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THE MIXED BOUNDARY-VALUE PROBLEM FOR LINEAR
SECOND ORDER NONDIVERGENT PARABOLIC EQUATIONS
WITH DISCONTINUOUS COEFFICIENTS

MIIIAHA KPAHOBA 3ATAYA JIJISI JTTHIHHUX
BE3JIUBEPI'EHTHUX ITAPABOJIITYHUX PIBHAHD JAPYI'OI'O NIOPAAKY
3 PO3PUBHUMMU KOEDIINIEHTAMHU

The mixed boundary-value problem is considered for linear second order nondivergent parabolic equations with disconti-
nuous coefficients satisfying the Cordes conditions. The one-valued strong (almost everywhere) solvability of this problem
is proved in the space W', where p belongs to the same segment containing point 2.

PosrnsimaeTsest MimmaHa kpaifoBa 3amada A7l JiHIHHEX Oe3AMBEpreHTHUX NapaOoNiyHHUX PiBHSHB APYTOTro MOPSAKY 3 pO3-
PHUBHUMH KoedillieHTaMH, 110 3aJ0BOJILHAIOTE yMoBH Kopae. OnHO3Ha4HY CHilbHY (Maiike CKpi3b) po3B’sI3HICTS L€l 3aqadi
JIOBEICHO Y TPOCTOPi Wg’l, IIe p HAJIEXHUTh TOMY K BiIpPi3Ky, IO MICTHTh TOUYKY 2.

1. Introduction. Let E, and R,;; be n and (n + 1)-dimensional Euclidean spaces of points
x = (x1,x2,...,2y) and (t,x) = (t,21, 2, ..., 2,), respectively, let  C E,, be a bounded domain
with boundary 09 € C?, let Bﬁo be an n-dimensional open sphere of radius R with center at
the point 29 = (29,29,...,29), Qf_—io x (0,T) = QL Qr = {(t,2)0 < t < T < o0,z € 0},
Sr={(t,z)|0 <t <T < oo,z € dN}, and let A(QL) be the set of all functions u(t,z) from
C°°(Q%) with support in Bgo x [0,T], p < R, for which «(0,z) = 0.

In the domain @)1, we consider a mixed boundary-value problem for linear parabolic equations

of the form
- 0%u " ou ou
= g\t )9 4 i\ly ’ — Ty = s L)y 1
Lu i;a](t ) D, + 3 bi(t, x) 7, + et 2)u — == = f(t,2) (1)
ou
uli=o = 0, n =0, 2)
nig,

under the assumptions that ||a;;(¢, z)|| is a real symmetric matrix. Moreover, for all (¢, z) € Q7 and
¢ € E,, the conditions

VP <D aijt, 2)6i&; < v MEP, v € (0,1] — const, 3)
ij=1
are satisfied.

In addition, we suppose that all coefficients of the operator £ are real and measurable functions

in QT.
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The aim of the present paper is to find the conditions on thecoefficients of equations (1) under
which the mixed boundary-value problem (1), (2) is identically strongly (almost everywhere) solvable
in the space Wp2’1 for any f(t,z) € Lpy(Qr), p € [p1, p2], where p1 € (1,2), p2 € (2,00).

In case where the leading coefficients of the linear operator are uniformly continuous in the
cylindrical domain and the minor coefficients are the elements of the corresponding Lebesgue spaces,
the uniform strong (almost everywhere) solvability of the Dirichlet and mixed problems for the
parabolic and elliptic equations in the space Sobolev was proved in [1, 2]. An example indicating the
exactness of the Cordes conditions is presented in [3]. In [4, 5] the indicated fact is taken to the class
of nonlinear parabolic equations of the second order under the stronger condition than the Cordes
condition. Note that the Dirichlet problem for linear and quasilinear second-order parabolic and
elliptic equations with nondivergent structure and discontinuous coefficients was studied in [6—12].

1. Some auxiliary assertions. First, we present some necessary notation and definitions. We
u  Ou 0%u
E’ (973?1‘7 an 8:62695]
W, °(Qr) and W7 (Qr) be Banach spaces of measurable functions u(,z) given on Qr with
bounded norms

denote by us, u; and u;; the derivatives , 1,7 = 1,...,n, respectively. Let

1/p
lllyyr00,) = /(|uyp+2|u,~yp> dtdz
QT =1
and
1/p

n n
lelwzr = / [l + > il + > |+ ] | dtdar |
Or i=1 ij=1

respectively. By Wﬁ 1(Qr), we denote the subspace Wg 1 (Qr) in which the dense set is the collection

of all functions from C°°(Q) vanishing at t = 0 and 8—” =0.
nlg,

Definition. A function u(t,z) € Wg Y(Qr) is called a strong solution of the mixed boundary-

value problem (1), (2) if it satisfies equation (1) almost everywhere in Qr.

Further, throughout the paper, the notation C(...) means that the positive constant C' depends
only on the content of the parentheses.

Lemma 1. [fu(t,z) € A(Q%), then

n

/ Z uij|? + [ue)? | dtde < /(./\/lou)thdav7
o AT <k
0
where Mg =\ — 5
Proof. We have
Mou)?dtdz = Au)? = 28wy + u?) dtde =
(Mou) i
Qk Qk
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n n
= / Z UiiUj5 — 2 Z Ui Ut + uf dtdx =

or ij=1 i=1
/ Z i jidtde + 2 / Zu,ut,dtdx+ / uldtde =
QT 2,j=1 QT =1 QT

:/ Z%Jrut dtdw—l—/z )edtda =

J=1 i=1
Qg ] QT

:/ Zuw—i—ut dtdaz+/z (T, @) = uf(0,))de.

T 7]1 021
Cr

Since u;(0, z) = 0, we get the required inequality.
Lemma 2. [fu(t,z) € A(Q%) and p € (1,00), then

Z i P+ uel? | dtde < Cy(p,n / MoulPdtda.

Q]}% 7.7 1
Proof. Let
F(t,z) = Au(t,x) — u(t, x),
2
aopt™ "2 ex m) , at t>0,
Glt,z) =" P ( At
0 at t <0, (except for t = |z| =0),

where ag = 27 "7~ "/2. Then

u(t,z) = / Gt —T,x —y)F(r,y)drdy.

Fori=1,...,n we have

i(t, ) /G’ —1,x —y)F(r,y)drdy = /Gi(t—T,y—m)F(T,y)dey:

Qk

/ Gi( VE(T,v + x)drdv.
n+1

Further, acting as in the differentiation of integrals with weak singularity [12], we obtain

wij(t, x) / Gi( VF(T,v + z)drdv =
n+1
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where

and OB (t,z)
We now find

A. F. GULIYEYV, S. H. ISMAYILOVA

= lim < — / Gi(t — 1,z —y)F(r,y)drdy +
p—0

(t,z)
BO,l/p

+ / Gi(t — 7,2 —y)F(7,y) cos (W, y;)dsry ¢ =

OB},
= lim ¢ — / Gi(t—7,x —y)F(1,y)drdy p +
p—0
A

+ lim { F(t,x) / Gi(t — 1,0 — y) cos (W, y;)dsry +
p—0

(t,)
BBO’l/p

N / (F(r,y) — F(t,2)|Gi(t — 7 — y) cos (7, y; )dsry

(t.x)
oB")

=Gijx F+ F(t,x) lin% / Gi(t — 7,2 — y) cos (T, y;)dsry+
p—

(t,2)
630,1/,0

—l—/l)i_r)r%) / Kij(p)Gi(t — 7,2 — y) * cos (0, y; )dSry,

(t.2)
oB")

Gij * F = lim Gi(t—7,x —y)F(r,x)drdy,
p—0

(t,x)
BO,I/p

Kij(p) = F(1,y) = F(t,2),

(ta) ) Gt—rx—y) 1
B071/p—{(7',y).0<t_7_<p y

is its boundary.
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Jij(p) = / Gi(t — 7,2 —y) cos (W, y;)dsry =

(1)
oBY)

1 i
= / Gi(t — 7,2 —y) cos (T, y;)dsry = p / %cos (M, y;)dsry.

(0,0) (0,0)
0By ) 0By

1447

If i # j, then J;; = 0. Now let i = j. Consider, e.g., the case ¢ = j = n, because, in all remaining

cases, the proof is similar. Denote by S, the part of OB(()Il’t/)p
projection of S, onto the hyperline y,, = 0. Then
2
Jnn(p) = p/y;COS (ﬁ, yn)dST,y =

S,

2

Yn _ 1

—Z | — — drdyy...dy, =

p/2 COS(n’yn)cos(ﬁ;yn) Tdyy ... dyn—1
I,

2 [y, 2 [~y _

= /2 drdyy ...dyp_1 = / g 7 drdyy ...dy,_1 =
p pJ
11, m, =

2
2 2 n Tl
:/ UL CTDLSES N W T

pnp 2 —T — 4
2 _ 1
We now perform the change of variables u = —7(agp) "+2,v; = y;(agp) 7+2,i=1,2,...,
— 1. Let IT'* be the image of transformation II,. We get
-1
n+2 1 =
Inn(p) :2a0/ 5 ulna—zizdudvl...dvn,l =

I+ i=1

n+1
:j+2/\/;dr/exp[ Zﬁl] déy ... d§n—1,

nflvz n-+ 2 [

h — Zi In = Y
where 7 exp[gi:14u 5 unu},& SN
1

It is easy to see that the last integral is equal to

i=1,2,....,n—1.

n+2
Ki(p) = / [F(r,y) — F(t,2)|Git — 7. — ) cos (7, y;)dsry =
aBgtffp

_ / [F(r,) — F(0,0)]Gi(—r, —y) cos (7, y;)dsry =
635013;
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- ;1) / [F(7,y) — F(0, 0)]% cos (7, y;)dsry =

(0,0)
oBY%Y)

2 Yi —
=2 [1P(r.9) ~ P(0.0)% cos (1, 35)d5r, =
Sp

2 i
=2 [ 1P — PO.0) G drdys . dyidys . d
I,

Since

C(n, F) (j2| /2 +Jyl), for (r,y) € BY,

|F(T,y) — F(0,0)] = (0,0)
2max |F|, for (1,y) € By oo

then, for ¢ #£ j, we get

L2 [y 1
Kij(p) < C(n, F)pnt2 » / %deyl - dyidyig - . dyn = C(n, F)pn+2 Ji5(p) = 0

HP
. Lo 1 C(n,F)
and, for i = j, we find K;;i(p) < C(n, F)pn+2, pnt2 — 0 as p — 0, where Cy(n, F)) = o
n
As a result of these calculations for u;;, we have
5
wij(t,x) = —Gijx F+ —2—F(t,z), i,j=1,...,n, )

n+ 2
where 9;; is the Kronecker symbol and G; * I is a parabolic singular integral with the kernel in G;.
By the Jones theorem [13], for p € (1,00) and 4,j = 1,...,n, we conclude that

G FHLP(Q}Q) = Cij(pan)HFHLp(Q};)-
By using this inequality in (4), we obtain
n
Z [uijl @y < Crlp, MIF L, @) (%)
ij=1

We now show that ||Ut||Lp(Q};) < Csy(p, ”)HFHLP(Q};)- Indeed, from the relations vy = Au — F
and (5), we get

n
HUtHLp(Qg) < HA“HL,,(QQ + HFHLP(Qg) < Z HuiiHLp(Qg)""_
i1

Nz, @) < Calp, WIIF L, or)-

Then
1/p 1/p

/ > JuiP o+ P | dtda < /Z]uij]pdtdx +
Q

T \4&j=1 T 5j=1
QR R
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1/p

n
/ \ug |Pdtdx = z gl (s Hut”LP(Qﬁ) =
- i,j=1
1/p
< Cs(p,n / [Mou|Pdtdz
QT
Lemma 2 is proved.
By W}Q),l(Qg) and V%l(Q%), we denote the of closures A(Q%) in the norms

1/p
n
s g = | [ | 32 sl + | dta
QT}% 1,7=1
and
1/p
lllss gp, = | [ Mot |
Qr

respectively, p € (1,00). According to the Friedrichs-type inequality and Lemma 2, the functionals
determined above are indeed norms. Denote by 7'(p) the operator associating each function u(¢, z) €
€ V?)’I(Qg) with it-self as an element of the space W%’I(Qﬂ). By Lemma 2, the operator T'(p) is
bounded. Denote by K (p) its norm. By Lemma 1, K(2) < 1. Let py be an arbitrary number from
the interval (1,2). According to the Riesz—Thorin theorem on convexity [14], for any p € [po, 2],

K(p) < (K(po)'*(K(2))" < (K(po))' ",

2po (p—po)
K(p) < K(po) P2=po) .

5 5\° (/5\\°| .. 5
We now fix pyp = 3 and denote ¢ = max 3] 3 . Since, for p € 3,2 ,

Po(p — Ppo) 27D

< = 3(2 — p), we finally obtain
p(2—po) ~ 2—po ( ) Y

K(p) < a®P.

Thus, we have proved the following assertions:

R )
Lemma 3. Ifu(t,x) € Wg’l(Qﬂ), then, for any p € [3, 2] ,

a2 P
HUtHW?)’l(QE) = HUtH 21(QT)
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Note that, in this case, the constant @ > 1 depends only on n. For p €

)
=, 2] , we denote
3
p—1
p

n
_p
sup | Y lag(t, @) — 87T

Q% \ij—=1

1— 2
by d,, (for the sake of brevity, we write sup instead of ess sup). Alsoletd2 = J, h = max { ) 1} .
Y

5
Lemma 4. Forp € [3, 2] , the following inequality is true:

2—p 2(p—1)
p<hprgo P

Proof. 1t follows from condition (3) that, fori =1,...,n,
y—1<a;tz)—1<y -1,
and, since v — 1 > 1 — 71, that
L—~

laij(t,z) — 1] < T 6)
If i # j, then
2y < aii(t, ) + aj;(t, ) + 2a;(t,z) < 2y 1.
Therefore,
1-— 72
|a;(t, x)| < - @)

From (6) and (7), we conclude that, fori,j = 1,...,n,
|aij(t,z) — dij| < h. (®)

On the other hand, in view of (8), we obtain
p—1

n -\ P 2-p 2(p—1)

(Sp = sup Z (aij(t,x) — (5ij)2\a¢j(t,x) — (Sij|p*1 <h@pP§ P
Q% \ij—=1

[\

Lemma 4 is proved.

)
Lemma 5. Let § < 1. Then there exists p1(y,0,n) € [3, 2] , such that for all p € [p1, 2]

a¥Ps, < 513,

Proof. According to the previous lemma,
2-p 2(p—1)

a?*Ps,<a*Ph' P § P

3 —1 1
But hY/P < h5 = hi, p > 3" Therefore,
2 2 pe2
a“"?5, < (ah1)“7Po3. 9
In(1/6
Now let p; = max g, — ?)El(((fhf)} Then, for p € [p1,2], we have (ah1)?>™? < §~1/3 and the

assertions of the lemma follow from (9).
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2. Internal priory estimation. Consider an operator

together with the operator L.
Lemma 6. If condition (3) and inequality § < 1 are satisfied for the coefficients of the operator

Ly, then, for all p € [p1,2] and any function u(t,z) € Wf}’l(Qg) the estimation

||u|\vc[>/§71( n < Caly, 6, )l Loull g

is true.

Proof. According to Lemma 3,

2—
Hu”v?/f;l(QT) < a” Pl|Moul|,qgr) <

R
n
< a2’p|]£ouHLp(Q£) +a%7P Z (ai;(t, ) — 8ij)uij <
=t Ly(Q%)
n
< a2/5||£oUHLP(Q§) +a” Py (4t @) — 03wy : (10)
w=t Lp(Q%)
But, on the other hand,
n
> (aij(t, ) — 8ij)us <
wI=t Ly(QF)
p—1 1/p
n n P
< 7 fugl || (@t ) — 6i5) P dtde | < 5p||UHV°Vz,1(QT)-
i.j=1 i.j=1 ro

Qk
Therefore, from (10) and Lemma 5, we conclude that

HUH 22,1, AT

<a??|L S
waien SO 1£oullz,p) + o opllu]

o <
Wi (QT)

< CLQ/SHEOUHL,,(QE) + 51/3“U||V<‘>/z,1(QT)
P R

and the assertion of the lemma is proved.

In what follows, we everywhere assume that the radius R of the sphere Bﬁo (B}%0 is the foundation
of the cylinder Qﬁ) does not exceed 1.

ISSN 1027-3190.  Vkp. mam. scypn., 2014, m. 66, Ne 11



1452 A. F. GULIYEYV, S. H. ISMAYILOVA

Lemma 7. If the condition of previous lemma is true, then, for all p € [p1,2] and any function
u(t,z) € A(QE), the inequality

[ullyz1 gy < Cs(v, 0. n) | Loull L, qr)

is true.

To prove this, it suffices to apply the Friedrichs inequality and Lemma 6.

We now assume that the following Cordes condition for the leading coefficients of the operator
L is true:

n
SUpPQ. Zi,j:l ag;(t, ) 1

n 2 < 1°
{ianT Zi:l a;;i(t, x)} e

In this case, we suppose that condition (11) is satisfied to within a nonsingular linear transforma-

)

g =

tion, i.e., we can cover the domain Q7 with finite number of subdomains @1, ..., Q,, and, hence, in
every ();, there exists a nonsingular linear transformation under which the image of the operator £
satisfies condition (11) in the image of subdomain Q;, i =1,...,m.

Lemma 8. 7o within a nonsingular linear transformation, the condition § < 1 coincides with
condition (11).

Proof. We now perform the transformation 7 = k%t, y; = ka;, i = 1,...,n, where

n —1/2
SUpg,. Zmzl a?j (t,z)

B n
infg,, Zi:l ai;(t, )

Thus, if || A;;(7,y)| is the matrix of leading part of the image of the operator £ then A;;(7,y) =

k=

= k%a;;(t,z), 4,7 = 1,...,n. In the new variables, the condition § < 1 takes the form
n n
sup > A%(y) — 2inf Y Au(r,y) +n < 1, (12)
QT ij=1 T =1

where QT is the image of the domain Q7. It is clear, that it coincides with the conditions

n
2
SUpQ., Zi’jzl az;(t, ) 1
. n 2 =1
{meT Zi:l ai;i(t, az)} "

Lemma 9. Let conditions (3) and (11) be satisfied for the coefficients of the operator Ly. Then
there exists a constant Cg(7y, 0,n) such that, for any function u(t,z) € C®(QL), uli=o = 0 for
every p € [p1,2], and Ry € (0, R), the estimate

CG 06
lllywz gz ) = CsllLovllL, o) + R-R)? ez, @) + 7= g, Mlwion)

is true.
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Proof. Let the functions 7(z) € CgO(Bj%O) be such that n(z) = 1 in Bj%ol, 0 < n(x) <L
Moreover

Cr

Cr
_ i'<77 '7.:1,..., 5 13

Im| <

where C7 = C7(n). Applying Lemma 7 to the functions w7, we obtain
Iz gy S Ol oluml, g (14)

But, on the other hand,

n

> ai(t,x)mi

=1

n

+2 Z aij(t, x)uin;| . (15)

ij=1

[Lo(un)| < |Loul + [ul

Further, in view of (13), we get

1/2 1/2

21> ag(taywn| <2 Y ai;lt, z)ui; > ai(t,x)mm; <

1,7=1 3,j=1 1,7=1

n 1/2 , 1/2
<277 (Zu2> <Zm’2> <2y” 1Z\uz|Z!m| = 2m 07 Z‘ il
i=1 i=1

Thus, from (15), we conclude

Cy
H£0(U77)HLP(Q§) < [ Loullp, Ty + WHUHLMQ};)“‘

09(’77 08
thm E luille,oq) < 12oulle,op) + 7= e llvlia@pt
09(7777’)
TR Ry Mhwieapy 19

In view of (16) and (14), we denote max {C5Cs, C5C9} by Cip and arrive at the required esti-
mate (13).

Lemma 10. Let the conditions of the previous lemma be satisfied for the coefficients of the
operator L. Then there exists a constant C11(7y, 0, n) such that, for any function u(t,z) € C*(Q%),
ult=o = 0 for any € > 0, and p € [p1,2], the estimate

Cn

lullwz g < CsliCoullz,om + ellullyzr gr) + —msllullz,o
2

is true.
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Proof. We use the following interpolation inequality [1]: let p € (0, 00). Then, for any functions
u(t,z) € WpQ’l(QE), any € > 0, and p € [p1, 2] the following estimate is true:

Ci2
Jullogy < ellulyzspy + <2l oz (7)

We now fix an arbitrary number € > 0 and let €; > 0 be a number which will be chosen later.
According to Lemma 9 and inequality (17), we have

4C% 206
lullwz gz ,) < Csll€otlln,@p) + g2 llyam + F2 lulwpogg) <
406 20681 206013
< GsllLoulln, p) + gz Iul,@n + =g lllwzron) + —32, vllL,@p)
here (3 = C It i ffici h _ cf
where (13 = Suppe(p, 9) 12(p, n) t 1S now suftficient to choose €1 = 2706'

Lemma 10 is proved.

Remark 1. If the minor coefficients of the operator £ are bounded, then there exists
Roy(~,00,n,B,c) such that, for R < Ry, the assertion of Lemma 10 is also true for the opera-
tor £. Here, B = (b1(t, z),...,bn(t,x)). For p > 0, the set {z: x € Q, dist (z,0Q) > p} is denoted
by €,,.

Lemma 11. Let conditions (3) and (11) be satisfied for the coefficients of the operator L. Then,
for any function u(t,z) € C*(Q%), u|i=o = 0 for any € > 0, p > 0, and p € [p1,2], the estimate

”uHWE’l(QpX(O,T)) < 014(77 g, 1, P, Q)H‘COUHLP(QE)—F

Ci5(v,0,m,p, Q)
g

Fellullyzrqr) + el @)
is true.
Proof. We now fix arbitrary ¢ > 0 and p > 0. Let &2 > 0 be a number chosen in what follows.
Consider a covering Q by a system of spheres {B’“" »+ and choose a finite subcovering B 1...,BN

from this covering. It is evident that the number N depends only on p, n, and diam 2. Applymg, for
every t = 1,..., N, Lemma 10, we obtain

Finding the sum of these inequalities over ¢ from 1 to N, we conclude that

HUHWE’l(pr(o,T)) <3N <CpH£0qu +5§H“Hp 2.1

OP
1 P p
lullzs ooy <2 (CEVEIE 0+ Sl g + 01 0 )
(QT
It 1s now sufficient to choose c5 = < and the lemma is proved.

(Q1) )
3N

3. Basic coercive estimation. The assertion of Lemma 11 is true without any requirements
imposed on the domain 9f). All subsequent assertions of the present paper hold under the condition
00 € C?, and we always assume that this condition is satisfied.
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Lemma 12. Let conditions (3) and (11) be satisfied for the coefficients of the operator Ly. Then
there exists positive constants p1, Ci¢, and Ci7 depending on ~, oo, and n and a domain ) such
that, for any function u(t, ) € Wg’l(QT), any € > 0, and p € [p1, 2] the estimate

17
el onay, <o) < CrollLoelr,@n +ellullyar g + —lullt,@ry

is true.

Proof. 1t is sufficient to prove the lemma for the functions u(t,z) € C*(Qr), ulrgy) = 0.
Moreover, without loss of generality, we can suppose that the coefficients of the operator Ly are
infinitely differentiable Q7. We now fix an arbitrary number ¢ > 0 and a point z° € 9. We
perform an orthogonal transformation of the coordinate * — y such that the tangent hyperline to
o at the point yO is perpendicular to the axis Oy,. Here, Q and y° are images of the domain
Q) and the point 2°, under this transformation, respectively. Denote by @(t,z) the image of the
function (¢, x). For simplicity, we suppose that the domain 9 at the intersection of 9Q with
some neighborhood Oy, of the point y° is given by the equation v, = ¢(y1,...,yn_1) With twice
continuously differentiable function ¢ and the part € adjacent to 9 N Oy, belongs to the set {y:
Yn > ©(Y1,...,yn—1). Let A(t,x) = |la;;(t,x)| be a matrix of coefficients of the operator Lo,
A(t,x) = ||ai;(t,y)|, where a;;(t,y) are leading coefficients of the image Lo of the operator £y
under our transformation; 7,5 = 1,...,n. We now show that the eigenvalues of the matrices .4 and
A coincide. Indeed, we fix an arbitrary point (t,z) € Qr; A is an arbitrary eigenvalue of the matrix
A and 2 corresponds to its eigenvector. By virtue of the orthogonality of our transformation, there
exists a nondegenerate matrix 7 such that 4 = T~ AT. Denote T~ 'z*. We get

Ay = 771 Az = Mgt

On the other hand, we can write condition (11) in the following form:

SoUoNtE)

o = sup " 7 < T
Qr . o
[Zizl Ailt, :r)]
where A;(t,z) are eigenvalues of the matrix A(t,z), i = 1,...,n. Thus, condition (11) is also

satisfied for the operator £y and, moreover, with the same constant o. Analogously, it can be shown
that conditions (3) are satisfied for the operator L (with the same constant ). We now perform one

more transformation: 2z; = y;, ¢ = 1,. -1, 2z, = yn — (Y1, -+ Yn—1)- Let £, @', and 2° be
the images of the operator Lo, domam Q and point 3", respectively, under our transformation, and
let aj;(t, z) be the leading coefficients of the operator L£y; 4, j = 1,...,7n. It is easy to see that

n

_ 0z 0z; . .
” = = 1,...
Qg (t7 Z) kgl akl(t ) Oy ayl %]

M.

Therefore,

aii(t,z) = a(t,y) if 1<4,j<n-1,

Za ty +anj(ty) it 1<i,j<n-—1,
k=1
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n 8@ 8@ n—1
ap(t,y) 57— o — Zank (t y +ann(t Y).
k=1 8'% Oy k=1

. 0 . . ..
Since <2 (y%) = 0 for i = 1,...,n — 1, there exists hy(y",¢) such that the condition (11)
Yi
. 1 —1 . . . . .
(Wlth the same constant o/ = o—i—/2(n) is satisfied for A < h; in the intersection €' N

N (B,Zlo x (0, T )) Moreover, conditions (3) are satisfied <with the constant %) for the operator

{, in the indicated intersection. Assume that r = r(2") = hy(yo, ). Let u/(¢,2) be the image of
the function @(t,y) under our transformation. It is clear that, in the variables z, the intersection
Q' N B2’ represents a hemisphere B = {z: |z — 29| < r, 2, > 0}. We continue the function v/ (¢, z)
and the coefficients of the operator £, by evenness relative to the hyperplane z, = 0 in BTZO\B,T
and denote by u'(t,z) and L, respectively, the function and operator obtained in this case. Since

u'(t, z) € Wt (B,ZLO X (O,T)), according to Lemma 10, we find
Hu/Hng,l (BZOX(O,T)) < CSHEE)U/HLP(Bﬁox((],T)) + €3||u,||Wp2’1(B§O><(O,T))+

+ . 18
ear 2” Il (B x(0,1)) (18)

where €3 > 0 is chosen in what follows. However, on the other hand, each norm on the right-hand
side of (18) represents the corresponding norm taken for a semicylinder Q" = B;F x (0,7 and
multiplied by 2! /p. Therefore, from (18), we conclude

Cn
/
1 ) < CoMERY iy +eatugiry + ity 09

T
2

We cover 99 by a system of spheres {Bii} and choose from this covering a finite subcovering
2

B',...,BM. 1In this case, the number M is determined only by the quantities v, o¢, and h and
the domain 2. We write an inequality of the form (19) for every semicylinder B, (%) x (0,7),
i =1,..., M, raise both sides of the obtained inequalities to the power p, and find the sum of these

inequalities over ¢ from 1 to M. This yields

||“/”p 2,1

—1
waiexomy =5 M <C5|| o lI7, w0y T 51 w21 @i 0.+

- u - )
3

M .
where B =| | . Bf(z"), and rg = min{r(z1),...,7(za)}. We return to the variables = and note
1= 2

that the preimage B contains the set 2\(2,, with some p;(7v, o, n,Q). This enables us to conclude
that

Cao
||u”W§’l((Q\Qpl><(O,T)) < CigllLoul L, (@) + Cl953”“”wp2’1(QT) + g”“”Lp(QT)’
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where the constants C'ig, C'y9, and Cy9 depend only on v, o, and n and the domain 2. It is now
sufficient to choose €3 = CL’ and the lemma is proved.
9
Lemmas 11 and 12 now imply the following assertion:

Lemma 13. Let conditions (3) and (11) be satisfied for coefficients of the operator Lo. Then,
for any function u(t,x) € W' (Qr) and any p € [p1,2], the estimate

lully2 gy < Cn(v:0.7.2) (I £oullzyr + Il @m)

is true.

We now impose the following conditions on the minor coefficient of the operator L. For p €

S [pl,Q],

bi(t,l') S Ln+2(QT), 1=1,....n, (20)
maX(p,n;Q>, for p#n;Q,

C(t, CE) S LZ(QT), l= (21)
24 v, for n=p=2,

where v is a positive constant. Let ¢(t,z) € L,(Qr), 1 < p < co. The quantity

1/p

wyp(d) = sup / ||Pdtdx
e

e€Qr, mese<d

is called the AC' modulus of the function (¢, z). Denote maxi<j<n{wp,p(9)} by wp.p(0).

n
Let K = Zizl 16ill 2,042 (@r) + €l L (@r)-

Everywhere in what follows, the symbol C'(£) means that the positive constant C' depends only
on v, o, K, and v.

Lemma 14. Let conditions (3), (11), and (20) be satisfied for the coefficients of the operator
L. Then there exist positive constants Caa(L,n, Q) and To(L,n) such that if T < Ty, then, for any
function u(t, ) € Wy (Qr), and any p € [py, 2] the estimate

lllyy2s gpy < CozllLullz,qr).

is true.

Proof. We use the following embedding theorems [1]: For any function u(¢,z) € W,JQ ’1(QT),
the following inequalities are true:

Hui”Lq(nng) @r) < Cos(g, ) llullyyzr g,y  for 1<g<n+2 (22)
n+2—q
n-+2
lullz ) @r) < CoalgW)lullyp2a g,y for 1<g<——. (23)
nt2—2q

According to Lemma 13,
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lully21 (g < CarllfullL,@r) + Carll(£ = Lo)ullL, ) + Carllullz, @) <

< CallLullz, @) + Ca Z biwill L, (Qr) + Clleull L, @r) + CllullL,@r)- (24)
i1

We now fix an arbitrary ¢, 1 < ¢ < n and assume that ¢ = p in (21). We find

HbZU’LHLP(QT) S HbiHLnJ,-Q(QT)HuiHLp(n+2) (QT) S CQ?’HbiHLnJ,-Q(QT)HuHWE‘l(QT)'

n+2—p

Thus,

D Ibiuill, @ < Cos Y MbillL, o lully2i gy <

=1 1=1
< CQB(”)WB;n+2(5)HUHWIEJ(QT)v (25)

where 6 = Tmes Q and Cas = sup,cp, 2] C23(p, n).
Similarly, by virtue of (23), for n < 3, we get

||CUHLP(QT) < HCHLnTH(QT)HUHLﬂntQ; Q) < Cz4HCHLnT+2(QT)”UHWZ?J(QT) <

< C26(”)WC;HT+2(5)||UHWI§'1(QT)’

where C26 = supep, 2] C24 (p,n).

It is easy to see that an analogous estimate holds for n = 2 and p # 2. Now let n = p = 2. Thus,
according to embedding theorem [1], for any function u(¢, x) € Wg ’I(QT) and every ¢ € [1, 00|, the
following estimate is true:

Julzyt@r) < Corlasn)ullyz gy
Therefore, if ¢(t,z) € Loy, (Q7), then

leullLy@ry < NellLarn, @) [l a4, @) < Cos(W)weaiu (D)l (g,

V1

Finally, let n = 1. Then, according to the embedding theorem [1], for any function u(¢,x) €
e W' (Qr), the estimate
sup [u] < Coslully21
Qr
is true. Therefore,

leull, ar) < sup ullelz, @r) < Coen @z g,

Thus, in any case,we get the inequality
el iy < Coolm)wea(®)ullyz1 0, (26)
Now let ¢ € (0, 7). We use the following inequality:
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ullz,@r) < Tlluell, @) (27)
In view of (25), (26), (27), and (24) we arrive at the inequality
||U”W511(QT) < Carl|Lul|1,(@r) + C21(Coswpint2(d) + Cagwe (6) + T)||u||W§,1(QT).

Then there exists a constant 7(£, n) such that, for 7' < Tj,

Coswpin+2(0) + Cow ni2(6) + T < .
S 20

Lemma 14 is proved.

7 . .
4. Casep > 2. Letp € [2, 3] and let K (p) have the same meaning as in Lemma 3. By the

7
Riesz— Theorin theorem, for any p € {2, 3] ,

-2
K(p) <d¥™2.

Thus, the following analog of Lemma 3 is true:

Lemma 15. If u(t,z) € W' (Qr), then, for any p € [2, ;ﬂ , the inequality

< P72
Hu\lojl LS Hull‘o/i,l

(QFR)

is true.
The analogs of Lemmas 4 and 5 are proved in an absolutely similar way:

7
Lemma 16. For p € [2, 3] , the following inequality is true:

p—2

oy <h P 0.
Lemma 17. Let § < 1. Then there exists pa(y,9,n) € <2, ;} such that, for all p € [2,pa],

ab =26, < 8/

We now impose the following restrictions on the minor coefficients of the operator £ for p €
€ (27p2] :

bl(tv IL’) € LTL+2(QT)’ = 17 s Ty (28)

ISSN 1027-3190.  Vkp. mam. scyph., 2014, m. 66, Ne 11



1460 A. F. GULIYEYV, S. H. ISMAYILOVA

2
c(t,z) € Ly(Qr), ' = max (p, n—2i— > (29)
By using the scheme realized in Lemmas 6—12 and applied to Lemmas 14-16, we conclude
that Lemma 1 is true for p € (2, ps] and u(t, x) € Wg’l(QT) if conditions (3), (11), (18), and (29)
are satisfied only for the coefficients of the operator £. We combine conditions (21) and (29) by
assuming that p € [p1, p2], i.e., we suppose that

l, for pelp,?2,
c(t,z) € L (Qr), where m = (30)
v, for pe(2pal.

Theorem 1. Let conditions (3), (11), (18), and (29) be satisfied for the coefficients of the operator
L. Then there exists positive constants To(L,n) and Cso(vy, o, K,n,Q) such that, for any functions
u(t,z) € Wit (Qr) with T < Ty and any p € [p1,2], the estimate

]l 2.1 < CsollLullL, Q1)
» (Qr)

is true.

5. Solvability of the mixed boundary-value problem. We now consider the mixed boundary-
value problem (1), (2).

Theorem 2. Let conditions (3), (11), (28), and (30) be satisfied for the coefficients of the operator
L given in the domain Qp. If T < Ty and 0 € C?, then the mixed boundary-value problem is
identically strongly solvable in the space Wy (Qr) for every f(t,z) € L,(Qr), p € [p1,2]. In this
case, for the solution u(t,z) € Wg’l(QT) the estimate

HUHWZ?J(QT) < C30HfHLp(QT)a (1)

is true.

Proof- We now prove the theorem by the method of continuation in the parameter. We introduce,
for s € [0, 1], the family of operators L; = sL + (1 — s) M.

It is easy to see that conditions (3) and (11) are satisfied for the operator £; with constants ~y
and o, respectively. We show this on the example of condition (11). According to Lemma 8§, the
indicated condition coincides, to within a nonsingular linear transformation, with the condition § < 1.
Let afj(t, x) be the leading coefficients of the operator Lg, i,j = 1,...,n, and let

. 1/2
0% = sup Z (ai;(t,z) — 5z'j)2
@r \ij=1
We have
1/2 1/2
n n
0% = sup Z (sai;(t,z) + (1 —8)dij — 5ij)? = ssup Z (ai;(t, ) — 5ij)? =50 < 0.
Qr i,j=1 Qr i,j=1

In addition, if bj(t,x), 4,5 = 1,...,n, and c4(¢,x) are minor coefficients of the operator L,

then the quantity Z:;l 17 (t, )| 1o (@) + les(t @) 1, (@) 1s majorized by a constant depending
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only on ijl 10ill 2, +0(@r) + lles(t, @) 1, (@r)- Hence, the assertion of Theorem 1 is true for the

operator L4 with constant C%;, independent of s. Denote by E = {s: s € [0,1]} the set in which the
problem has a solution. Note that, by virtue of Theorem 2, this solution is unique. We now show
that the set £ is nonempty and open and closed simultaneously relative to [0, 1]. Then

Lou= f(t,x), (t,z)€Qr, u(t,x) € WE’I(QT), (32)

coincides with the segment [0, 1] and, in particular, problem (32) is identically solvable for s = 1
when £; = L. In this case, estimate (31) follows from the fact that problem (32) is solvable for s = 0

(see [1]).
We now show that the set E is open relative to [0,1]. Let s € E, s € [0,1] be such that
|s — 59| < a, where o > 0 will be chosen later. We represent problem (32) as

Lou= f(t,2)+ (Lo — Lo)u, (t,x) €Qr,  ult,z) € W (Qr). (33)
It is easy to see that L0 — Ls = (s" — s)(L£ — My). Consider an auxiliary problem
Lou=f(t,2) +(* =)L = Mo)v, (12) €Qr,  ult,2) WS (Qr),  (34)
where v(t,x) € Wg "'(Qr). Acting as in Theorem 1, we can show that

1L~ Mool @ry < Cor(Lim) 0]y o

Thus, the operator M associating every function v(t,z) € W' (Qr) with a solution wu(t, z) of
the problem (34) is determined, i.e., w = Mwv. We now show that if « is chosen in a certain way,
then the operator M becomes contractive. Let u! = Muv! and u? = Mv?. We have

Lo(u' —u?) = (s" = s)(L - Mo)(v! —v%), o' —u? € W2(Qr).
Thus, according to Theorem 1

1 2 1 2
[ = w21 g < CaoaCsiflv” = v ly2n g,

.. . 1 .
and it is sufficient to choose @« = ————. Then the operator M has a fixed point u = Mw.

30031
However, for v = u, problem (34) coincides with problem (33), i.e., with (32). The openness of the
set F is proved. We now prove that it is closed. Let s € E, m =1,2,..., s0 = lim,,_yo0 s™. We
show that s € E. Denote by u™(t, ) the solution of the boundary-value problem

Lonu™ = f(t,z),  (t,z) € Qr, u™e W2 (Qr).
According to Theorem 1,
||Um||wg,1(QT) < Cs0ll fllz,(Qr)-

Thus, the sequence {u™ (¢, )} is bounded in the norm W' (Qr). Hence, it is weakly compact,

i.e., there exists a subsequence my — oo as k — oo and a function u(t,z) € Wp (Qr) such that

(t x) is the weak limit of the subsequence {umk (t,z)} as k — oo in W' (Qr). Therefore, in
particular, we conclude that, for any function Wp (QT)
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(ESOUmk>30> — <£soa 30>7 k— 00,

where (u,v) = / uvdtdz. But

Qr
<£s°umk7 (P> = <<£so - Esmk)umka%@ + <£Smk umkv 90) =11+ i2.

We have

<

. 0 m m 0 m m
jia] < [s7 = s"*[((£ = Mo)u™, )| < [s” = 8™ Ca2(p, ) Car [[u™*[yy21 g,y <

< 3003203 |s” — s" 1z @r)-

Thus, iy — 0 as k — oo. On the other hand, i2 = (f, ¢). Hence, for any function ¢(t,z) €

€ WI2’71(QT)’

<£80’U,, <)0> = <f7 90>

This means that £,ou = f(t, ) almost everywhere in Qr, i.e., s° € E.
The theorem is proved.
Remark 2. For p = 2 and the operator £, Theorem 2 is correct without the assumption 7" < T

(see [11]).
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