \in H : |y|=1\}} \left((n-1)y_n u(y) + y_n \frac{\partial u(y)}{\partial n} \right) d\sigma(y),$$

and

$$d_4 = \int_{\{y \in H : |y|=1\}} \left(y_n u(y) - y_n \frac{\partial u(y)}{\partial n} \right) d\sigma(y).$$

Lemma 2 (see [5], Lemma 4.2).

$$|P_m(x,y')| \lesssim x_n |x|^{m-1} |y'|^{-n-m+1}$$
 (2.1)

for any $y' \in \partial H[1, |x|/2)$,

$$|P_m(x,y')| \lesssim x_n^{1-n} \tag{2.2}$$

for any $y' \in \partial H[|x|/2, 2|x|)$,

$$|P_m(x,y')| \lesssim x_n |x|^m |y'|^{-n-m}$$
 (2.3)

for any $y' \in \partial H[1,\infty) \cap \partial H[2|x|,\infty)$.

Lemma 3 (see [6], Theorem 10). Let h(x) be a harmonic function on H such that h(x) vanishes continuously on ∂H . If

$$\lim_{|x| \to \infty, x \in H} |x|^{-m-1} h^{+}(x) = 0,$$

then $h(x) = Q_m(h)(x)$ on H, where $Q_m(h)$ is a polynomial of $(x', x_n) \in \mathbf{R}^n$ of degree less than m and odd with respect to the variable x_n .

3. Proof of Theorem 1. We distinguish the following two cases.

Case 1. $\alpha = n$.

If R > 2, Lemma 1 gives

$$m_{-}(R) + \left(1 - \frac{1}{2^n}\right) \int_{\partial H(1,R/2)} \frac{u^{-}(y')}{|y'|^n} dy' \le$$

$$\leq m_{-}(R) + \int_{\partial H(1,R)} u^{-}(y') \left(\frac{1}{|y'|^n} - \frac{1}{R^n}\right) dy' \leq$$

$$\leq m_{+}(R) + \int_{\partial H(1,R)} \frac{u^{+}(y')}{|y'|^{n}} dy' + |d_{3}| + |d_{4}|. \tag{3.1}$$

Since $u \in \mathcal{C}_n$, we obtain

$$\frac{1}{n} \int_{1}^{\infty} \frac{m_{+}(R)}{R} dR = \int_{H(1,\infty)} \frac{y_{n}u^{+}(y)}{|y|^{n+2}} dy \lesssim \int_{H} \frac{y_{n}u^{+}(y)}{1 + |y|^{n+2}} dy < \infty$$

from (1.1) and hence

$$\lim_{R \to \infty} \inf m_+(R) = 0, \tag{3.2}$$

where $m_{+}(R)$ is defined in Lemma 1.

Then from (1.2), (3.1) and (3.2) we have

$$\liminf_{R \to \infty} \int_{\partial H(1,R/2)} \frac{u^{-}(y')}{|y'|^n} dy' < \infty,$$

which gives

$$\int_{\partial H} \frac{u^{-}(y')}{1 + |y'|^n} dy' < \infty.$$

Thus $u \in \mathcal{B}_n$ from $|u| = u^+ + u^-$.

Case 2. $\alpha > n$.

Since $u \in \mathcal{C}_{\alpha}$, we see from (1.1) that

$$\frac{1}{n} \int_{1}^{\infty} \frac{m_{+}(R)}{R^{\alpha - n + 1}} dR = \int_{H(1, \infty)} \frac{y_{n} u^{+}(y)}{|y|^{\alpha + 2}} dy \lesssim \int_{H} \frac{y_{n} u^{+}(y)}{1 + |y|^{\alpha + 2}} dy < \infty$$
(3.3)

and see from (1.2) that

$$\int_{1}^{\infty} \frac{1}{R^{\alpha - n + 1}} \int_{\partial H(1,R)} u^{+}(y') \left(\frac{1}{|y'|^{n}} - \frac{1}{R^{n}}\right) dy' dR =$$

$$= \int_{\partial H(1,\infty)} u^{+}(y') \int_{|y'|}^{\infty} \frac{1}{R^{\alpha - n + 1}} \left(\frac{1}{|y'|^{n}} - \frac{1}{R^{n}}\right) dR dy' \lesssim$$

$$\lesssim \frac{n}{(\alpha - n)\alpha} \int_{\partial H(1,\infty)} \frac{u^{+}(y')}{|y'|^{\alpha}} dy' < \infty. \tag{3.4}$$

We have from (3.3), (3.4) and Lemma 1

$$\int_{\partial H(1,\infty)} u^{-}(y') \int_{|y'|}^{\infty} \frac{1}{R^{\alpha-n+1}} \left(\frac{1}{|y'|^n} - \frac{1}{R^n} \right) dR dy' \le$$

$$\le \int_{1}^{\infty} \frac{m_{+}(R)}{R^{\alpha-n+1}} dR - \int_{1}^{\infty} \frac{1}{R^{\alpha-n+1}} \left(d_3 + \frac{d_4}{R^n} \right) dR +$$

$$+ \int_{1}^{\infty} \frac{1}{R^{\alpha-n+1}} \int_{\partial H(1,R)} u^{+}(y') \left(\frac{1}{|y'|^n} - \frac{1}{R^n} \right) dy' dR < \infty.$$

Set

$$I(\alpha) = \lim_{|y'| \to \infty} |y'|^{\alpha} \int_{|y'|}^{\infty} \frac{1}{R^{\alpha - n + 1}} \left(\frac{1}{|y'|^n} - \frac{1}{R^n} \right) dR.$$

We get

$$I(\alpha) = \frac{n}{\alpha(\alpha - n)}$$

from the L'hospital's rule and hence we have

$$\int\limits_{|y'|}^{\infty} \frac{1}{R^{\alpha-n+1}} \left(\frac{1}{|y'|^n} - \frac{1}{R^n} \right) dR \gtrsim |y'|^{-\alpha}.$$

So

$$\int\limits_{\partial H[1,\infty)} \frac{u^-(y')}{|y'|^\alpha} dx' \lesssim \int\limits_{\partial H[1,\infty)} u^-(y') \int\limits_{|y'|}^\infty \frac{1}{R^{\alpha-n+1}} \left(\frac{1}{|y'|^n} - \frac{1}{R^n}\right) dR dy' < \infty.$$

Then $u \in \mathcal{B}_{\alpha}$ from $|u| = u^+ + u^-$.

Theorem 1 is proved.

4. Proof of Theorem 2. For any fixed $x \in H$, take a number R_1 satisfying $R_1 > \max\{1, 2|x|\}$, we have

$$\int_{\partial H(R_1,\infty)} |P_m(x,y')| |f(y')| dy' \lesssim$$

$$\lesssim x_n |x|^m \int_{\partial H(R_1,\infty)} |y'|^{-n-m} |f(y')| dy' \lesssim$$

$$\lesssim x_n |x|^{\alpha-n} \int_{\partial H(R_1,\infty)} |y'|^{-\alpha} |f(y')| dy' < \infty$$

from (2.3) and Theorem 1. Thus $U_m(f)(x)$ is finite for any $x \in H$. Since $P_m(x, y')$ is a harmonic function of $x \in H$ for any fixed $y' \in \partial H$. $U_m(f)(x)$ is also a harmonic function of $x \in H$.

To verify the boundary behavior of $U_m(f)(x)$. For any fixed boundary point $z' \in \partial H$, we can choose a number R_2 such that $R_2 > |z'| + 1$. Now we write

$$U_m(f)(x) = I_1(x) - I_2(x) + I_3(x),$$

where

$$I_1(x) = \int_{\partial H[0,R_2]} P(x,y') f(y') dy',$$

$$I_2(x) = \sum_{k=0}^{m-1} \frac{2x_n|x|^k}{\omega_n} \int_{\partial H(1,R_2]} \frac{1}{|y'|^{n+k}} C_k^{n/2} \left(\frac{x' \cdot y'}{|x||y'|}\right) f(y') dy',$$

and

$$I_3(x) = \int_{\partial H(R_2,\infty)} P_m(x,y') f(y') dy'.$$

Notice that $I_1(x)$ is the Poisson integral of $f(y')\chi_{B_{n-1}(R_2)}(y')$, where $\chi_{B_{n-1}(R_2)}$ is the characteristic function of the ball $B_{n-1}(R_2)$. So it tends to f(z') as $x \to z'$. Since $I_2(x)$ is a polynomial times x_n and $I_3(x) = O(x_n)$, both of them tend to zero as $x \to z'$. So the function $U_m(f)(x)$ can be continuously extended to \overline{H} such that $U_m(f)(z') = f(z')$ for any $z' \in \partial H$. Then $U_m(f)(x)$ is a solution of the Dirichlet problem on H with f.

For any $\epsilon > 0$, there exists $R_{\epsilon} > 2$ such that

$$\int_{\partial H[R_{\epsilon},\infty)} \frac{|f(y')|}{1+|y'|^{\alpha}} dy' < \epsilon \tag{4.1}$$

from Theorem 1. For any fixed $x \in H[2R_{\epsilon}, \infty)$, we write

$$U_m(f)(x) = \sum_{i=1}^{4} \int_{G_i} P_m(x, y') f(y') dy' = \sum_{i=1}^{4} V_i(x),$$

where $G_1 = \partial H[0,1)$, $G_2 = \partial H[1,|x|/2)$, $G_3 = \partial H[|x|/2,2|x|)$, and $G_4 = \partial H[2|x|,\infty)$. First note that

$$|V_1(x)| \lesssim x_n \left(\frac{|x|}{2}\right)^{-n} \int_{G_1} |f(y')| dy' \lesssim x_n |x|^{-n}.$$

$$\tag{4.2}$$

By (2.1) we have

$$|V_2(x)| \lesssim x_n |x|^{m-1} \int_{G_2} |y'|^{-n-m+1} |f(y')| dy' \lesssim x_n |x|^{\alpha-n} \int_{G_2} |y'|^{-\alpha} |f(y')| dy'. \tag{4.3}$$

Write

$$V_2(x) = V_{21}(x) + V_{22}(x),$$

where

$$V_{21}(x) = \int_{G_2 \cap B_{n-1}(R_{\epsilon})} P_m(x, y') f(y') dy'$$

and

$$U_{22}(x) = \int_{G_2 - B_{n-1}(R_{\epsilon})} P_m(x, y') f(y') dy'.$$

If $|x| > 2R_{\epsilon_1}$, then

$$|V_{21}(x)| \lesssim R_{\epsilon}^{\alpha - n - m + 1} x_n |x|^{m - 1}.$$

Moreover, by (4.1) and (4.3) we obtain

$$|V_{22}(x)| \lesssim \epsilon x_n |x|^{\alpha-n}$$
.

That is

$$|V_2(x)| \lesssim \epsilon x_n^{1-n} |x|^{\alpha}. \tag{4.4}$$

We also obtain the following estimates:

$$|V_3(x)| \lesssim \epsilon x_n^{1-n} |x|^{\alpha},\tag{4.5}$$

$$|V_4(x)| \lesssim x_n |x|^m \int_{G_4} |y'|^{-n-m} |f(y')| dy' \lesssim \epsilon x_n |x|^{\alpha - n}$$

$$\tag{4.6}$$

from (2.2), (2.3), and (4.1).

Combining (4.2) and (4.4)-(4.6), (1.3) holds.

Theorem 2 is proved.

5. Proof of Theorem 3. Take a number r satisfying $r > R_3$, where R_3 is a sufficiently large positive number. For any ϵ (0 < ϵ < 1 - ϵ ₀), by (1.4) we have

$$\rho(r) < \rho(e)(\ln r)^{(\epsilon_0 + \epsilon)},\tag{5.1}$$

which yields that there exists a positive constant M(r) dependentbonly on r such that

$$k^{-\frac{\beta}{2}} (2r)^{\rho(k+1)+\beta+1} \le M(r) \tag{5.2}$$

for any $k \ge k_r = [2r] + 1$.

For any $x \in H$ and $|x| \le r$, we obtain by (1.5), (2.3) and (5.2)

$$\sum_{k=k_r}^{\infty} \int_{H[k,k+1)} \frac{(2|x|)^{\left[\rho(|y'|)+\beta\right]+1}}{|y'|^{\left[\rho(|y'|)+\beta\right]+n}} |f(y')| dy' \lesssim$$

$$\lesssim \sum_{k=k_{r}}^{\infty} \int_{H[k,k+1)} \frac{(2r)^{\rho(k+1)+\beta+1}}{|y'|^{[\rho(|y'|)+\beta]-\rho(|y'|)-\frac{\beta}{2}+1}} \frac{|f(y')|}{|y'|^{\rho(|y'|)+n+\frac{\beta}{2}-1}} dy' \lesssim$$

$$\lesssim \sum_{k=k_{r}}^{\infty} k^{-\frac{\beta}{2}} (2r)^{\rho(k+1)+\beta+1} \int_{\partial H[k,k+1)} \frac{2|f(y')|}{1+|y'|^{\rho(|y'|)+n+\frac{\beta}{2}-1}} dy' \lesssim
\lesssim \sum_{k=k_{r}}^{\infty} M(r) \int_{\partial H[k,k+1)} \frac{|f(y')|}{1+|y'|^{\rho(|y'|)+n+\frac{\beta}{2}-1}} dy' \lesssim
\lesssim M(r) \int_{\partial H[k_{r},\infty)} \frac{|f(y')|}{1+|y'|^{\rho(|y'|)+n+\frac{\beta}{2}-1}} dy' < \infty.$$
(5.3)

Notice that

$$|U_{[\rho(|y'|)+\beta]}(f)(x)| \le W_1(x) + W_2(x) + W_3(x),$$

where

$$W_1(x) = \int_{\partial H[0,1]} \frac{2}{\omega_n x_n^{n-1}} |f(y')| dy',$$

$$W_2(x) = \int_{\partial H(1,k_r)} \frac{2^{[\rho(|y'|)+\beta]}}{\omega_n} \left(2^n + [\rho(|y'|) + \beta] C_{[\rho(|y'|)+\beta]-1}^{n/2}(1) \right) \times \frac{|x|^{[\rho(|y'|)+\beta]+n+1}}{x_n^{n-1} |y'|^{[\rho(|y'|)+\beta]+n-1}} |f(y')| dy',$$

and

$$W_3(x) = \int_{\partial H(k_r, \infty)} \frac{2^{[\rho(|y'|) + \beta] + n + 1} x_n x^{[\rho(|y'|) + \beta]}}{\omega_n |y'|^{[\rho(|y'|) + \beta] + n}} |f(y')| dy'.$$

By (1.5) we have

$$W_1(x) \lesssim x_n^{1-n} \int_{\partial H[0,1]} \frac{|f(y')|}{1 + |y'|^{\rho(|y'|) + n + \beta - 1}} dy' < \infty$$
 (5.4)

and

$$W_{2}(x) \leq \frac{2^{m_{r}}}{\omega_{n}} \left(2^{n} + m_{r} C_{m_{r}-1}^{n/2}(1) \right) \frac{r^{m_{r}+n-1}}{x_{n}^{n-1}} \int_{\partial H(1,k_{r}]} \frac{2|y'|^{\rho(|y'|)+\beta-[\rho(|y'|)+\beta]}|f(y')|}{1+|y'|^{\rho(|y'|)+n+\beta-1}} dy' \leq \frac{2^{m_{r}}}{\omega_{n}} \left(2^{n} + m_{r} C_{m_{r}-1}^{n/2}(1) \right) \frac{r^{m_{r}+n-1}}{x_{n}^{n-1}} 2k_{r} \int_{\partial H} \frac{|f(y')|}{1+|y'|^{\rho(|y'|)+n+\beta-1}} dy' < \infty, \tag{5.5}$$

where $m_r = [\rho(k_r) + \beta]$.

On the other hand we have, by (5.3), that

ISSN 1027-3190. Укр. мат. журн., 2014, т. 66, № 10

$$W_{3}(x) \leq \sum_{k=k_{r} \partial H[k,k+1)}^{\infty} \int \frac{2^{n}}{\omega_{n}} \frac{(2|x|)^{[\rho(|y'|)+\beta]+1}}{|y'|^{n+[\rho(|y'|)+\beta]}} |f(y')| dy' \lesssim$$

$$\lesssim M(r) \int \frac{|f(y')|}{1+|y'|^{\rho(|y'|)+n+\frac{\beta}{2}-1}} dy' < \infty. \tag{5.6}$$

Thus $U_{[\rho(|y'|)+\beta]}(f)(x)$ is finite for any $x \in H$ from (5.4), (5.5) and (5.6). Since $P_{[\rho(|y'|)+\beta]}(x,y')$ is a harmonic function of $x \in H$ for any fixed $y' \in \partial H$. $U_{[\rho(|y'|)+\beta]}(f)(x)$ is also a harmonic function of $x \in H$.

To verify the boundary behavior of $U_{[\rho(|y'|)+\beta]}(f)(x)$. For any fixed boundary point $z' \in \partial H$, we can choose a number R_4 such that $R_4 > 2$. Let $D_{R_4} = H \cap B_{n-1}(R_4)$ and $\chi_{B_{n-1}(R_4)}$ be the characteristic function of $B_{n-1}(R_4)$.

Set

$$S_{[\rho(|y'|+\beta)]}(x,y') = \sum_{k=0}^{[\rho(|y'|+\beta)]-1} \frac{2x_n|x|^k}{\omega_n} \frac{1}{|y'|^{n+k}} C_k^{n/2} \left(\frac{x' \cdot y'}{|x||y'|} \right).$$

Write

$$U_{[\rho(|y'|)+\beta]}(f)(x) = X(x) - Y(x) + Z(x),$$

where

$$X(x) = \int_{\partial H[0,2R_4]} P(x,y')f(y')dy',$$

$$Y(x) = \int\limits_{\partial H(1,2R_4]} S_{[\rho(|y'|+\beta)]}(x,y') f(y') dy', \quad \text{and} \quad Z(x) = \int\limits_{\partial H(2R_4,\infty)} P_{[\rho(|y'|+\beta)]}(x,y') f(y') dy'.$$

Note that $X(x)=\int_{\partial H}P(x,y')f(y')\chi_{B_{n-1}(R_4)}(y')dy'$, which tends to f(z') as $x\to z'$. Further, X(x) is harmonic on D_{R_4} and can be continuously extended to \overline{D}_{R_4} . Since $S_{[\rho(|y'|+\beta)]}(x,y')$ is a harmonic polynomial of x and tends to zero as $x\to z'$, Y(x) is also a harmonic polynomial of x and tends to zero as $x\to z'$.

From (1.5), we have Z(x) is a harmonic function on H. $P_{[\rho(|y'|+\beta)]}(x,y')=0$ implies that Z(z')=0, where $|z'|\leq R_4$.

Moreover, (5.1) also implies that there exists a positive constant $M(R_4)$ dependent only on R_4 such that

$$\frac{2^{n+1}}{\omega_n} \frac{(2R_4)^{\rho(k+1)+\beta}}{k^{\frac{\beta}{2}}} \le M(R_4) \tag{5.7}$$

for any $k \geq \lfloor 2R_4 \rfloor$.

Hence it follows from (1.5) and (5.2) that

$$|Z(x) - Z(z')| = |Z(x)| <$$

$$\leq \int_{\partial H(2R_{4},\infty)} |P_{[\rho(|y'|+\beta)]}(x,y')||f(y')|dy' \leq \\ \leq \int_{\partial H[[2R_{4}],\infty)} \frac{2^{n+1}}{\omega_{n}} \frac{x_{n}(2R_{4})^{[\rho(|y'|)+\beta]}}{|y'|^{[\rho(|y'|)+\beta]-\rho(|y'|)-\frac{\beta}{2}+1}} \frac{|f(y')|}{|y'|^{\rho(|y'|)+\frac{\beta}{2}+n-1}} dy' \leq \\ \leq \sum_{k=[2R_{4}]}^{\infty} \int_{\partial H[k,k+1)} \frac{2^{n+1}}{\omega_{n}} \frac{x_{n}(2R_{4})^{\rho(k+1)+\beta}}{k^{\frac{\beta}{2}}} \frac{2|f(y')|}{1+|y'|^{\rho(|y'|)+\frac{\beta}{2}+n-1}} dy' \lesssim \\ \lesssim x_{n} \sum_{k=[2R_{4}]}^{\infty} \int_{\partial H[k,k+1)} M(R_{4}) \frac{|f(y')|}{1+|y'|^{\rho(|y'|)+\frac{\beta}{2}+n-1}} dy' \lesssim \\ \lesssim x_{n} M(R_{4}) \int_{\partial H} \frac{|f(y')|}{1+|y'|^{\rho(|y'|)+\frac{\beta}{2}+n-1}} dy' \lesssim x_{n} M(R_{4}),$$

which tends to zero as $x \to z'$. Thus Z(x) is harmonic on D_{R_4} and can be continuously extended to \overline{D}_{R_4} .

From the arbitrariness of R_4 , we have that the function $U_{[\rho(|y'|)+\beta]}(f)(x)$ can be continuously extended to \overline{H} such that $U_{[\rho(|y'|)+\beta]}(f)(z')=f(z')$ for any $z'\in\partial H$.

Theorem 3 is proved.

6. Proof of Corollary 1. To prove (II). Consider the function $u(x) - U_m(u)(x)$. Then it follows from Theorem 2 that this is harmonic in H and vanishes continuously on ∂H . Since

$$0 \le (u(x) - U_m(u)(x))^+ \le u^+(x) + U_m(u)^-(x) \tag{6.1}$$

for any $x \in H$ and

$$\lim_{|x| \to \infty} \inf |x|^{-m-1} u^{+}(x) = 0 \tag{6.2}$$

from (1.1), for every $x \in H$ we have

$$u(x) = U_m(u)(x) + Q_m(u)(x)$$

from (1.3), (6.1), (6.2) and Lemma 3, where $Q_m(u)$ is a polynomial in \mathbb{R}^n of degree at most m-1 and odd with respect to the variable x_n . From these we evidently obtain Corollary (II).

If $u \in \mathcal{C}_n$, then $u \in \mathcal{C}_\alpha$ for $\alpha > n$. Corollary (II) gives that there exists a constant d_5 such that

$$u(x) = d_5 x_n + U_1(u)(x).$$

Put

$$d_2 = d_5 - \frac{1}{w_n} \int_{\partial H[1,\infty)} \frac{f(y')}{|y'|^n} dy'.$$

It immediately follows that $u(x) = d_2x_n + U(u)(x)$ for every $x \in H$, which is the conclusion of Corollary (I).

Corollary 1 is proved.

7. Proof of Theorem 4. Consider the function $u(x) - U_{[\rho(|y'|)+\beta]}(u)(x)$, which is harmonic in H, can be continuously extended to \overline{H} and vanishes on ∂H .

The Schwarz Reflection Principle [1, p.68] applied to $u(x) - U_{[\rho(|y'|)+\beta]}(u)(x)$ shows that there exists a harmonic function $\Pi(x)$ on H such that $\Pi(x^*) = -\Pi(x) = U_{[\rho(|y'|)+\beta]}(u)(x) - u(x)$ for $x \in \overline{H}$, where * denotes reflection on ∂H just as $x^* = (x', -x_n)$.

Thus $u(x) = U_{[\rho(|y'|) + \beta]}(u)(x) + \Pi(x)$ for all $x \in \overline{H}$, where $\Pi(x)$ is a harmonic function on H vanishing continuously on ∂H .

Theorem 4 is proved.

- 1. Axler S., Bourdon P., Ramey W. Harmonic function theory. Second Ed. New York: Springer-Verlag, 1992.
- 2. *Carleman T.* Über die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen // Ark. mat., astron. och fys. 1923. 17. S. 1–30.
- 3. *Finkelstein M., Scheinberg S.* Kernels for solving problems of Dirichlet typer in a half-plane // Adv. Math. 1975. 18, № 1. P. 108 113.
- 4. *Gardiner S. J.* The Dirichlet and Neumann problems for harmonic functions in half-spaces // J. London Math. Soc. 1981. 24. P. 502 512.
- 5. Hayman W. K., Kennedy P. B. Subharmonic functions. London: Acad. Press, 1976. Vol. 1.
- 6. Kuran Ü. Study of superharmonic functions in $\mathbb{R}^n \times (0, \infty)$ by a passage to \mathbb{R}^{n+3} // Proc. London Math. Soc. 1970. 20. P. 276–302.
- 7. Pan G. S., Deng G. T. Growth estimates for a class of subharmonic functions in the half plane // Acta Math. Sci. Ser. A. Chin. Ed. 2011. 31. P. 892 901.
- 8. Siegel D., Talvila E. Sharp growth estimates for modified Poisson integrals in a half space // Potential Anal. 2001. 15. P. 333 360.
- 9. Stein E. M. Harmonic analysis. Princeton, New Jersey: Princeton Univ. Press, 1993.
- 10. Szegö G. Orthogonal polynomials // Amer. Math. Soc. Colloq. Publ. 1975. 23.
- 11. Yoshida H. A type of uniqueness of the Dirichlet problem on a half-space with continuous data // Pacif. J. Math. 1996. 172. P. 591–609.
- 12. Zhang Y. H., Deng G. T., Kou K. On the lower bound for a class of harmonic functions in the half space // Acta Math. Sci. Ser. B. Engl. Ed. 2012. 32, № 4. P. 1487–1494.

Received 12.10.12, after revision -19.09.13