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OSCILLATION AND NONOSCILLATION CRITERIA
FOR A HALF-LINEAR DIFFERENCE EQUATION OF THE SECOND ORDER
AND EXTENDED DISCRETE HARDY INEQUALITY *

KPUTEPII KOJIMUBAHHS TA HEKOJIMBAHHSI
JIJISI HAINIBJITHIAHOI'O PI3HUIIEBOI'O PIBHSIHHA JPYTOI'O MOPSJKY
TA PO3IIUPEHHSA JUCKPETHOI HEPIBHOCTI I'APII

We establish the oscillatory properties of a half-linear difference equation of the second order by using a suitable extension
of the weighted discrete Hardy inequality.

3a I0IOMOTOF0 BiIMTOBITHOTO PO3IIMPEHHS AUCKPETHOT HEPiBHOCTI ["ap/ii BCTAHOBICHO KOJMMBHI BIACTUBOCTI HAIIBIIIHIITHOTO
PI3HUIIEBOTO PIBHSHHS APYTOTO MOPSAKY.

1. Introduction. We consider the following second order half-linear difference equation:
Apil AyilP 2 Ay;) + vilyia P 2yigr =0, i=0,1,2,..., (1.1)

where 1 < p < 0o, Ay; = yi+1 — ;. The coefficients p = {p;} and v = {v;} of equation (1.1) are
sequences of real numbers. Moreover, p; > 0 forany ¢ =0,1,2,....

Let us list notions and statements required for this paper. Let m > 0 and n > 0 be integer
numbers. For simplicity we will use the term “interval” meaning “discrete interval”.

If there exists a nontrivial solution y = {y;} of equation (1.1) such that y,,, # 0 and ¥, ym+1 < 0,
then we say that the solution y has a generalized zero on the interval (m,m + 1].

A nontrivial solution y of equation (1.1) is called oscillatory if it has an infinite number of
generalized zeros, otherwise it is called nonoscillatory.

Equation (1.1) is called oscillatory if all its nontrivial solutions are oscillatory, otherwise it is
called nonoscillatory.

By Sturm’s separation theorem [18] (Theorem 3), equation (1.1) is oscillatory if one of its non-
trivial solutions is oscillatory.

Equation (1.1) is called disconjugate on the interval [m,n|, 0 < m < n, if its any nontrivial
solution has no more than one generalized zero on the interval (m,n + 1] and its nontrivial solution
¢ with the initial condition 7,,, = 0 has not a generalized zero on the interval (m,n + 1], otherwise
it is called conjugate on the interval [m,n].

Equation (1.1) is called disconjugate on the interval [m, co) if for any n > m it is disconjugate
on the interval [m,n).

The investigation of the oscillatory properties of (1.1) is a subject of many works (see, e.g., the
papers [1, 6-11, 16-19, 21 -23] and references given there). This problem was firstly studied for
p = 2, when equation (1.1) is the following linear difference equation:
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A(piAy;) + viyiv1 =0, i=0,1,2,..., (1.2)
that is often written in the form
Prn—1Yn—1 + PnYn+1 +Unyn =0, up =vp —pp — pn—1, n=12,3,....
Moreover, there are many works devoted to the differential analogues of equations (1.1) and (1.2):
(Y Oy (1) + vy ?y(t) =0, >0, (1.3)
(p(t)y' (1) +o(t)y(t) =0, ¢>0,

respectively. The last equation is the famous Sturm equation, the investigation of which was started
in 1836 in the work [20] and has been continued up to the present days.

One of the known methods to study the oscillatory properties of equation (1.1) is the “variational
method”. This method is based on the following (see [18]).

Theorem A. Let 0 < m < n < co. Equation (1.1) is disconjugate on the interval [m,n] if and
only if

n

> (pil AyilP = vilyisa ) > 0 (1.4)

i=m

holds for all nontrivial y = {y; :‘;}1, Ym = 0 and y,+1 = 0.

Here, we use a statement equivalent to Theorem A, the proof of which is given in [1]. To
introduce this equivalent statement we need the definition of the set ;(m, n) for 0 <m < n < oo.
Denote by ;(m, n) the set of all nontrivial sequences of real numbers y = {y;}3°, such that
suppy C [m + 1,n], n < oo, where suppy := {i > 0 : y; # 0}. When n = co, we suppose that
for any y there exists an integer k = k(y), m < k < oo, such that suppy C [m + 1, k].

Theorem B. Let 0 < m < n < oo. Equation (1.1) is disconjugate on the interval [m,n]
(Im,n] = [m, 00) for n = o) if and only if

n n
> vicalyilP < pilAwilP, oy € y(m,n), (1.5)
i=m i=m

holds, where v_1 = 0.

Let w = {w;} be a fixed sequence of nonnegative real numbers. Let p = {p;}, as before, be
a fixed sequence of positive real numbers. For an arbitrary sequence a = {a;} we consider the
inequality

" (1.6)

[e'e) ) d % [e'e)
Zwi Zaj <C (Zpiai|p>
=1 |j=1 i—1

that is, the known (now classical) weighted discrete Hardy inequality. In the papers [2—5] there are
criteria for the validity of inequality (1.6) for all relations between p and ¢. In addition, the work
[13] presents the history of the development of this inequality and relative results.
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For y;41 = Z;:1 a; and Ay; = yiy1 —¥i, 1 = 1,2,. .., inequality (1.6) can be rewritten in the

difference form

o 7 o0 v
(Z wiyz'+1!q> <C <Z Pi|Ayi|p) ; (1.7)
i=1 i=1
where y = {y;} is an arbitrary sequence of real numbers with y; = 0.
In view of Theorem B it is easy to see the connection between the difference equation

A(pi| Ay P2 Ay;) + wilyia [Py =0, i=0,1,2,..., (1.8)

and the Hardy inequality (1.7) for a sequence y from the set }3(m7 n), given in the form

1 1
n » n » .
(Z wi—l’yi’p> <C (Z pi’Ayi’p> , yeY(m,n). (1.9)

=m
Indeed, in the paper [12] the oscillation of equation (1.8) was established on the basis of inequa-
lity (1.9).

The difference between equations (1.1) and (1.8) is the fact that in (1.8) the sequence w consists
of nonnegative real numbers, while in (1.1) the sequence v consists of any real numbers. If in
(1.1) the sequence v consists of negative real numbers, then it is obvious that (1.4) holds for all
0 < m < n < oco. Therefore, equation (1.1) is nonoscillatory. It is naturally to pose a question about
the influence of the positive part of the sequence v on the oscillation of equation (1.1). Assume
that v = max(0; v;) and v; = max(0; —v;), then v; = v;" —v; forall i = 0,1,2,.... Hence,
equation (1.1) and inequality (1.4) have the forms

Apil AyilP2Ay;) — v; |yi1 [P 2yic1 + 0 |yis1 [P 2yia =0, i=0,1,2,...,

n (1.10)
Z(Pimyi\p + oy |y [P = v lyina ) > 0,

i=m
respectively, i.e., the positive part {v;"} of the sequence {v;} can be considered as a perturbation of
the nonoscillation equation

A(pZ‘AyZV)_QAy’L) - /U;‘yi-i-l‘p_zyi-i-l - 07 v = Oa ]-a 25 DRI

To investigate this problem in a more general situation, we consider the following difference equation:

A(pil AyiP2 Ayi) + wilyi1 [P yisr — rilyir1 P2y =0, i=10,1,2,..., (1.11)
where 7 = {r;}, as w = {w;}, is a sequence of nonnegative real numbers. If we assume that
w; = fuj and r; = v; forall « = 0,1,2,..., then equation (1.11) turns to equation (1.10), i.e.,

equation (1.1) is a partial case of equation (1.11). For equation (1.11), inequality (1.5) is equivalent
to the inequality

n n
> wicalyil? <> (ol Ayil” + ricalwil?), v € Y(m,n). (1.12)

i=m i=m

From Theorem B and the last inequality it follows theorem.

ISSN 1027-3190.  Vkp. mam. scypn., 2022, m. 74, Ne 1



48 A. KALYBAY, D. KARATAYEVA

Theorem 1.1. Let 0 < m < n < oo. Equation (1.11) is disconjugate on the interval [m,n]
([m, n] = [m, 00) for n = o) if and only if inequality (1.12) holds.

Summing up, the difference between the previous oscillation results of equation (1.1) and the
presented results is that here we study the case when the sequence v is not ultimately positive: we
drop this restriction and allow arbitrary real numbers v;. Moreover, in view of Theorem 1.1, the
proofs of the main results are based on the fulfillment of the extended Hardy inequality

n n
S wialuil <C (ol Al +ricalyil?), v € Y(m,n), (1.13)
i=m i=m

and estimates of its constant C'. The results concerning inequality (1.13) are of independent interest.

This paper is organized as follows. In Section 2, we state and prove necessary and sufficient
conditions for the fulfillment of the extended discrete Hardy inequality (1.13). In Section 3, first
we present the results devoted to the oscillatory properties of the auxiliary equation (1.11), then we
present the oscillatory properties of the main equation (1.1).

We note that the similar problem for the differential equation (1.3) was considered in the pa-
per [15].

2. Extended Hardy inequality. In this section, we consider the extended discrete Hardy
inequality (1.13). This inequality has been already considered in [14]. However, in order to apply
inequality (1.13) to equation (1.11), it is important not only to find its characterizations, but also to
estimate its constant C', which :Ysl the purpose of this section.

In the sequel, the sums Zi:k for m < k and Zieﬂ for empty (2 are equal to zero. Moreover,

1 1 . . . .
— + — = 1. The numbers m, n, «, 3, ¢, d, t, s, z, and z with and without indexes are integers.

We need the following lemma proved in [15]. Here, we give both its statement and proof for a
more complete presentation.
Lemma 2.1. Let 1 < p < oo be a real number. Let g be a function defined as g(\) =

p 1
= )\p)\_ I o1 on (1,00) C R. Then there exists a number Ao := \o(p) such that 1 < \y < 2
1 p
and = p)\o , satisfying the conditions g(\) > 0 for X > g and g(\) < 0 for
(Ao —1)P Ao — 1
1 <A< Ao
: . : NN —1)P . » -
Proof. 1t is obvious that g(2) > 0 and limy_,14 w_o1 0. Using the definition of limit
MP(X—1)P 2P 1
there exists a number 6 > 0 for € = 1 such that ¥ <lor = < = for every
AP —1 AP—1  (A=1)p

X € (1,14 6). Thus, g(\) < 0. Since the function g is continuous on (1,00) there exists a number
Ao € (1,2) such that g(A\g) =0, i.e.,
1 _ o
(M—1)p A -1

or AN —1)P =X —1.

1 P
m and g2(}) == Y —1

on (1,00). Then ga(A) > g1(A) for A > Ag and g1(A) > ga(A) for 1 < X < A.
Lemma 2.1 is proved.

We define the functions g1 (\) := which are strongly decreasing
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Assume that

s—1 s—1 -1
By := Bry(m,n) = sup (Z wi> (gp] (m,t) + Zri + @i (s, n)) :
i=t

m<t<s<n i—t

49

Theorem 2.1. Let \g and ) be defined as in Lemma 2.1. Let 0 <m <n < oocand 1 < p < oco.
Inequality (1.13) holds if and only if B, ,,(m,n) < co. Moreover, the least constant in (1.13) satisfies

Br,w <C< 2'}’p BT‘,’UJ’

where

I )
LI w3V A—1)p

2.1)

Proof. Necessity. Suppose that inequality (1.13) holds for all sequences y € }3(m, n) with the
least constant C' > 0. Let «, ¢, s and § be integers satisfying the condition m < a <t < s < g < n.

We introduce a test sequence y = {yy} as the following:

k=1 1 t—1 L
P 1—p
Zi:a_l P; (Zi:a—l P; ) , a<k<t,

1, t<k<s

-1
B8 1—p' B 1—p
X . <k<Z
SLAT(SLAT) L sskss
0,

Y =

It is obvious that y € i;(m, n).
Let us calculate Ay:

i (S ) emrsks o
0, t<k<s,
Ay = 1
—¢ﬂ<2ﬁnﬁp) , s<k<PB,
0, m<k<a—1 or f<k<n

Then we have
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n t—1 1-p B 1=p
1— / 1— /
> pilAyilP = ( > n ”) + (Zpi ”) . (2.2)
i=m i=a—1 i=s
Moreover, simple calculations give that

sz llyz > sz 1= Z w; (23)

i=t—1

and

ZTZ l‘yz‘p < ZTZ 1= Z Ti. (24)

i=t—1
From (1.13), (2.2), (2.3) and (2.4), we get
s—1 t—1 AN B ) =r g
Suso(Sa7) +(SA7) 4 X n)-
i=t—1 i=a—1 =5 i=o—1
1-p B l=p s—1
(S ) (L) S Sy
i=a—1 =5 i=a—1 i=t—1
t—1 AP 2 s—1
co((Za) + Sn)s S
i=a—1 i=a—1 i=t—1
8 P g1
(i) 3
i=s =5
or
S S
Zwisc(sor(a—1,t—1>+Zn+soi(s,6)>. (2.5)
i=t i=t

Since the left-hand side of (2.5) is independent of a, m < a < ¢, and B, s < 8 < n, and the
constant C' is independent of ¢, s, m <t < s < n, we have

s—1 -1
(Zwi><gormt—1+2n+gorsn> <C
i=t—1

i=t—1
or
B, <C. (2.6)
Sufficiency. Let B,,, < oco. Without loss of generality, we assume that y = {y;} € ig(m, n)
and y; > 0 for ¢ = 0,1,2,.... Let A > 1. For any integer k£ we define the set T}, := {i:
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yi > M}, Since the set {y;} is bounded, there exists an integer number 7 = 7(y, \) such that
T. # @ and T4 = @. Let ATy, = T \Tk+1. Then

mnl= |J Th= |J AT 2.7)

k=—00 k=—oc0

Remember that [m,n] = [m,co0) for n = co. From the definition of T} and the condition 7' # @,
we have T}, # @ for all k& < 7. Let k < 7. We present the set Ty, as T, = J[t],s;], where

j
[t st Nty 53] = & for i # j. Let M}, = Tjop1 [ty s3] and Q= {j : M} # @}. For j € Q4
we define ], = min M and 2], = max Mj. It is obvious that ¢} < x and z], < sj.. Moreover,

Ti+1 C U [mi,zi] and ATy D U ([ti,:c}C —1] U[zi + 1,31]). (2.8)
JEQ JEQ,

Let ti < xfﬁ Then

. k , k+1
Yei 1 <A and Yai > AT

Hence,
. . L. 1
z]—1 z—1 v’ z]—1 P
k _ 2kt k _ o , 1-p 1A
MNA=1) =N =N <y, —yy = Z Ay; < Z pi Z pil AyilP | . (2.9)
i=t i=t] i=t]
From (2.9), we obtain
zifl p 1 zifl
1— /
APE Z Pi P < m Z pil AyilP. (2.10)
i=t] i=t]
Similarly, for zi < si, we have
v 4
DI R B D SV (2.11)
i=2J z:zi
Let zi = si. Since Y =Y. > M1 and Yol 41 = Yol 1 < Ak, then
5
k _ L .
NA=1D) <y =y, = Ay = Z(—Ayz)- (2.12)
i=z]
From (2.12) it follows that
1-p
% P T
ok _ \pk -7’ k D A A 1P
Ap g =X Zp < ool = G Zj_pzmyzr : (2.13)

1=z Z:Zk
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Again similarly, for ti = xi, we have

1-p

xi—l 0. 1 xi—l
P 1-p’ Tp—1 S I AP
Moo =X Z P, < oo 1)p|Ay$i_1| = o1y Z pil AyilP. (2.14)
i=t] —1 i=t] —1
If we join inequalities (2.10) and (2.14), we get
xi—l o 1 Ii—l
l—p/ P
Z pi <o > pil Ayl (2.15)
i=t], i=t]
where tz = ti, for tZ; < :zi; and fi = ti — 1 for ti = a:?€
If we join inequalities (2.11) and (2.13), we obtain
1-p
Z pi < Z pilAyilP. (2.16)
1= Zk 1= Zk

Let us estimate the left-hand side of inequality (1.13). For ATy, # @, we have

Z wi—1|ys[P < APEF2) Z Wi—1. (2.17)

iEATk+1 iEATk+1

In view of the assumption that any sum with respect to an empty set is equal to zero, inequality (2.17)
is valid also for ATy = @.
We need the following equality:

k
R = (1=X7P) Y (2.18)

t=—00

By using (2.7), (2.8), (2.17) and (2.18), we get

F= Zwk 1|yl? = Z > wialyl < Z WEE2) N g =

kJ*—OO'LEATk+1 k=—o00 ZEATk+1

T—1 T—1 k
S SECID MIEEEIERCD DD DIRTED SRLE

k=—o00 iEATk+1 k:—OOiEATk+1 t=—o00
SUESID 3L DID DIRTESUICS pE U pRte

t=—00 k>t i€ ATy t=—00 €T 41

T—1
SN —1) Y Ry Z w;. (2.19)

k=—00 JEQ Z*%c_l
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By the condition B,, < oo, we obtain

zi—l zi—l
Z w; < By | oy (m,a], — 1) + Z ri + ¢ (2], m) |. (2.20)
i:xi—l i::vi—l

It is obvious that

I-p
k
oy (m, ), — 1) < Z i I (2.21)
i=t), i=t] 1
and
1-p
o (zhom Z pi + Z . (2.22)
i= Zk i= Zk
By using (2.20), (2.21) and (2.22), we have
zl;—l p J o
> wi<B, Zp + > it Zp . (2.23)
i= zk—l i= tJ i:?i—l i=z]
If we substitute (2.23) into (2.19), we get
T—1 m];—l o a o
TCUD SECD o (DS ad NS SRR Dored e P
k=—00 JEQ i= tJ i:?{;—l 1= zk
1-p 1-p
v g | $ 5 [w(Sar) e[S )
kf—oojeﬂk Z_t{c = Zk

+ Z sy Zrz 1| = AP = 1)B,[F, + F). (2.24)

k=—o00 JEQ zftfc

By using (2.15) and (2.16), we obtain

) 1-p 1-p
ol —
Z > |V Zp“’ + A7 Zp <
k=—00 j€Q, thi = Zk
zifl s{;
Z ST pilawlP + > pilAil | (2.25)
kf—OOJGQk =t i=z]
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Assume that

w;:{jeﬂk:ti<xf€, zi<si}, whlz{jeﬁk:ti:xi, zi<sf€},
wk’gz{jEQk:ti<xi, Zizsi}, OJ {]GQk tk—l’k, Zi:Si;
Moreover,

+ _ o+ + _ + - - - -
Ak,l =Wy kaﬂ? Ak,2 =W ka,la Ak,l =Wy ka,h Ak,Q =W ka,2~

It is obvious that ), = w,:r Uwk, Jwr,2 Jwy, - By the relation for AT}, from (2.8) we have

AT | U B -0 Ul U H+vsi ] (2.26)
JEN, jeat,
Since
a:i—l gi
Z Zpi|Ayi\p+ZPi|Ayi\p =
7€ i:fi, i:zi
z]—1 Si
=D | 2o mlAul D pilAnl oAy, |+
jewy \ i=t] i=2)+1
sh
T2 | Pl B P DD Al o Ay |+
IEWk,1 i:zi—&—l
xifl
30 | 2 alaul g8y |+ DT (gl oy Au ) =
J€wk2 \ i=t] jewy
:ck—l
= 2 2 eldul+ ) Z pil Ayil? | +
JEAM zfti JGAHI Zk+1

+ Z pmiflyAyzifl‘p + Z Pzim?/zi P | = Fpq + Frpo,
JEAL JEAL, UA;;Q

from (2.25), we have

T

> (Fi + Frp). 2.27)

k=—o00

1

<
==
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On the basis of (2.26) we have that Fj, ; < Z pil Ay;|P. Hence,

1€EATY

Z Fi1 < Z > pz!Ayz\p—sz\Ayz : (2.28)

k=—o00 k=—00 i€AT}

Since t] —1= xk < M for j € Ay, and zl > AR for j € AkQUAkQ, then there exist
integers k1 = ki(k,j) < k and ko = ko(k,j) > k such that 2 — 1 € AT}, for j € A, and
zi € ATy, for j € A, |UA],. We note that AT, = T’ Therefore,

Z Fia < Z > pil Ayl sz\Ayz : (2.29)

k=—o00 k=—001€AT}

Thus, from (2.27), (2.28) and (2.29), we have
2 n
< — i| Ay |P. 2.30
1_(A1)p;np| vil (2.30)

Let us estimate Fy:

T

s, T T
FQS Z )\pkzzkm_1§2 Z /\pkzri_1=2 Z )\pk Z Z ri—1 =

k=—oc0 JEQ Z:'tz k=—oc0 i€Ty k=—00 t=—001=AT}
T t 2 T

— ) Pt _ pt .
R S ILEI SECINE N P P

t=—00i=AT; k=—00 t=—00 i=AT:

2N &
<o 2. X rielul ilyil? (2.31)
t=—00 i=AT};

If we combine (2.30) and (2.31) with (2.24), we get

F <2V (\ — 1) By max { —— al Z (il AP + rialyilP). (2.32)
- ’ (A—=1)p" \p—1 =

Since the left-hand side of inequality (2.32) is independent of A > 1, by Lemma 2.1 we have

n
> wilyel” <
i=m

1 n
<2Brw‘f PN —1 zAip i— ip =
<280 ot (V07— Dmas {2 5 S (Al i)

=

MP(AP — 1) -

_ . . 2p p
2Br,wmm{1<1§150 7(/\_1) 7 Alilf\ A }Z (Pil AyilP + i1 |yil?) =

=m
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n
= NBrw Z (pil Ayi|P + ri—1yil?).

=m
Thus, inequality (1.13) is valid with the estimate
C < 2v,Br .y, (2.33)

where C' is the least constant in (1.13). Inequalities (2.6) and (2.33) give (2.1).
Theorem 2.1 is proved.
Let us turn to inequality (1.9). In the case ; =0, ¢ = 1,2, ..., we have the following theorem.
Theorem 2.2. Let 0 < m < n < oo and 1 < p < oo. Inequality (1.9) holds if and only if
By(m,n) < oo. Moreover, the least constant in (1.9) satisfies

B, < C < 27, By,

where
s—1 t 1-p n 1-p\ !
By, := By(m,n) = sup Zwi p,}fp + Zpilfp
m<tss<n \ = i=m i=s

and

-1

— inf 2 )
IS Ty

3. Main results. First, we study the oscillatory properties of equation (1.11) that follow from
Theorems 1.1 and 2.1. Relation (2.1) obviously gives the following corollary.

Corollary 3.1. Let 0 < m <n < ocand 1 <p < oo. If (1.12) holds, then B, ,, < 1, and if
29pBrw < 1, then (1.12) holds.

Applying Corollary 3.1 and Theorem 1.1 to the problem of the conjugacy and disconjugacy of
equation (1.11) on the interval [m,n], we get the following theorem.

Theorem 3.1. Let 0 <m<n<ooand 1< p < oco. Then:

(i) for the disconjugacy of equation (1.11) on the interval [m,n| the condition B,,, < 1 is
necessary and the condition 2v,B,.., < 1 is sufficient;

(ii) for the conjugacy of equation (1.11) on the interval [m,n| the condition 2v,By., > 1 is
necessary and the condition B,.., > 1 is sufficient.

Proof. The statements (i) and (ii) are equivalent. Thus, we will prove only the statement (i).

If equation (1.11) is disconjugate on the interval [m,n], then by Theorem 1.1 inequality (1.12)
holds. Hence, by Corollary 3.1 we have B, ,, < 1.

Conversely, if 2v,B,, > 1, then by Corollary 3.1 inequality (1.12) holds. Hence, by Theo-
rem 1.1 equation (1.11) is disconjugate on the interval [m, n].

The statement (i) is proved. Thus, Theorem 3.1 is also proved.

Corollary 3.2. Let 0 < m <n <ocoand 1< p < oco. Then:

(i) if there exist integers t and s, m < t < s < n, such that

s—1 s—1

D wi> o (m,t) + Y i+ o (s,n)

1=t i=t

holds, then equation (1.11) is conjugate on the interval [m,nl;
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(ii) if equation (1.11) is conjugate on the interval [m,n], then there exist integers t and s,
m <t < s <mn, such that

s—1

sz oy (m. )+ 3 ri+ o (s,m)

=t

holds;

(iii) if equation (1.11) is disconjugate on the interval [m,n], then there exist integers t and s,
m <t < s <mn, such that

s—1 s—1
Y wi <op (mot) + Y i+ o (s,n)
1=t i=t

holds.

We will present oscillation and nonoscillation results of equation (1.11).

Theorem 3.2. Let 1 < p < o0.

(i) For equation (1.11) to be nonoscillatory the condition B, ,,(m,c0) < 1 is necessary and the
condition 27, By ,(m,00) < 1 is sufficient for some m > 0.

(if) For equation (1.11) to be oscillatory the condition 2y, lim,, o sup By (m,00) > 1 is
necessary and the condition limy,, o sup By.,,(m, 00) > 1 is sufficient.

Proof. The statement (i) directly follows from the statement (i) of Theorem 3.1. We will prove
the statement (ii).

Let equation (1.11) be oscillatory. Then there exists an integer k£, 0 < k < oo, such that for all
m > k equation (1.11) is conjugate on the interval [m, co). Therefore, by Theorem 3.1 we have that
29, By s (m, 00) > 1 for all m > k. Hence, it follows that 2+, lim,, . sup By ,(m, 00) > 1.

Conversely, let lim,, oo sup By, (m,00) > 1. Then there exists an increasing sequence of
natural numbers {my}7°, such that mj — oo for k — oo and B, ,(my,00) > 1 for all & > 1.
Then by Theorem 3.1 equation (1.11) is conjugate on the interval [mg,oc0) for all £ > 1, i.e., for
all £ > 1 there exists a nontrivial solution of equation (1.11) that has at least two generalized zeros
on the interval [my,oc0). Hence, there exists a sequence {my} C {my} such that on all intervals
[M, Mmi11— 1] some nontrivial solution of equation (1.11) has two zeros. Then by Sturm’s separation
theorem [18] (Theorem 3) there exists a nontrivial solution of equation (1.11) that has at least one
generalized zero on each interval [mg, mgiq1 — 1], kK > 1. Thus, this solution of equation (1.11) is
oscillatory.

Theorem 3.2 is proved.

From Theorem 3.2 we have the following corollary.

Corollary 3.3. Let 1 < p < o0.

(i) If there exist sequences of integers my, tp, and sg, k > 1, such that 0 < my, < ti < Sg,
my — oo for k — oo and

Ssp—1 sp—1
E wZ > 807- mk-,tk- E T.Z + Spr Sk? )
= tk 1= tk

holds for a sufficiently large k, then equation (1.11) is oscillatory.
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(i) If equation (1.11) is oscillatory, then there exist sequences of integers my, tx, and si, k > 1,
such that 0 < my <ty < sg, mp — o0 for k — oo and

sp—1 1 sp—1
Z w; > s— @;(mk,tk) + Z i+ 307—!_(816700)
1=t 2’7]) 1=t

holds.

Now we turn to equation (1.1). We will remind that equation (1.1) is a partial case of equa-
tion (1.11). If we replace w by v+ and r by v~, we get the following theorems and corollaries.

Theorem 3.3. Let 0 <m<n<ooand 1l < p < oco. Then:

(i) for the disconjugacy of equation (1.1) on the interval [m,n] the condition B,- ,+ < 1 is
necessary and the condition 27, B~ ,+ < 1 is sufficient,

(ii) for the conjugacy of equation (1.1) on the interval [m,n] the condition 2v,B, - ,+ > 1 is
necessary and the condition B, ,+ > 1 is sufficient.

Corollary 3.4. Let 0 < m <n < oo and 1 <p < oco. Then:

(i) if there exist integers t and s, m <t < s < n, such that

s—1 s—1
v > (mot) + > v+ ¢l (s,n)
i=t i=t

or
s—1
Zvi > o (m,t) + ¢ (s,n)
i=t

holds, then equation (1.1) is conjugate on the interval [m,n];
(ii) if equation (1.1) is conjugate on the interval [m,n], then there exist integers t and s,
m <t < s <mn, such that

s—1 1 s—1
U;r > 5 90;— (ma t) + Z’U; + Soj— (S,TL)

i=t 2% i=t

holds;
(iii) if equation (1.1) is disconjugate on the interval [m,n|, then there exist integers t and s,
m <t < s <mn, such that

holds.

Theorem 3.4. Let 1 < p < oo.

(i) For equation (1.1) to be nonoscillatory the condition B, ,+(m,oc0) < 1 is necessary and
the condition 2v,B,,~ ,,+ (m,00) < 1 is sufficient for some m > 0.

(i) For equation (1.1) to be oscillatory the condition 27y, lim, ;oo SUp By~ ,+(m,00) > 1 is
necessary and the condition 1im,, .o sup B~ ,+(m, 00) > 1 is sufficient.
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Corollary 3.5. Let 1 < p < .
(i) If there exist sequences of integers my, ty, and sg, k > 1, such that 0 < my, <t < Sg,
my — oo for k — oo and

SEp—1

> v > oy (mis te) + @) (s, 00)

i=ty,

holds for a sufficiently large k, then equation (1.1) is oscillatory.
(i) If equation (1.1) is oscillatory, then there exist sequences of integers my, ti, and si, k > 1,
such that 0 < my, <ty < sg, mi — o0 for k — oo and

sp—1 1 sp—1
> ot > o | o (mes te) + > v+ @b (sk,00)
1=t f)/p 1=ty

holds.

If starting from some number n > 1 we have v;r = 0 for any ¢ > n, then equation (1.1) is
nonoscillatory. Therefore, for equation (1.1) to be oscillatory, it is necessary that for each natural
n > 1 there exists an index 4, > n such that v;; # 0. Since suppv™ Nsuppv™ = &, then from
Corollary 3.5 we get a statement that answers the question about the influence of the positive part of
the sequence v on the oscillation of equation (1.1) posed in Introduction.

Corollary 3.6. Let 1 < p < co. Let suppv™ = {iq,i2,...,0n,...} and lim, o0 ip = 00. If

+
lim sup in > 1,
n=oe " pi, + o (in + 1, 00)

(Y

then equation (1.1) is oscillatory.

Corollary 3.6 follows from the first part (i) of Corollary 3.5 for my =t = 4, and s =t + 1.

From Theorems 2.2, 3.1 and 3.2 we get the results for equation (1.8). We note that the values
B, and 7, used below are defined in Theorem 2.2.

Theorem 3.5. Let 0 <m<n<ooand 1 <p < oo. Then:

(i) for the disconjugacy of equation (1.8) on the interval [m,n| the condition By, < 1 is
necessary and the condition 27,B,, < 1 is sufficient;

(i) for the conjugacy of equation (1.8) on the interval [m,n| the condition 27y,B,, > 1 is
necessary and the condition B,, > 1 is sufficient.

Theorem 3.6. Let 1 < p < oo.

(i) For equation (1.8) to be nonoscillatory the condition B,,(m,o0) < 1 is necessary and the
condition 27, B,,(m, 00) < 1 is sufficient for some m > 0.

(if) For equation (1.8) to be oscillatory the condition 27, lim,, o sup By, (m, 00) > 1 is neces-
sary and the condition 1im,,_,~. sup By, (m, 00) > 1 is sufficient.
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