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CRITICAL POINT EQUATION ON ALMOST KENMOTSU MANIFOLDS

PIBHSIHHSI KPUTHYHOI TOYKH HA MHOTOBHJIAX,
1110 € MAW’)KE MHOTOBUJAMM KEHMOILLY

We study the critical point equation (C'PE) conjecture on almost Kenmotsu manifolds. First, we prove that if a three-
dimensional (k, u)’-almost Kenmotsu manifold satisfies the CPE, then the manifold is either locally isometric to the
product space H?(—4) x R or the manifold is Kenmotsu manifold. Further, we prove that if the metric of an almost
Kenmotsu manifold with conformal Reeb foliation satisfies the C'PE' conjecture, then the manifold is Einstein.

BuBuaetncs rinotesa npo piBHsSHHS kputraHoi Toukn (PKT) Ha MHOTOBHIAX, 10 € Maibke MHOroBuiamMu Kenmoryy. Hacam-
TIEpENT IOBEMIEHO, 0 Y BHMA/KY, Koxm TpusuMipauii (k, 1)’ -maibke maorosun Kenmorry 3amosonsaste PKT, neit MEOTOBH
€ abo JIOKAJIbHO 130METPUYHUM JI0 JOOYTKY MPOCTOPIB ]HIQ(—4) X R, a6o muorosumom Kenmory. Kpim Toro, noBezneHo,
IO y BHIAJKY, KOJIM METpHUKa MHOTOBHAY, IO € Maibke mMHOroBuaoM Kenmory 3 koH(opMHHM po3mapyBaHHAM Pi0a,
3anoBonbHsie PKT rinoresy, et MHOroBuj € MHOroBUAOM EifHIITElHHA.

1. Introduction. By an almost contact metric manifold of odd dimensional we mean that a smooth
manifold together with an almost contact structure (¢,&,7n,g) given by a (1,1) tensor field ¢, a
characteristic vector field £, a 1-form 7 and a compatible metric g satisfying the conditions [3, 4]

¢’ =—-IT+n®& @€ =0, nE) =1 nogp=0,
9(dX,8Y) = g(X,Y) —n(X)n(Y),

for any vector fields X and Y of T},M, where T),M denotes the tangent vector space of M at any
point p € M. In 1972, Kenmotsu [13] introduced a new type of almost contact metric manifolds
named Kenmotsu manifolds nowadays. Later such manifolds were generalized to almost Kenmosu
manifolds by Janssens and Vanhecke [12]. Recently, Dileo and Pastore [9] introduced the notion of
(k, 1)’ -nullity distribution on an almost Kenmotsu manifold (M?2"+1 ¢, & n, g), which is defined for
any p € M?>"*1 and k, 1 € R as follows:

Ny(k,p) ={Z € T,M*"*": R(X,Y)Z =
=klg(Y, 2)X — g(X, 2)Y] + plg(Y, Z)M' X — g(X, Z)h'Y]},

where two symmetric (1,1)-type tensor fields defined by ' = h o ¢ and 2h = £¢¢. Since then
several authors such as Dileo and Pastore [8], De and Mandal [5-7], Wang and Liu [16 - 19] studied
almost Kenmotsu manifolds satisfying some nullity distributions.

A Riemannian manifold (M, g) of dimension (2n + 1) > 3 with constant scalar curvature and
unit volume together with a non-constant smooth potential function \ satisfying

<Lg—5’))\—Hess)\:S— 9, (1.1)

-
2n 2n+1

where S, r and Hess A are, respectively, Ricci tensor, scalar curvature and the Hess ian of the smooth
function A\ on M is called a critical point equation (C'PFE). Note that if A = 0, then (1.1) becomes
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Einstein metric. Therefore, we consider only the non-trivial potential function A. In [2], Besse
conjectured that the solution of the CPF is Einstein. Barros and Ribeiro [1] proved that the CPFE
conjecture is true for half conformally flat. Recently, Hwang [11] proved that the C PE conjecture is
also true under certain condition on the bounds of the potential function A. A necessary and sufficient
condition on the norm of the gradient of the potential function for a C'PE metric is to be Einstein
obtained by Neto [14]. Ghosh and Patra [10] consider the C'PE conjecture in the frame-work of
K -contact manifolds and (k, ut)-contact manifolds.

Motivated by the above studies in this paper we study the C'PE conjecture on almost Kenmotsu
manifolds. In Section 3, we prove that a three-dimensional (k, 1)’ -almost Kenmotsu manifold satis-
fying the C PE conjecture is either locally isometric to the product space H?(—4) x R, or Kenmotsu.
In the final section, we prove that if the metric of an almost Knemotsu manifold with conformal Reeb
foliation satisfies the C PE conjecture, then the manifold is Einstein.

2. Almost Kenmotsu manifolds. Let us consider (M?"*1 ¢ £ 1) be an almost contact mani-
fold. The fundamental 2-form ® on an almost contact metric manifold is defined by ®(X,Y) =
= g(X, ¢Y") for any vector fields X, Y of T, M 2n+1  An almost Kenmotsu manifold is defined as an
almost contact metric manifold such that dn = 0 and d® = 2nA®. An almost contact metric manifold
is said to be normal if the (1,2)-type torsion tensor N, vanishes, where Ny = [¢, ¢| + 2dn ® &,
where [¢, ¢| is the Nijenhuis torsion of ¢ [3]. A normal almost Kenmotsu manifold is a Kenmotsu
manifold. Also Kenmotsu manifolds can be characterized by (Vx¢)Y = g(¢X,Y ) —n(Y)eX, for
any vector fields X, Y. It is well known [13] that a Kenmotsu manifold M?"*! is locally a warped
product I x; N 2 where N2" is a Kihler manifold, I is an open interval with coordinate ¢ and
the warping function f, defined by f = ce’ for some positive constant c. Let D be the distribution
orthogonal to £ and defined by D = Ker (1) = Im(¢). In an almost Kenmotsu manifold D is an
integrable distribution as 7 is closed. Let in an almost Kenmotsu manifold the two tensor fields h

1
and [ are defined by h = §££¢ and | = R(-,£)¢. The tensor fields [ and h are symmetric and
satisfy the following relations [8]:

hé =0, 1£=0, tr(h)=0, tr(h¢)=0, ho+ oh=0, 2.1
Vxé=—¢>X — phX (= Ve& = 0), (2.2)
ol — 1 = 2(h* — ¢°), (2.3)

R(X,Y)E = n(X)(Y = ¢hY) = n(Y)(X — ¢hX) + (Vy¢oh)X — (Vxoh)Y, 24)

for any vector fields X, Y.

An almost Kenmotsu manifold (M?2"+1, ¢, &, 7, g) with its characteristic vector field ¢ belonging
to the (k, )’ -nullity distribution is known as (k, u)’-almost Kenmotsu manifolds and the curvature
tensor satisfies

R(X,Y)E =k[n(Y)X —n(X)Y] + uln(Y)h'X —n(X)W'Y]. (2.5)
Now we provide some related results on almost Kenmotsu manifolds such that £ belongs to some
nullity distributions. The (1,1)-type symmetric tensor field ' = h o ¢ is anticommuting with ¢

and '€ = 0. Also it is clear that
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h=0&ch =0, h?=(k+1)e*(eh*=(k+1)p?). (2.6)

Let X € D be the eigen vector of h' corresponding to the eigen value A. It follows from (2.6) that
A2 = —(k + 1) is an constant. Therefore, k¥ < —1 and A = +v/—k — 1. We denote by [\’ and
[—A]" the corresponding eigenspaces associated with A’ corresponding to the non-zero eigen value A
and —\, respectively. We have the following lemmas.

Lemma 2.1 (Propositions 4.1 and 4.3 of [9]). Let (M?"*! ¢,&,m,9) be an almost Kenmotsu
manifold such that £ belongs to the (k, ) -nullity distribution and h' # 0. Then k < —1, p = —2
and Spec (h') = {0,\,—\}, with 0 as simple eigen value and \ = \/—k — 1. The distributions
(€] ® [N and [§] ® [—A] are integrable with totally geodesic leaves. The distributions [\ and
[—A]" are integrable with totally umbilical leaves. Furthermore, the sectional curvature are given as
following:

@ KX, ) =k—=-2Xif X e [N and K(X,&) =k+2)\if X € [-)];

b)) K(X,)Y)=k-22if X, Y e [N KX,)Y)=k+2\if X, Y € [-)\] and K(X,Y) =
=—(k+2)if X e\, Y e[-)\;

() M?! has constant negative scalar curvature r = 2n(k — 2n).

Lemma 2.2 (Lemma 3 of [19]). Let (M?*"*! ¢, &, m,9) be an almost Kenmotsu manifold with
¢ belonging to the (k,u) -nullity distribution. If h' # 0, then the Ricci operator Q of M?"*1 is
given by

Q = —2nid+2n(k +1)n @ & — 2nh/'. 2.7)

Moreover, the scalar curvature of M is 2n(k — 2n).

Lemma 2.3 (Lemma 4.1 of [9]). Let (M?*"*1 ¢,&,n,g) be an almost Kenmotsu manifold with
h' # 0 and & belonging to the (k,—2) -nullity distribution. Then, for any X, Y € T,M,

(Vxh)Y = —g(W'X +h?X, V)¢ —n(Y)(W X + h?X). (2.8)

Lemma 2.4 (Proposition 3 of [8]). An almost Kenmotsu manifold M3 such that V& = —¢? is
a Kenmotsu manifold.

3. (k, n)’-Almost Kenmotsu manifolds satisfying the C PFE conjecture. In this section, we
consider (k, 1)’ -almost Kenmotsu manifolds satisfying the critical point equation in dimension three.
Before proving our main result we recall the following result.

Lemma 3.1 [10]. Let (g, \) be a non-trivial solution of the CPE given by (1.1) on a (2n+1)-
dimensional Riemannian manifold M. Then the curvature tensor R can be expressed as

R(X,Y)DX = (XAN)QY — (YNQX + (A +1)(VxQ)Y —

A+ DVyQ)X +(XNY - (Y)X, 3.1

A 1
where f = —r <2n+2n+1>'

Now we prove the following theorem.

Theorem 3.1. [f the metric of a three dimensional (k, ) -almost Kenmotsu manifold satisfies
the critical point equation, then the manifold is either Kenmotsu manifold, or locally isometric to the
product space H?(—4) x R.
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Proof. Replacing X by & in (3.1) and making use of (2.7), we have
R(§,Y)DA = (§N)QY = 2k(Y )+ (A +1)(VeQ)Y —

—A+D(VyQ)E + (£/)Y — (Y )E.

(3.2)

Taking covariant differentiation of (1.1) along arbitrary vector field X and using (2.2), we obtain

(VxQ)Y =2(k+ 1)n(Y)(X + K X) - 2(Vxh')Y -
=2(k+ D{g(X,Y) = 2n(X)n(Y) + g(F' X, Y)}¢.
By using the above equation, we get
(VxQ)Y — (VyQ)X =
= 2k + 1){n(X)(Y + h'Y) —n(Y)(X + W X)}—
—2{(Vx)Y — (Vyh)X}
for any vector fields X, Y. Putting X = ¢ in (3.3), we have
(VeQ)Y — (VyQ)€ = —2(k + D{Y + 1Y —n(Y)&} -
—2{(Veh)Y — (Vyh')E}.
From (2.8), we obtain
(Veh )Y — (VyR)¢ = WY + 1Y,
Taking inner product of (3.4) and using (3.5), we get
9((VeQ)Y — (VyQ)E,§) = 0.
It follows from (3.2) and (3.6) that

9(R(&,Y)DA, &) = 2nkE(MN)n(Y) = 2nkY (A) + £(f)n(Y) = Y (f).

On the other hand, from (2.5) and Lemma 2.1 we have
9(R(&Y)DA,€) = —g(R(§,Y)E, DA) =
= k[g(DA,Y) — &(Mn(Y)] — 29(h'DA.Y).
Making use of (3.7) and (3.8), we get
3kDX — kE(A)E — 21 DX = 2kE(N)E + £(f)€ — DF.
A

1
Now, from Lemma 3.1, we have f = —r ( + > . Differentiating this equation, we get

2 3

§(f) = —(k=2)¢(A) and Df = —(k — 2) DA,

(3.3)

(3.4)

(3.5)

(3.6)

3.7)

(3.8)

(3.9)

(3.10)
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where we have used Lemma 2.1. Relations (3.9) and (3.10) both gives
' DX = (k+ 1)(DX — £(N)E). (3.11)
Applying h’ on both sides of (3.11) and using (2.6), we have
—(k+1)(DX = £N)E) = (K+ 1) DA (3.12)
Substituting the value of A’ DX from (3.11) in (3.12) yields
(k+1)(k+2)(D\—£&(N)E) = 0.

We consider three cases:

Casel. Let k = —1, then from (2.6) we have b’/ = 0. Using this in (2.2) gives V& = —¢2.
Hence from Lemma 2.4 the manifold becomes Kenmotsu manifold.

Case2. Let k = —2. Then, from Remark 5.1 of [9], we can state that the manifold is locally
isometric to the Riemannian product H?(—4) x R.

A
Case3. Let DX = £(X\)§. Taking trace of the equation (1.1), we have A\ = —;—. Using this
n

and Lemma 2.2 in (1.1) gives
VxDA=A+1)QX + fX. (3.13)
Putting DX = £(A)€ in (3.13) yields

(A4 1QX = {XEN) — ENm(X)}E + ENN X+

+{a»+2w—m(;+;>}x

Comparing this relation with (2.7), we have

X&) = En(X) = 2(k + 1) (A + 1)n(X), (3.14)
§A+%k—m<;+;>:—ﬂA+U, (3.15)
€)= —2(A + 1), (3.16)

for any vector field X. By using (3.16) in (3.15), we have A is a constant, which is a contradiction.

Theorem 3.1 is proved.

4. Almost Kenmotsu manifolds with conformal Reeb foliation satisfying the C PE conjec-
ture. This section is devoted to study almost Kenmotsu manifolds with conformal Reeb foliation
satisfying the C'PE conjecture of dimension > 5. An almost contact Riemannian manifold M is
said to be an 7-Einstein manifold if the Ricci tensor S satisfies the condition

S(X,Y) =y9(X,Y) +dn(X)n(Y),

where ~y, é are smooth functions and X, Y are vector fields on the manifold. In particular, if § = 0,
then M is an Einstein manifold. Pastore and Saltarelli [15] prove that on an almost Kenmotsu
manifold the Reeb foliation is conformal if and only if A = 0. We present the following result.
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Lemma 4.1 [15]. Let (M?*"*1,¢,£,n,9), n > 1, be an n-Einstein almost Kenmotsu manifold
with conformal Reeb foliation, then either the manifold is Einstein, or ¢ is not constant, X (0) = 0
for any vector field X 1 &, £(0) = —20 and in this case the Ricci operator is given by QX =
= —(2n + 6)X + én(X)E, where § is locally given by § = ce™? for some non-zero constant c.

Now we prove the following theorem.

Theorem 4.1. Let (M2t ¢, €, n,g), n > 1, be an almost Kenmotsu manifold with conformal
Reeb foliation. If M satisfies the critical point equation, then the manifold is an Einstein manifold
provided the scalar curvature r # —2n(2n + 1).

Proof. Since h = 0, we have, from (2.4),

R(X,Y)E =n(X)Y —n(Y)X (4.1)
for any vector fields X, Y. From this we obtain

Q¢ = —2n¢. 4.2)

f=-r i-I— !
N o2n  2n+1)’

Since

then we get

€ =-5

Replacing ¢ instead of X in (3.1) and using (4.2) yields

(€X) and (Yf) = (YN). (4.3)

2n
R(&,Y)DA = (EN)QY + 2n(YA)§ + (A +1)(VQ)Y -
—A+D(VyQ)E+ (E)Y = (Y f)E. (4.4)

Taking inner product of (4.4) with £ and making use of (4.3) gives

g(R(€,Y)DA€) = —(2n+ %) (V) + (2n+ i) (YA).

Also, from (4.1), we obtain

9(R(&,Y)DA, ) = —g(R(E,Y)E, DA) = (EA)n(Y) — (Y ).

Comparing the above two equations, we have

(2n+ 1+ ) {YN) = (@m(V)} =0,
from which it follows that
<2n F1+ %) (DX — (EN)E} = 0. 4.5)

Let us assume that the scalar curvature r # —2n(2n+ 1), then we have from (4.5) that D\ = (§M)€.
By using this in (3.13), we get

A r

A+1)RX = <(§/\)+2n+2n+1

) X+ (XN ~ nCO)E 4.6)
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This shows the manifold is an 7n-Einstein manifold. Without loss of any generality we may assume
that the manifold is not Einstein. From Lemma 4.1 we see that the second case is true, that is,

QX =—(2n+6)X + on(X)E, (4.7)

where § is locally given by § = ce™2! for some non-zero constant c. Now comparing the relations
(4.6) and (4.7), we have

(5A)+£2+2n+1 = —(A+1)(2n+9), (4.8)
X(EA) = (EM)n(X) = 6(A +1)n(X) (4.9)

for any vector field X. With the help of (4.8) and (4.9) we get

rA T

E(EN) = “on Tl (A +1)2n. (4.10)
Tracing (4.6) gives
TA
E(EN) = —2n(&N) — o (4.11)
In view of (4.10) and (4.11), we obtain
r

Making use of (4.12) in (4.10) yields
r
(A+1) <%+1+2n) = 0.

Since A being a non-constant smooth function, then from the above equation we have
r = —2n(2n + 1), which is a contradiction. Hence, using Lemma 4.1, we complete the proof
of theorem.

References

1. A. Barros, E. Ribeiro (Jr.), Critical point equation on four-dimensional compact manifolds, Math. Nachr., 287,
16181623 (2014).
A. Besse, Einstein manifolds, Springer, New York (2008).
D. E. Blair, Contact manifold in Riemannian geometry, Lect. Notes Math., 509 (1976).
D. E. Blair, Riemannian geometry on contact and symplectic manifolds, Progr. Math., 203 (2010).
U. C. De, K. Mandal, On ¢-Ricci recurrent almost Kenmotsu manifolds with nullity distributions, Int. Electron. J.
Geom., 9, 70-79 (2016).
U. C. De, K. Mandal, On a type of almost Kenmotsu manifolds with nullity distributions, Arab J. Math. Sci., 23,
109-123 (2017).
7. U. C. De, K. Mandal, On locally ¢-conformally symmetric almost Kenmotsu manifolds with nullity distributions,
Commun. Korean Math. Soc., 32, 401-416 (2017).
8. G. Dileo, A. M. Pastore, Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math. Soc. Simon Stevin, 14,
343 -354 (2007).
9. G. Dileo, A. M. Pastore, Almost Kenmotsu manifolds and nullity distributions, J. Geom., 93, 46—61 (2009).
10. A. Ghosh, D. S. Patra, The critical point equation and contact geometry, J. Geom., 108, 185-194 (2017).

wh WD

o

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 1



68

11.

12.

13.

14.

15.

16.

17.

18.

19.

U. C. DE, K. MANDAL

S. Hwang, Critical points of the total scalar curvature functionals on the space of metrics of constant scalar curvature,
Manuscripta Math., 103, 135 -142 (2000).

D. Janssens, L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J., 4, 1-27 (1981).

K. Kenmotsu, 4 class of almost contact Riemannian manifolds, Tohoku Math. J., 24, 93-103 (1972).

B. L. Neto, 4 note on critical point metrics of the total scalar curvature functionals, J. Math. Anal. Appl., 424,
1544 -1548 (2015).

A. M. Pastore, V. Saltarelli, Almost Kenmotsu manifolds with conformal Reeb foliation, Bull. Belg. Math. Soc. Simon
Stevin, 18, 655-666 (2011).

Y. Wang, X. Liu, Second order parallel tensors on almost Kenmotsu manifolds satisfying the nullity distributions,
Filomat, 28, 839-847 (2014).

Y. Wang, X. Liu, Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions, Ann. Polon. Math.,
112, 37-46 (2014).

Y. Wang, X. Liu, On a type of almost Kenmotsu manifolds with harmonic curvature tensors, Bull. Belg. Math. Soc.
Simon Stevin, 22, 15-24 (2015).

Y. Wang, X. Liu, On almost Kenmotsu manifolds satisfying some nullity distributions, Proc. Nat. Acad. Sci. India.
Sect. A., 86, 347-353 (2016).

Received 03.12.16

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 1



