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DIRICHLET PROBLEMS FOR HARMONIC FUNCTIONS IN HALF SPACES *
3AJTAUI JIPIXJIE JIJISI TAPMOHIYHUX ®YHKIIIA Y HAIIIBITIPOCTOPAX

In the paper, we prove that if the positive part v (x) of a harmonic function u(z) in a half space satisfies a condition of
slow growth, then its negative part u™~ (x) can also be dominated by a similar condition of growth. Moreover, we give
an integral representation of the function u(x). Further, a solution of the Dirichlet problem in the half space for a rapidly
growing continuous boundary function is constructed by using the generalized Poisson integral with this boundary function.

JloBeneHo, Mo y BUITAIKY, KOJH A0faTHA YacThHa v () TapMoHiuHOi (byHKIii u(x) y HABIPOCTOpi 3aI0BOTBHAE YMOBY
MOBLTBHOTO 3POCTaHHs, i BiZ’eéMHa YacTHHA 1~ (x) TAKOX MOKe OyTH JTOMIHOBaHA MOMIOHOK YMOBOIO 3pocTanHs. Kpim
TOTO, HaBEICHO iHTerpajbHe 300paxkeHns st GpyHKuii w(x). Bitsur Toro, po3s’si3ok 3amadi ipixie B HamiBIpOCTOPI ISt
IIBUJIKO 3POCTA0Y0] HemepepBHOI rpaHnuHOl (yHKIii moOyJ0BaHO 3a JOMOMOIOI0 y3araibHeHoro iHterpana [lyaccoHa 3
LI€F0 TPAHUYHOIO (DYHKITIEIO.

1. Introduction and results. Let R and R be the sets of all real numbers and of all positive
real numbers, respectively. Let R”, n > 3, denote the n-dimensional Euclidean space with points
r = (2/,2,), where 2’ = (v1,22,...,7,_1) € R" ! and z,, € R. The boundary and closure
of an open set D of R™ are denoted by D and D respectively. The upper half space is the set
H = {(«',2,) € R": x, > 0}, whose boundary is 0 H.

Foraset E, E C RL U{0}, we denote {x € H: |z| € E} and {x € 0H : || € E} by HE and
OHE, respectively. We identify R™ with R"~! x R and R"~! with R"~! x {0}, writing typical
points z,y € R" as ¢ = (2/,2,,), y = (v/, yn), where v/ = (y1,¥2,...,yn_1) € R"! and putting

n
voy=wy =yt aaye el =vaw, |2 =V a
j=1

Let By, (r) denote the open ball with center at the origin and radius (> 0) in R™. We use the
standard notations u* = max{u,0}, v~ = —min{u,0} and [d] is the integer part of the positive
real number d. In the sense of Lebesgue measure dy’ = dy;...dy,—1 and dy = dy'dy,. Let o
denote (n — 1)-dimensional surface area measure and d/9n denote differentiation along the inward
normal into H. For positive functions h; and ho, we say that hy < ho if h; < dhs for some positive
constant d.

Given a continuous function f on 0H, we say that h is a solution of the (classical) Dirichlet
problem on H with f, if Ah =0 in H and lim,ep, . h(z) = f(2') for every 2/ € OH.

The classical Poisson kernel for H is defined by

2z
P N1
(2,9) oz — "
where w,, = 27™/2/T'(n/2) is the area of the unit sphere in R™.
To solve the Dirichlet problem on H, as in [3, 4, 8, 11], we use the following modified Poisson

kernel of order m defined by
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P(z,y) when || <1,

Pm($ y/) = m—1 2x | k !
’ no_ - n l’| n/2 [ Y ’
Pey) =2 oy TR (xlly’|> when 1=

where m is a nonnegative integer, C,Z/ 2(t) is the ultraspherical (Gegenbauer) polynomials [10]. The

expression arises from the generating function for Gegenbauer polynomials

o
(1—2tr + 7272 =3 P (1)t
k=0
where |r| < 1 and |t| < 1. The coefficient CZ/ 2 (t) is called the ultraspherical (Gegenbauer) polyno-
mial of degree k associated with n/2, the function CZ/ 2(t) is a polynomial of degree & in ¢.
Put

U(f) (@) = / Pl ) f(W)dy  and  Un(f)(z) = / o) ()
OH

o0H

where f(y') is a continuous function on OH.
For any positive real number o, we denote by A, the space of all measurable functions f(y) on
H satistying

ynlf(y)|dy
/1+!y|0‘+2 = (D
H

and B, the set of all measurable functions g(y') on 9H such that

l9(y')|dy'
Tr (1.2)
H

We also denote by C,, the set of all continuous functions u(z) on H, harmonic on H with u™(y) € A,
and u™ (y') € B,.

Theorem A (see [1, 9]). If u(z) > 0 and u € Cy, then there exists a positive constant dy such
that w(z) = dix, + U(u)(x) for all x € H.

Using the modified Poisson kernel Py, (x, ), H. Yoshida (cf. [11], Theorem 1) and Siegel - Talvila
(cf. [8], Corollary 2.1) obtained classical solutions of the Dirichlet problem on H respectively.

Theorem B. [f f € By, then Uy (f)(x) is a solution of the Dirichlet problem on H with f
satisfying

lim  |z|"™U(f)(x) = 0.

|x| =00, zeH

Motivated by Theorems A and B, we first prove the following theorem.
Theorem 1. [f a > n and u € Cq, then u € B,.

Then we concerned with the growth property of U,,,(f)(x) at infinity on H. In the half plane, this
result for « = 2 was obtained by Pan—Deng ([7], Theorem 1.1 and Remark 1.1).

ISSN 1027-3190.  Yxp. mam. ocypu., 2014, m. 66, Ne 10



DIRICHLET PROBLEMS FOR HARMONIC FUNCTIONS IN HALF SPACES 1369

Theorem 2. I[fa—n<m < a—-n+1land f € Cqy, then Uy, (f)(x) is a solution of the Dirichlet
problem on H with f satisfying

lim 2" Y| *Un(f)(z) = 0. (1.3)
|z| =00, x€H
Then we are concerned with Dirichlet problems for harmonic functions of infinite order on H
(see [5] (Definition 4.1) for the definition of the order). For this purpose, we define a nondecreasing
and continuously differentiable function p(R) > 1 on the interval [0, +00). We assume further that

/
1
co = limsup LB E

e R b .

Let D(p, B) be the set of continuous functions f on H such that

/ [/ (@)ldy’

1+ |y |PUy'D+n+6-1
H

< 00, (1.5)

where [ is a positive real number.

Now we have the following theorem.

Theorem 3. If f € D(p,B), then the integral U, 15 (f)(x) is a solution of the Dirichlet
problem on H with f.

Theorem B follows from Theorem 3 (the case [p(|y'|) + 5] = m), Theorems 1 and 2 (the case
a=n+m).

About integral representations for harmonic functions of finite order on H, we have the following
result.

Corollary 1. Let u € C,, o > n, and let m be an integer such thatn +m < o <n+m+ 1.

(D) If a = n, then U(u)(x) is a harmonic function on H and can be continuously extended to H
such that u(x') = U (u)(2') for &' € OH. There exists a constant dg such that u(x) = dox, +U (u)(x)
forall x € H.

(1) If a > n, then Up,(u)(x) is a harmonic function on H and can be continuously extended
to H such that u(x') = Up,(u)(2') for ' € OH. There exists a harmonic polynomial Q,(u)(x) of
degree at most m — 1 which vanishes on OH such that u(z) = Uy, (u)(x) + Qm(u)(x) for all z € H.

Finally, we have the following theorem.

Theorem 4. Let u be harmonic in H and continuous on H. If u € D(p, 3), then we have

w(@) = Up(ly )+ (w) (2) + ()

for all x € H, where T1(x) is harmonic on H and vanishes continuously on OH.

2. Lemmas. The Carleman’s formula refers to holomorphic functions in a half space, which is
due to T. Carleman (see [2]). Recently, Y. H. Zhang, G. T. Deng and K. Kou (see [12], Lemma 1)
generalized it to harmonic functions on H, which plays an important role in our discussions.
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Lemma 1. If R > 1 and u(y) is a harmonic function on H with continuous boundary on OH,

then we have
1 1
m_(R) + / u (y <—>dy':
(R) ) (7~ 7

9H(1,R)
1 1 dy
_ N P G4
OH(1,R)
where
nYn
me®) = [ o),
{yeH : |y|=R}
ou
a= [ (=) + 05 dotw),
{yeH : |y|=1}
and duly)
_ _Ouly
= [ (- 0752 ot
{yeH : |y|=1}
Lemma 2 (see [5], Lemma 4.2).
[P, 4| S @l Hy/ |7 2.1)
Jorany y' € OH|1,|x|/2),
[P,y S " (22)
for any y' € OH[|z|/2,2|z]),
[P (, 9] S anlz|™ /7" (2.3)

for any y' € OH[1,00) N OH 2|z|, 00).
Lemma 3 (see [6], Theorem 10). Let h(x) be a harmonic function on H such that h(x) vanishes
continuously on OH. If
lim  |z|"™ AT (z) =0,
|z| =00, x€H
then h(x) = Qum(h)(x) on H, where Q,(h) is a polynomial of (2', x,) € R™ of degree less than m
and odd with respect to the variable x,,.

3. Proof of Theorem 1. We distinguish the following two cases.
Casel. a=n.
If R > 2, Lemma 1 gives

m_(R)+<1—1> / u‘(y/)dy’<

/|n
OH(1,R/2) |
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_ 1 1
<om+ [ w ) (- ) ' <
OH(1,R)
ut(y
<my(R)+ y,(’?i)dy’ + |ds| + |d4].
oH(1,R)

Since u € C,,, we obtain

1 [meR) / yot(y) / gt ()
n/ R dR = |2 dy S dy < o0
1 H(1,00)

from (1.1) and hence

liminf my (R) = 0,

R—o0

where m (R) is defined in Lemma 1.
Then from (1.2), (3.1) and (3.2) we have

— (o
liminf / vy )dy/ < 00,

R—oo ‘y/|n
OH(1,R/2)
which gives
— /
L+ [y
OH

Thus u € B, from |u| = ut +u™.
Case2. a>n.
Since u € C,, we see from (1.1) that

L[ maB) [yt ) " (9)
; Ra—n+1 dR = / Wdy S 7(1@/ < 00

1 H(1,00)

and see from (1.2) that

[e.9]

1 1 1

1 OH(1,R)

o0

1 1 1
= Ty — [ —— — — ) dRdy <
/ u (y)/RanJrl <|y/|n Rn> vy =
9H(1,00) v/

+ (o
an / L) /(y)dy’<oo
(@ —n)a |y’ |
9H(1,00)
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We have from (3.3), (3.4) and Lemma 1

o
1 1
(v — | dRdy' <
/ U (y>/Ra—n+1 (’y/|n Rn) Y
OH(1,00) ly/]
7 m+(R) 1 dy
— R n+1 R— Ro n+1 d3+ﬁ dR+
1 1
7 1 + / 1 1 /
+/Ran+1 / u (y)(’y/|n—m>dydR<oo
1 8H(1,R)
Set -
1 1 1
I = 1 e —— — — | dR.
(05) |y’\1§oo|y| /Ra—n—i—l <|y/‘n Rn)
ly'|
We get
n
I =
(@) ala—mn)

from the L’hospital’s rule and hence we have
I 11
/| —
/ Ro—n+1 <‘yl‘n - Rn) dR Z [y
ly']

So

e}

ui(y/) / / — / 1 1 1 /
dx’ < —— | —— — — | dRd .
/ |y/|a TS u (y ) Rafnqtl ‘y/|n Rn Y < %0

OH|[1,00) OH|[1,00) ly']

Then u € B, from |u| = ut +u~.

Theorem 1 is proved.

4. Proof of Theorem 2. For any fixed € H, take a number R; satisfying Ry > max{1, 2|z|},
we have

/ Pz ) W)ldY <

OH(R1,00)

< el / W)y S
OH (R1,00)

< w2 / 1) dy < oo
OH (R1,00)
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from (2.3) and Theorem 1. Thus U,,(f)(x) is finite for any x € H. Since P,,(x,y’) is a harmonic
function of « € H for any fixed v/ € OH. Uy, (f)(x) is also a harmonic function of x € H.

To verify the boundary behavior of U,,(f)(x). For any fixed boundary point 2’ € OH, we can
choose a number Ry such that Ry > |2/| + 1. Now we write

Un(f)(z) = hi(z) — I2(z) + I3(2),

where
ha) = [ Pad)iw)ay.
SH[0,Ro)
m— QZ'n‘.Z"k / 1 n/2 (x/_y/> , ,
C dy',
D=2, e \Jafly] ) T %
- OH(1,R2]
and
/ Po(z, ) f(y)dy'.
RQ:

Notice that [;(x) is the Poisson integral of f(y )XB,_1(R2)(¥), Where X, | (r,) is the charac-
teristic function of the ball B,,_1(R2). So it tends to f(2’) as  — 2. Since Iz(x) is a polynomial
times x,, and I3(z) = O(xy), both of them tend to zero as  — z’. So the function Uy, (f)(x) can
be continuously extended to H such that Uy, (f)(z') = f(2') for any 2’ € OH. Then U,,(f)(z) is a
solution of the Dirichlet problem on H with f.

For any € > 0, there exists R, > 2 such that

OO,
— 2 dy < 4.1
/ T y <e 4.1
OH[R.,00)

from Theorem 1. For any fixed z € H[2R,, c0), we write

4
Z/ (@, ) )y = Vi),
=1

zlG

where G; = 0H|[0,1), Go = 0H[1, |z|/2), Gs = 0H][|x|/2,2|z|), and G4 = OH 2|z, 00).
First note that

|v1<m>|,sxn('””') / £y S ez ™ 42)
By (2.1) we have
V@)l S el [ 1/ S alel [ Wl @
G2 G2

Write
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Va(x) = Var(z) + Vaa(x),
where
@ = [ Pule)f0)dy
G2 Br-1(Re)
and
Unle)= [ Pales)f0)dy.
Ga—Bn_1(Re)

If |z| > 2R,,, then
Var(2)] S R L™

Moreover, by (4.1) and (4.3) we obtain
[Vaa ()| S exnla[*.
That is
Va(@)] S eay "] (4.4)

We also obtain the following estimates:

Va(z)| < exp x|, (4.5)
Vi(z)] S wnlxlm/\y’!‘”‘mlf(y’)\dy’ S explz[*T (4.6)
Gy

from (2.2), (2.3), and (4.1).

Combining (4.2) and (4.4)—(4.6), (1.3) holds.

Theorem 2 is proved.

5. Proof of Theorem 3. Take a number r satisfying » > Rs, where Rj3 is a sufficiently large
positive number. For any € (0 < € < 1 — ¢), by (1.4) we have

p(r) < ple)(lnr)(ore), .1

which yields that there exists a positive constant M (r) dependentbonly on 7 such that

k% (2r)P kDAL < A () (5.2)

for any k > k, = [2r] + 1.
For any z € H and |z| < r, we obtain by (1.5), (2.3) and (5.2)

(2|z|)l p(ly'))+B]+1 ,
Z / e WOl S

k=kroH [k k+1)
p(k+1)+6+1 /
Z / [ +A—p(ly' - E+1 ‘f|(+>‘+ (WS
(| p(ly p(ly' ) +n+5—
=Fropiinsn) |V /|
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<y k5 (2r)P DB+ / 21yl iy <
= 1+ [y DFnt5-1
=kr OH[K,k+1)

< i M(r) / £ @) <

ey +n+5-1
k=kr OH[kk+1) L+ [y :

/
< M(r) W)l dy' < oco. (5.3)
~ 14 [y Py Dn+ 51

OH ky,00)

Notice that
[Ulp(y+8 () (@) < Wi(z) + Wa(z) + Ws(2),

where
2 / /
Wi = [ )y
WnTn
8H|0,1]
ole(ly'N+6] , n/2
Wale) = [ F5 (24 o) + IO (D) %
OH(1,kr]
‘x,[p(\y/l)+ﬂl+n+1 Nl
2y [le(y'D+B)+n—1 PGl
and [p(ly'[)+8] [p(ly'[)+8]
ole(ly' N+Bl+n+14  ple(ly'N+8 o
wiw = [ e W)l
OH (ky,00)
By (1.5) we have
/
< 1-n ’f(y)‘ /
Wi(z) < o, / 1+‘y/‘p(\y/|)+n+5_1dy < 00 5.4
dHI[0,1]
and
mr mytn—1 1100y N+B—1o(' N+B]| £(1/
n n/2 r 2y’ Sl
We(w) < Wn, (2 +mr0mrfl(1)> o1 / 1+ [y |y D+n+6-1 dy <
OH (1,k,]
m my4+n—1 /
" (on n/2 ' £l )
< (2 +mTC’mT71(1)) = 21:,,/ e <0 (5.5)
H

where m, = [p(k,) + S].
On the other hand we have, by (5.3), that
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© on (9| Ney'D+5]+1
W3($> < Z / ;n ( |L/|B+[P(|y/)+6] |f(y,)|dy/ 5
k=kromk,k+1)

/
§M(r)/ ’f(?{)‘ —dy < oo, (5.6)
A 1+ ‘y/’p(\y D+n+5-1

Thus Uy 4. () () is finite for any x € H from (5.4), (5.5) and (5.6). Since Py, (y/)+5) (%, ¥')
is a harmonic function of =z € H for any fixed 3 € OH. Upy( )+ (f)() is also a harmonic function
ofz € H.

To verify the boundary behavior of Uj,,|)+)(f)(z). For any fixed boundary point 2’ € OH,
we can choose a number Ry such that Ry > 2. Let Dg, = H N B, _1(R4) and xp,_,(r,) be the
characteristic function of B,_1(Ry).

Set
o1y +8))-1 A ,
2z, |z| 1 n/2 (a: -y )
St (1) = L enpp (29
e(ly' 1+ (2, Y) kzo wn |y [rtE R B
Write
Up(yp+a)(f)(2) = X(z) = Y(z) + Z(),
where
X = [ Pas)iway.
OH[0,2R4)
Y(x) = / Sipy 8@y ) fW)dy',  and  Z(x) = / Py 1+ (@, v') f () dy'.
OH(1,2R4] OH (2R4,00)

Note that X (z) = / P(x,y") f(¥')XB,_1(ry) (¥ )dy’, which tends to f(2) as x — z’. Further,
OH

X (x) is harmonic on D, and can be continuously extended to D, . Since Sj,(,\+g)(,y) is a
harmonic polynomial of z and tends to zero as x — 2/, Y (z) is also a harmonic polynomial of x and
tends to zero as x — 2.

From (1.5), we have Z(x) is a harmonic function on H. P, |4+sy(,y’) = 0 implies that
Z(2") = 0, where |2'| < Ry.

Moreover, (5.1) also implies that there exists a positive constant M (R4) dependent only on Ry
such that

on+1 (234)p(’f+1)+b’

o 2 < M(Ry) 6.7

for any k > [2Ry].
Hence it follows from (1.5) and (5.2) that

1Z(x) = Z(2)] = 12 (x)| <
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< [ Pl <

OH (2R4,00)
n+1 [e(ly')+8] /
S 20 @RV
Wn, |y/,[p(ly’|)+ﬂ}—p(\y’|)—5+1 |y/|p(\y’|)+5+n—1
OH|[[2R4],00)
o0 n+1 p(k+1)+8 /
s 241 an (2R A6
Wn, ks 14 Jy/|PUD+zHn—1

k=[2Raly gk k+1)

2 1+ |y |pPD+5+n-1 "~
k=[2Raly gk k+1)

/()]

1+ |y/‘p(|y’|)+§+n—1

S oM (Ry) / dy' <z, M(Ry),

oH

which tends to zero as  — 2’. Thus Z(x) is harmonic on Dp, and can be continuously extended
to ER4 .

From the arbitrariness of 124, we have that the function Uj,(,/|)16(f)(z) can be continuously
extended to H such that U,y )15 (f)(2') = f(2') for any 2’ € OH.

Theorem 3 is proved.

6. Proof of Corollary 1. To prove (II). Consider the function u(z) — Uy, (u)(x). Then it follows
from Theorem 2 that this is harmonic in H and vanishes continuously on dH. Since

0 < (u(z) = Un(u)(2))" < u'(2) + Un(u)~ (z) (6.1)
for any x € H and
l‘irln inf |z| "™ uT(2) = 0 (6.2)

from (1.1), for every x € H we have

w(z) = Un(u)(z) + Qm(u)(z)

from (1.3), (6.1), (6.2) and Lemma 3, where @, () is a polynomial in R™ of degree at most m — 1
and odd with respect to the variable x,,. From these we evidently obtain Corollary (II).
If u € C,,, then u € C, for a > n. Corollary (II) gives that there exists a constant d5 such that

uw(z) = dsxn + Ur(u)(x).

Put

1 /
dy = ds — — / (,yn) dy.
Wn Y|
OH[1,00)
It immediately follows that u(x) = dax,, + U(u)(x) for every x € H, which is the conclusion of
Corollary (I).

Corollary 1 is proved.
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7. Proof of Theorem 4. Consider the function u(x) — Upy(jy))+6)(¢)(x), which is harmonic in

H, can be continuously extended to H and vanishes on 0 H.

The Schwarz Reflection Principle [1, p.68] applied to u(x) — Uy, 45 (w)(z) shows that there

exists a harmonic function II(x) on H such that Tl(z*) = —Il(z) = U,(|y|)+s)(w)(z) — u(zx) for
x € H, where * denotes reflection on OH just as x* = (2/, —xy,).

Thus u(x) = Upy(jyp)+p(w)(x) + I(z) for all © € H, where II(x) is a harmonic function on H

vanishing continuously on 0H.

10.
11.

Theorem 4 is proved.
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