A. Boua (Sidi Mohamed Ben Abdellah Univ., Fez, Morocco),M. Ashraf (Aligarh Muslim Univ., India)

SOME ALGEBRAIC IDENTITIES IN 3-PRIME NEAR-RINGS ДЕЯКІ АЛГЕБРАЇЧНІ ТОТОЖНОСТІ ДЛЯ 3-ПРОСТИХ МАЙЖЕ КІЛЕЦЬ

We extend the domain of applicability of the concept of $(1, \alpha)$ -derivations in 3-prime near-rings by analyzing the structure and commutativity of near-rings admitting $(1, \alpha)$ -derivations satisfying certain differential identities.

Розширено область застосовності поняття $(1,\alpha)$ -похідних для 3-простих майже кілець, як результат вивчення структури та комутативності майже кілець, що допускають $(1,\alpha)$ -похідні, які задовольняють деякі диференціальні тотожності.

1. Introduction. Throughout this paper, \mathcal{N} will denote a zero-symmetric left near-ring. A near-ring \mathcal{N} is called zero symmetric if 0x=0 for all $x\in\mathcal{N}$ (recall that in a left near ring x0=0 for all $x\in\mathcal{N}$). \mathcal{N} is called 3-prime if $x\mathcal{N}y=\{0\}$ implies x=0 or y=0. The symbol $Z(\mathcal{N})$ will represent the multiplicative center of \mathcal{N} , that is, $Z(\mathcal{N})=\{x\in\mathcal{N}\mid xy=yx \text{ for all }y\in\mathcal{N}\}$. For any $x,y\in\mathcal{N}$, as usual, [x,y]=xy-yx and $x\circ y=xy+yx$ will denote the well-known Lie product and Jordan product, respectively. Recall that \mathcal{N} is called 2-torsion free if 2x=0 implies x=0 for all $x\in\mathcal{N}$. For terminologies concerning near-rings we refer to G. Pilz [6].

An additive mapping $d: \mathcal{N} \to \mathcal{N}$ is said to be a derivation if d(xy) = xd(y) + d(x)y for all $x, y \in \mathcal{N}$, or, equivalently, as noted in [7], that d(xy) = d(x)y + xd(y) for all $x, y \in \mathcal{N}$. An additive mapping $d: \mathcal{N} \to \mathcal{N}$ is called a semiderivation if there exists a function $g: \mathcal{N} \to \mathcal{N}$ such that d(xy) = d(x)g(y) + xd(y) = d(x)y + g(x)d(y) and d(g(x)) = g(d(x)) hold for all $x, y \in \mathcal{N}$. An additive mapping $d: \mathcal{N} \to \mathcal{N}$ is called a two sided α -derivation if there exists a function α : $\mathcal{N} \to \mathcal{N}$ such that $d(xy) = d(x)y + \alpha(x)d(y)$ and $d(xy) = d(x)\alpha(y) + xd(y)$ hold for all $x, y \in \mathcal{N}$. An additive mapping $d: \mathcal{N} \to \mathcal{N}$ is called a $(1, \alpha)$ -derivation if there exists a function $\alpha: \mathcal{N} \to \mathcal{N}$ such that $d(xy) = d(x)y + \alpha(x)d(y)$ holds for all $x, y \in \mathcal{N}$. An additive mapping $d: \mathcal{N} \to \mathcal{N}$ is called an $(\alpha, 1)$ -derivation if there exists a function $\alpha : \mathcal{N} \to \mathcal{N}$ such that $d(xy) = d(x)\alpha(y) + xd(y)$ holds for all $x, y \in \mathcal{N}$. Obviously, a two sided α -derivation is both $(1, \alpha)$ -derivation as well as $(\alpha, 1)$ -derivation. Also, any derivation on \mathcal{N} is a $(1, \alpha)$ -derivation, but the converse is not true in general (see [5]). There are several results asserting that 3-prime near-rings with certain constrained derivations have ringlike behavior. Recently many authors (see [1, 2, 4], where further references can be found) studied commutativity of 3-prime near-rings satisfying certain identities involving derivations, semiderivations and two sided α -derivations. Now our aim is to study the commutativity behavior of a 3-prime near-ring which admits $(1, \alpha)$ -derivations satisfying certain properties. In fact, our results generalize, extend and complement several results obtained earlier in [1, 5, 8] on derivations, semiderivations and two sided α -derivations for 3-prime near-rings.

2. Some preliminaries. In this section, we include some well-known results which will be used for developing the proof of our main result.

Lemma 2.1 ([4], Theorem 2.9). Let \mathcal{N} be a 3-prime near-ring. If I is a nonzero semigroup ideal of \mathcal{N} and d is a nonzero derivation of \mathcal{N} , then the following assertions are equivalent:

(i)
$$[u,v] \in Z(\mathcal{N})$$
 for all $u, v \in I$,

- (ii) $[d(u), v] \in Z(\mathcal{N})$ for all $u, v \in I$,
- (iii) \mathcal{N} is a commutative ring.

Lemma 2.2 ([4], Theorem 2.10). Let \mathcal{N} be a 2-torsion free 3-prime near-ring. If $u \circ v \in Z(\mathcal{N})$ for all $u, v \in \mathcal{N}$, then \mathcal{N} is a commutative ring.

Lemma 2.3 ([3], Lemma 1.5). Let \mathcal{N} be a 3-prime near-ring. If $\mathcal{N} \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.

Lemma 2.4. A near-ring N admits a $(1, \alpha)$ -derivation d associated with an additive map α if and only if it is zero-symmetric.

Proof. Let \mathcal{N} be a zero-symmetric near-ring. Then the zero map is a $(1, \alpha)$ -derivation d on \mathcal{N} . Conversely, assume that \mathcal{N} has an $(1, \alpha)$ -derivation d associated with an additive map α . Let x, y be two arbitrary elements of \mathcal{N} . By definition of d, we have

$$d(x0y) = d(x(0y)) = d(x)(0y) + \alpha(x)d(0y) =$$

$$= (d(x)0)y + \alpha(x)(d(0)y) + \alpha(x)(\alpha(0)d(y)) = 0y + (\alpha(x)d(0))y + (\alpha(x)\alpha(0))d(y) =$$

$$= 0y + (\alpha(x)0)y + (\alpha(x)\alpha(0))d(y) = 0y + 0y + (\alpha(x)0)d(y) = 0y + 0y + 0d(y).$$

On the other hand,

$$d(x0y) = d((x0)y)) = d(0y) =$$

$$= d(0)y + \alpha(0)d(y) = 0y + 0d(y).$$

By comparing the last two expressions, we find that 0y = 0 for all $y \in \mathcal{N}$, and hence \mathcal{N} is a zero-symmetric left near-ring.

Remark. The above lemma has its independent interest in the study of arbitrary left near-rings (not necessarily zero-symmetric). It can also be easily seen that it is also true in the case of right near-ring.

Lemma 2.5. Let \mathcal{N} be a near-ring and d be a $(1, \alpha)$ -derivation associated with a map α . Then \mathcal{N} satisfies the following property:

$$\left(d(x)y+\alpha(x)d(y)\right)z=$$

$$=d(x)yz+\alpha(x)d(y)z+\alpha(x)\alpha(y)d(z)-\alpha(xy)d(z) \quad \textit{for all} \quad x,y,z\in\mathcal{N}.$$

Proof. From the associative law we have

$$d((xy)z) = d(xy)z + \alpha(xy)d(z) =$$

$$= (d(x)y + \alpha(x)d(y))z + \alpha(xy)d(z) \quad \text{for all} \quad x,y \in \mathcal{N}.$$

Also

$$d(x(yz))=d(x)yz+\alpha(x)d(yz)=$$

$$=d(x)yz+\alpha(x)d(y)z+\alpha(x)\alpha(y)d(z)\quad\text{for all}\quad x,y,z\in\mathcal{N}.$$

Combining the above two equalities, we find

$$(d(x)y + \alpha(x)d(y))\,z + \alpha(xy)d(z) =$$

$$= d(x)yz + \alpha(x)d(y)z + \alpha(x)\alpha(y)d(z) \quad \text{for all} \quad x,y,z \in \mathcal{N},$$

which is the required result.

Lemma 2.6. Let N be a 3-prime near-ring and d be a nonzero $(1, \alpha)$ -derivation associated with an onto map α .

- (i) If $ad(\mathcal{N}) = \{0\}$, $a \in \mathcal{N}$ and α is an onto map, then a = 0.
- (ii) If $d(\mathcal{N})a = \{0\}$ and $\alpha(xy) = \alpha(x)\alpha(y)$ for all $x, y \in \mathcal{N}$, then a = 0.
- **Proof.** (i) If $ad(\mathcal{N}) = \{0\}$ and $a \in \mathcal{N}$, then ad(xy) = 0 for all $x, y \in \mathcal{N}$. This implies that $ad(x)y + a\alpha(x)d(y) = 0$ for all $x, y \in \mathcal{N}$, and, hence, $a\alpha(x)d(y) = 0$ for all $x, y \in \mathcal{N}$. Since α is onto, $a\mathcal{N}d(y) = \{0\}$ for all $y \in \mathcal{N}$. By 3-primeness of \mathcal{N} and $d \neq 0$, we obtain a = 0.
- (ii) If $d(\mathcal{N})a = \{0\}$, then d(xy)a = 0 for all $x, y \in \mathcal{N}$. By Lemma 2.5, we get $d(x)ya + \alpha(x)d(y)a + \alpha(x)\alpha(y)d(a) \alpha(xy)d(a) = 0$ for all $x, y \in \mathcal{N}$. By the given hypothesis, we find that d(x)ya = 0 for all $x, y \in \mathcal{N}$, i.e., $d(x)\mathcal{N}a = \{0\}$ for all $x \in \mathcal{N}$. Since $d \neq 0$ and \mathcal{N} is 3-prime, we arrive at a = 0.

Lemma 2.7. Let \mathcal{N} be a 2-torsion free 3-prime near-ring. If d is a nonzero $(1, \alpha)$ -derivation associated with an onto map α such that $\alpha d = d\alpha$, then $d^2 \neq 0$.

Proof. Suppose that $d^2(\mathcal{N}) = \{0\}$. Then, for $x, y \in \mathcal{N}$, one can write

$$0 = d^2(xy) = d(d(xy)) = d(d(x)y + \alpha(x)d(y)) =$$

$$= d^2(x)y + \alpha(d(x))d(y) + d(\alpha(x))d(y) + \alpha^2(x)d^2(y) =$$

$$= \alpha(d(x))d(y) + d(\alpha(x))d(y) \quad \text{for all} \quad x, y \in \mathcal{N}.$$

Note that $\alpha(d(x)) = d(\alpha(x))$, we find that

$$2\alpha(d(x))d(y) = 0$$
 for all $x, y \in \mathcal{N}$.

Since \mathcal{N} is 2-torsion free, we arrive at

$$d(\alpha(x))d(y) = 0$$
 for all $x, y \in \mathcal{N}$.

By using Lemma 2.6 and the fact that α is onto, we obtain that d=0 a contradiction.

- 3. Main results. In [2], H. E. Bell and G. Mason proved that a 3-prime near-ring $\mathcal N$ must be commutative if it admits a derivation d such that $d(\mathcal N)\subseteq Z(\mathcal N)$. This result was generalized by the authors in [5, 8]. They replaced the derivation with a semiderivation or two sided α -derivation. Our objective in the following theorems is to generalize these results by treating the case of $(1,\alpha)$ -derivation where α is an onto map.
- **Theorem 3.1.** Let $\mathcal N$ be a 2-torsion free 3-prime near-ring. If $\mathcal N$ admits a nonzero $(1,\alpha)$ -derivation d associated with an onto map α such that $\alpha d=d\alpha$ and $d(\mathcal N)\subseteq Z(\mathcal N)$, then $\mathcal N$ is a commutative ring.

Proof. Suppose that $d(\mathcal{N}) \subseteq Z(\mathcal{N})$. By definition of d, we have

$$(d(x)y + \alpha(x)d(y))z = z(d(x)y + \alpha(x)d(y))$$
 for all $x, y, z \in \mathcal{N}$.

This implies that

$$d(x)yz + \alpha(x)d(y)z + \alpha(x)\alpha(y)d(z) - \alpha(xy)d(z) =$$

$$= zd(x)y + z\alpha(x)d(y) \quad \text{for all} \quad x, y, z \in \mathcal{N}.$$
(3.1)

Replacing z by d(z) in (3.1), we get

$$\alpha(x)\alpha(y)d^2(z) = \alpha(xy)d^2(z)$$
 for all $x, y, z \in \mathcal{N}$,

which reduces to

$$d^{2}(z)\mathcal{N}(\alpha(x)\alpha(y) - \alpha(xy)) = \{0\} \quad \text{for all} \quad x, y, z \in \mathcal{N}.$$
 (3.2)

In view of 3-primeness of \mathcal{N} , (3.2) implies that

$$d^2 = 0$$
 or $\alpha(xy) = \alpha(x)\alpha(y)$ for all $x, y \in \mathcal{N}$.

Since $d \neq 0$, we obtain $d^2 \neq 0$ by Lemma 2.7, and in this case the previous relation becomes only $\alpha(xy) = \alpha(x)\alpha(y)$ for all $x, y \in \mathcal{N}$ and by (3.1) we arrive at

$$d(x)yz + \alpha(x)d(y)z = zd(x)y + z\alpha(x)d(y) \quad \text{for all} \quad x, y, z \in \mathcal{N}.$$
 (3.3)

Replacing z by $\alpha(x)$ in (3.3), we obtain

$$d(x)y\alpha(x) = \alpha(x)d(x)y$$
 for all $x, y \in \mathcal{N}$.

This yields that

$$d(x)\mathcal{N}[\alpha(x), y] = \{0\}$$
 for all $x, y \in \mathcal{N}$.

Since \mathcal{N} is 3-prime, we find that

$$d(x) = 0$$
 or $\alpha(x) \in Z(\mathcal{N})$ for all $x \in \mathcal{N}$. (3.4)

Suppose there exists $x_0 \in \mathcal{N}$ such that $d(x_0) = 0$. Replacing x by x_0 in (3.1), we get $\alpha(x_0)d(y)z = z\alpha(x_0)d(y)$ for all $y, z \in \mathcal{N}$, which implies that

$$d(y)\mathcal{N}[\alpha(x_0), z] = \{0\}$$
 for all $y, z \in \mathcal{N}$.

Since \mathcal{N} is 3-prime and $d \neq 0$, the last expression implies that $\alpha(x_0) \in Z(\mathcal{N})$, and the relation (3.4) yields $\alpha(x) \in Z(\mathcal{N})$ for all $x \in \mathcal{N}$. Now in this case (3.1) becomes

$$d(x)\mathcal{N}[y,z] = \{0\}$$
 for all $y, z \in \mathcal{N}$.

Since \mathcal{N} is 3-prime and $d \neq 0$, we conclude that $\mathcal{N} \subseteq Z(\mathcal{N})$ and by Lemma 2.3, \mathcal{N} is a commutative ring.

Corollary 3.1 ([2], Theorem 2). Let \mathcal{N} be a 2-torsion free 3-prime near-ring. If \mathcal{N} admits a nonzero derivation d such that $d(\mathcal{N}) \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.

Corollary 3.2. Let \mathcal{N} be a 2-torsion free 3-prime near-ring. If \mathcal{N} admits a nonzero semiderivation d associated with an onto map α such that $d(\mathcal{N}) \subseteq Z(\mathcal{N})$, then \mathcal{N} is a commutative ring.

Theorem 3.2. Let \mathcal{N} be a 2-torsion free 3-prime near-ring which admits a nonzero $(1, \alpha)$ -derivation d associated with an onto map α . Then the following assertions are equivalent:

(i)
$$d([x,y]) = 0$$
 for all $x, y \in \mathcal{N}$,

(ii) N is a commutative ring.

Proof. It is easy to verify that (ii) \Rightarrow (i).

(i) \Rightarrow (ii) Suppose that d([x,y]) = 0 for all $x,y \in \mathcal{N}$. Replacing y by xy, we get

$$0 = d([x,xy]) = d(x[x,y]) =$$

$$=d(x)[x,y] + \alpha(x)d([x,y])$$
 for all $x,y \in \mathcal{N}$.

This implies that

$$d(x)xy = d(x)yx$$
 for all $x, y \in \mathcal{N}$. (3.5)

Replacing y by yt in (3.5) and using it again, we get

$$d(x)ytx = d(x)xyt =$$

$$=d(x)yxt$$
 for all $x,y,t\in\mathcal{N}$,

which reduces to

$$d(x)\mathcal{N}[x,t] = \{0\}$$
 for all $x, t \in \mathcal{N}$.

By 3-primeness of \mathcal{N} , we obtain

$$d(x) = 0 \text{ or } x \in Z(\mathcal{N}) \text{ for all } x \in \mathcal{N}.$$
 (3.6)

Suppose there exists $x_0 \in \mathcal{N}$ such that $d(x_0) = 0$. Then by hypothesis, we have $d(x_0y) = d(yx_0)$ for all $y \in \mathcal{N}$. Since \mathcal{N} is zero-symmetric by Lemma 2.5, the last equation implies that

$$\alpha(x_0)d(y) = d(y)x_0 \quad \text{for all} \quad y \in \mathcal{N}.$$
 (3.7)

Taking yt instead of y in (3.7) and using Lemma 2.5 together with the fact that $d(x_0) = 0$, we find that

$$\alpha(x_0)d(y)t + \alpha(x_0)\alpha(y)d(t) = d(y)tx_0 + \alpha(y)d(t)x_0$$
 for all $y, t \in \mathcal{N}$.

By (3.7) the above expression implies that

$$d(y)x_0t + \alpha(x_0)\alpha(y)d(t) = d(y)tx_0 + \alpha(y)\alpha(x_0)d(t)$$
 for all $y, t \in \mathcal{N}$.

Putting [u, v] instead of t in the last expression, we get

$$d(y)x_0[u,v] = d(y)[u,v]x_0 \quad \text{for all} \quad u,v,y \in \mathcal{N}.$$
(3.8)

Replacing y by yt in (3.8) and using it again, we obtain

$$d(y)tx_0[u,v] + \alpha(y)d(t)x_0[u,v] =$$

$$=d(y)t[u,v]x_0 + \alpha(y)d(t)[u,v]x_0$$
 for all $y,t \in \mathcal{N}$,

which reduces to

$$d(y)\mathcal{N}(x_0[u,v]-[u,v]x_0)=\{0\}$$
 for all $y,u,v\in\mathcal{N}$.

Since $d \neq 0$, by 3-primeness of \mathcal{N} , we get $x_0[u,v] - [u,v]x_0 = 0$ for all $u,v \in \mathcal{N}$ in this case (3.6) becomes $[u,v] \in Z(\mathcal{N})$ for all $u,v \in \mathcal{N}$ and by Lemma 2.1, we conclude that \mathcal{N} is a commutative ring.

Corollary 3.3 ([1], Theorem 4.1). Let \mathcal{N} be a 2-torsion free 3-prime near-ring. If \mathcal{N} admits a nonzero derivation d such that d([x,y]) = 0 for all $x, y \in \mathcal{N}$, then \mathcal{N} is a commutative ring.

Corollary 3.4. Let $\mathcal N$ be a 2-torsion free 3-prime near-ring. If $\mathcal N$ admits a nonzero semiderivation d associated with an onto map α such that d([x,y])=0 for all $x,y\in\mathcal N$, then $\mathcal N$ is a commutative ring.

Theorem 3.3. Let \mathcal{N} be a 2-torsion free 3-prime near-ring. Then there exists no nonzero $(1, \alpha)$ -derivation d associated with an onto map α such that $d(x \circ y) = 0$ for all $x, y \in \mathcal{N}$.

Proof. Assume that $d(x \circ y) = 0$ for all $x, y \in \mathcal{N}$. Replacing y by xy, we get

$$0 = d(x \circ xy) = d(x(x \circ y)) =$$

$$= d(x)(x \circ y) + \alpha(x)d(x \circ y) \quad \text{for all} \quad x,y \in \mathcal{N}.$$

This implies that

$$d(x)xy = -d(x)yx \quad \text{for all} \quad x, y \in \mathcal{N}. \tag{3.9}$$

Replacing y by yt in (3.9) and using it again, we get

$$d(x)ytx = -d(x)xyt = d(x)xy(-t) =$$

$$= (-d(x)yx)(-t) = d(x)y(-x)(-t) \quad \text{for all} \quad x,y,t \in \mathcal{N}.$$

This can be rewritten as

$$d(x)\mathcal{N}(-t(-x)+(-x)t)=\{0\}$$
 for all $x,y,t\in\mathcal{N}$.

By 3-primeness of \mathcal{N} , the latter equation becomes

$$d(x) = 0$$
 or $-x \in Z(\mathcal{N})$ for all $x \in \mathcal{N}$. (3.10)

Suppose there exists $x_0 \in \mathcal{N}$ such that $d(x_0) = 0$. Then by hypothesis, we have $d(x_0y) = -d(yx_0)$ for all $y \in \mathcal{N}$. Since \mathcal{N} is zero-symmetric, by definition of d the last equation implies that

$$\alpha(x_0)d(y) = -d(y)x_0 \quad \text{for all} \quad y \in \mathcal{N}. \tag{3.11}$$

Taking yt instead of y in (3.11) and using Lemma 2.5 together with the fact that $d(x_0) = 0$, we find that

$$\alpha(x_0)d(y)t + \alpha(x_0)\alpha(y)d(t) = -\alpha(y)d(t)x_0 - d(y)tx_0$$
 for all $y, t \in \mathcal{N}$.

By (3.11) the above expression implies that

$$(-d(y)x_0)t + \alpha(x_0)\alpha(y)d(t) = -\alpha(y)d(t)x_0 - d(y)tx_0 \quad \text{for all} \quad y, t \in \mathcal{N}.$$

Putting $u \circ v$ instead of t in the last expression, we get

$$d(y)(-x_0)(u \circ v) = d(y)(u \circ v)(-x_0) \quad \text{for all} \quad u, v, y \in \mathcal{N}.$$
(3.12)

Replacing y by yt in (3.12) and using it again, we obtain

$$d(y)t(-x_0)(u \circ v) + \alpha(y)d(t)(-x_0)(u \circ v) = d(y)t(u \circ v)(-x_0) + \alpha(y)d(t)(u \circ v)(-x_0)$$

for all $y, t \in \mathcal{N}$, which reduces to

$$d(y)\mathcal{N}((-x_0)(u \circ v) - (u \circ v)(-x_0)) = \{0\}$$
 for all $y, u, v \in \mathcal{N}$.

Since $d \neq 0$, by 3-primeness of \mathcal{N} , we find that $(-x_0)(u \circ v) = (u \circ v)(-x_0)$ for all $u, v \in \mathcal{N}$, and in this case (3.10) implies $(-x)(u \circ v) = (u \circ v)(-x)$ for all $u, v, x \in \mathcal{N}$. Replacing x by -x in the last equation, we obtain $u \circ v \in Z(\mathcal{N})$ for all $u, v \in \mathcal{N}$. Now by Lemma 2.2, we conclude that \mathcal{N} is a commutative ring. In this case, we obtain 2d(xy) = 0 for all $x, y \in \mathcal{N}$ and by 2-torsion freeness, we have d(xy) = 0 for all $x, y \in \mathcal{N}$. By definition of d, we get $d(x)y + \alpha(x)d(y) = 0$ for all $x, y \in \mathcal{N}$. Replacing y by yz in the above expression we obtain that d(x)yz = 0 for all $x, y, z \in \mathcal{N}$, i.e., $d(x)\mathcal{N}z = \{0\}$ for all $x, z \in \mathcal{N}$ and by 3-primeness of \mathcal{N} we conclude that d = 0, a contradiction.

Corollary 3.5. Let \mathcal{N} be a 2-torsion free 3-prime near-ring. Then there exists no nonzero derivation d such that $d(x \circ y) = 0$ for all $x, y \in \mathcal{N}$.

Corollary 3.6. Let \mathcal{N} be a 2-torsion free 3-prime near-ring. Then there exists no nonzero semiderivation d associated with an onto map α such that $d(x \circ y) = 0$ for all $x, y \in \mathcal{N}$.

Theorem 3.4. Let \mathcal{N} be a 2-torsion free 3-prime near-ring which admits a nonzero $(1, \alpha)$ -derivation d associated with an onto homomorphism α . Then the following assertions are equivalent:

- (i) d([x,y]) = [x,y] for all $x,y \in \mathcal{N}$,
- (ii) N is a commutative ring.

Proof. It is easy to verify that (ii) \Rightarrow (i).

(i) \Rightarrow (ii) Suppose that d([x,y]) = [x,y] for all $x,y \in \mathcal{N}$. Replacing y by xy, we get

$$[x,xy] = d([x,xy]) = d(x[x,y]) =$$

$$= d(x)[x,y] + \alpha(x)d([x,y]) \quad \text{for all} \quad x,y \in \mathcal{N}.$$

Since [x, xy] = x[x, y], the above expression becomes

$$d(x)[x,y] + \alpha(x)[x,y] = x[x,y]$$
 for all $x,y \in \mathcal{N}$.

Taking [u, v] instead of x and using our hypothesis, we arrive at

$$\alpha([u,v])[[u,v],y] = 0$$
 for all $u,v,y \in \mathcal{N}$.

This implies that

$$\alpha([u,v])y[u,v] = \alpha([u,v])[u,v]y \quad \text{for all} \quad u,v,y \in \mathcal{N}. \tag{3.13}$$

Replacing y by yt in (3.13) and using it again, we get

$$\alpha([u,v])yt[u,v] = \alpha([u,v])[u,v]yt =$$

$$= \alpha([u,v])y[u,v]t \quad \text{for all} \quad u,v,y,t \in \mathcal{N},$$

which forces that

$$\alpha([u,v])\mathcal{N}[[u,v],t] = \{0\}$$
 for all $u,v,t \in \mathcal{N}$.

Since \mathcal{N} is 3-prime, we find that

$$\alpha([u,v]) = 0 \quad \text{or} \quad [u,v] \in Z(\mathcal{N}) \quad \text{for all} \quad u,v \in \mathcal{N}.$$
 (3.14)

If there exist two elements $u_0, v_0 \in \mathcal{N}$ such that $[u_0, v_0] \in Z(\mathcal{N})$, then

$$d\big([u_0,v_0][x,y]\big) = d\big(\big[[u_0,v_0]x,y\big]\big) =$$
$$= [u_0,v_0][x,y] \quad \text{for all} \quad x,y \in \mathcal{N}.$$

By definition of d, we find that

$$\begin{split} [u_0,v_0][x,y] &= d([u_0,v_0][x,y]) = \\ &= d([u_0,v_0])[x,y] + \alpha([u_0,v_0])d([x,y]) = \\ &= [u_0,v_0][x,y] + \alpha([u_0,v_0])[x,y] \quad \text{for all} \quad x,y \in \mathcal{N}. \end{split}$$

By the last expression, we obtain

$$\alpha([u_0, v_0])xy = \alpha([u_0, v_0])yx \quad \text{for all} \quad x, y \in \mathcal{N}.$$
(3.15)

Replacing x by xt in (3.15) and using it again, we get

$$\alpha([u_0, v_0])xty = \alpha([u_0, v_0])yxt =$$

$$= \alpha([u_0, v_0])xyt \quad \text{for all} \quad x, y, t \in \mathcal{N}.$$

Using this expression, we arrive at

$$\alpha([u_0, v_0])\mathcal{N}[y, t] = \{0\}$$
 for all $y, t \in \mathcal{N}$.

Since \mathcal{N} is 3-prime, by Lemma 2.3, we obtain $\alpha([u_0,v_0])=0$ or \mathcal{N} is a commutative ring. In this case (3.14) becomes $\alpha([u,v])=0$ for all $u,v\in\mathcal{N}$ or \mathcal{N} is a commutative ring. Since α is an onto homomorphism, we find that \mathcal{N} is a commutative ring.

Theorem 3.5. Let \mathcal{N} be a 2-torsion free 3-prime near-ring. Then \mathcal{N} admits no nonzero $(1, \alpha)$ -derivation d associated with an onto homomorphism α satisfying any one of the following conditions:

- (i) $d(x \circ y) = x \circ y$ for all $x, y \in \mathcal{N}$,
- (ii) $d([x,y]) = x \circ y$ for all $x, y \in \mathcal{N}$,
- (iii) $d(x \circ y) = [x, y]$ for all $x, y \in \mathcal{N}$.

Proof. (i) Suppose that $d(x \circ y) = x \circ y$ for all $x, y \in \mathcal{N}$. Replacing x by xy, we have

$$x(x \circ y) = x \circ xy = d(x \circ xy) =$$

$$= d(x(x \circ y)) = d(x)(x \circ y) + \alpha(x)d(x \circ y) =$$

$$= d(x)(x \circ y) + \alpha(x)(x \circ y) \quad \text{for all} \quad x, y \in \mathcal{N}.$$

Putting $u \circ v$ instead of x in the latter expression, we arrive at $\alpha(u \circ v)((u \circ v) \circ y) = 0$ for all $u, v \in \mathcal{N}$, which yields that

$$\alpha(u \circ v)y(u \circ v) = -\alpha(u \circ v)(u \circ v)y \quad \text{for all} \quad u, v, y \in \mathcal{N}. \tag{3.16}$$

Replacing y by yt in (3.16) and using it again, we get

$$\alpha(u \circ v)yt(u \circ v) = -\alpha(u \circ v)(u \circ v)yt = \alpha(u \circ v)(u \circ v)y(-t) =$$

$$= (-\alpha(u \circ v)y(u \circ v))(-t) = \alpha(u \circ v)y(-(u \circ v))(-t) \quad \text{for all} \quad u, v, t \in \mathcal{N}.$$

This reduces to

$$\alpha(u \circ v) \mathcal{N}(-t(-u \circ v) + (-u \circ v)t) = \{0\}$$
 for all $u, v, t \in \mathcal{N}$.

By 3-primeness of \mathcal{N} , we obtain

$$\alpha(u \circ v) = 0 \quad \text{or} \quad -u \circ v \in Z(\mathcal{N}) \quad \text{for all} \quad u, v \in \mathcal{N}.$$
 (3.17)

Suppose there exist two elements $u_0, v_0 \in \mathcal{N}$ such that $-u_0 \circ v_0 \in Z(\mathcal{N})$, then

$$(-u_0 \circ v_0)(x \circ y) = (x(-u_0 \circ v_0) \circ y) = d((x(-u_0 \circ v_0) \circ y)) =$$

$$= d((-u_0 \circ v_0)(x \circ y)) = d((-u_0 \circ v_0))(x \circ y) + \alpha(-u_0 \circ v_0)d(x \circ y) =$$

$$= (-u_0 \circ v_0)(x \circ y) + \alpha(-u_0 \circ v_0)(x \circ y) \quad \text{for all} \quad x, y \in \mathcal{N}.$$

This implies that

$$\alpha(-u_0 \circ v_0)xy = -\alpha(-u_0 \circ v_0)yx \quad \text{for all} \quad x, y \in \mathcal{N}.$$
 (3.18)

Replacing y by yt in (3.18) and using it again, we obtain

$$\alpha(-u_0 \circ v_0)y(tx - (-x)(-t)) = \{0\} \text{ for all } x, y, t \in \mathcal{N}.$$
 (3.19)

Taking -x instead of x in (3.19), we get

$$\alpha(-u_0 \circ v_0)\mathcal{N}(-tx + xt) = \{0\}$$
 for all $x, t \in \mathcal{N}$.

By 3-primeness of \mathcal{N} and Lemma 2.3, we deduce that $\alpha(-u_0 \circ v_0) = 0$ or \mathcal{N} is a commutative ring. Since α is an additive map, (3.17) becomes

$$\alpha(u \circ v) = 0$$
 for all $u, v \in \mathcal{N}$ or \mathcal{N} is a commutative ring.

Using the fact that α is onto homomorphism, we deduce that

$$u \circ v = 0$$
 for all $u, v \in \mathcal{N}$ or \mathcal{N} is a commutative ring.

By using Lemma 2.2, we conclude that \mathcal{N} is a commutative ring. Returning to our assumptions and using 2-torsion freeness of \mathcal{N} , we obtain d(xy) = xy for all $x, y \in \mathcal{N}$. By definition of d, we get $d(x)y + \alpha(x)d(y) = xy$ for all $x, y \in \mathcal{N}$. Replacing x by xz, we obtain $d(xz)y + \alpha(xz)d(y) = xzy$ for all $x, y, z \in \mathcal{N}$, which means that $\alpha(xz)d(y) = 0$ for all $x, y, z \in \mathcal{N}$. Since α is an onto homomorphism, the last expression becomes xzd(y) = 0 for all $x, y, z \in \mathcal{N}$. Hence $x\mathcal{N}d(y) = \{0\}$ for all $x, y \in \mathcal{N}$. By 3-primeness of \mathcal{N} , we obtain that d = 0; a contradiction.

- (ii) Assume that $d([x,y]) = x \circ y$ for all $x, y \in \mathcal{N}$. Since \mathcal{N} is 2-torsion free, in particular, for x = y, we find that $x^2 = 0$ for all $x \in \mathcal{N}$. This implies that $x(x+y)^2 = 0$ for all $x, y \in \mathcal{N}$, hence by a simple calculation, we obtain xyx = 0 for all $x, y \in \mathcal{N}$. By 3-primeness of \mathcal{N} , we conclude that $\mathcal{N} = \{0\}$; a contradiction.
- (iii) Using the same techniques as used in (i) and (ii), we obtain the required result. The following example shows that the existence of "3-primeness" in the hypotheses of Theorems 3.2 and 3.3 is not superfluous.

Example. Let S be a zero symmetric left near-ring and

$$\mathcal{N} = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix} \middle| a, b, c \in S \right\}.$$

Then it can be easily seen that \mathcal{N} is a zero-symmetric left near-ring which is not 3-prime. Define maps $d, \alpha : \mathcal{N} \to \mathcal{N}$ such that

$$d\left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & 0 \\ 0 & c & 0 \end{array}\right) = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & c & 0 \end{array}\right), \qquad \alpha\left(\begin{array}{ccc} 0 & a & b \\ 0 & 0 & 0 \\ 0 & c & 0 \end{array}\right) = \left(\begin{array}{ccc} 0 & a & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

Then d is a $(1,\alpha)$ -derivation satisfying d([x,y])=0 and $d(x\circ y)=0$. However, $\mathcal N$ is not a commutative ring.

References

- 1. M. Ashraf, A. Shakir, On (σ, τ)-derivations of prime near-rings-II, Sarajevo J. Math., 4, № 16, 23 30 (2008).
- 2. H. E. Bell, G. Mason, *On derivations in near-rings. Near-rings and near-fields*, North-Holland Math. Stud., **137** (1987).
- 3. H. E. Bell, On derivations in near-rings. II. Nearrings, nearfields and K-loops (Hamburg, 1995), Math. Appl., 426, 191–197 (1997).
- 4. H. E. Bell, A. Boua, L. Oukhtite, *Semigroup ideals and commutativity in 3-prime near rings*, Commun. Algebra. **43**, 1757–1770 (2015).
- 5. A. Boua, L. Oukhtite, *Semiderivations satisfying certain algebraic identities on prime near-rings*, Asian-Eur. J. Math., 6, № 3 (2013), 8 p.
- 6. G. Pilz, Near-rings, 2nd ed., 23, North Holland, Amsterdam (1983).
- 7. X. K. Wang, Derivations in prime near-rings, Proc. Amer. Math. Soc., 121, № 2, 361 366 (1994).
- 8. M. S.Samman, L. Oukhtite, A. Boua, A. Raji, *Two sided α-derivations in 3-prime near-rings,* Rocky Mountain J. Math., **46**, № 4, 1379 1393 (2016).

Received 30.11.16, after revision — 05.08.17