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SOME SUBCLASSES OF UNIVALENT FUNCTIONS
ASSOCIATED WITH k-RUSCHEWEYH DERIVATIVE OPERATOR

JNESIKI TIIJKJACH YHIBAJIEHTHUX ®YHKIIIH,
ACOLIMOBAHMX 3 OMTEPATOPOM k-IIOXITHOI PYILIEBES

The purpose of the present paper is to investigate some subordination, other properties and inclusion relations for functions
in certain subclasses of univalent functions in the open unit disc which are defined by k-Ruscheweyh derivative operator.

Mera 1i€l pobOTH — JOCIIKEHHS JEeSKOT0 MiANOPSAKYBaHHS Ta IHIIMX BIACTHBOCTEH, a TAKOXK CIIBBIIHOILICHb BKIIOUCHHS
Ut QYHKIIH TesKUX MiIKIaciB yHIBAIEHTHUX (QYHKIIH Y BIAKPUTOMY OMUHUYHOMY THCKY, Ki BH3HAYAOTHCS OIEPaTOpPOM
k-noxinHoi Pymiesest.

1. Introduction. Denote A by the class of analytic functions in the open unit disc U = {z e C:
|z| < 1} of the form

o0
fz)=z+ Z an12", 2z el (1.1)
n=1
For function g € A given by
[ee]
g(z) :Z+Z bn+lzn+17 z €U>
n=1
the Hadamard (or convolution) product of f and g is defined by
oo
(f9)(2) =24 anpibpnz" = (g% f)(2), 2€U.

n=1

For the functions f and g analytic in U, we say that f is subordinate to g, written f(z) < g(z) if
there exists a Schwarz function w (which is analytic in U, with w(0) = 0, and |w(z)| <1 (z € U)
such that f(z) = g(w(z)) for all = € U. Furthermore, if g is univalent in U, then we have the
following equivalence (see [1, 6, 8]):

f(z) <g(z) & f(0) =g(0) and  f(U) Cg(U).

Consider the first-order differential subordination

’H(g(z), zg’(z)) =< h(z2).

A univalent function ¢ is called dominant, if g(z) < ¢(z) for all analytic functions ¢ that satisfies
this differential subordination. A dominant ¢ is called the best dominant, if g(z) < ¢(z) for all
dominants ¢ (see [1, 8]).

Forve C, k€ Rand n € N = {1,2,3,...}, the Pochhammer k-symbol (v), is given by

(see [3])
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(O)ng =v(w+E)(0+2k) ... (v+ (n—1k) =[] (v+ (G — Dk (1.2)
i=1

we define the function Fj(2) by

Fsp(2) = ————=, 0>—k k>0, zel. (1.3)

(1—2z)*
Corresponding to the function Fj 4 (2), we consider a linear operator RS : A — A (6 > —k, k > 0),
which is defined by means of the following Hadamard product (or convolution):

+ k)

RIf(2) = Fsp(2) % f(2) = 2 + Z Wanﬂ,z oz el. (1.4)
n=1 n
It is easily verified from (1.4) that
o+ k 0
(Rif(2)) = < o ) RiEf(2) = L RUF(2), k>0, (15)

Moreover, for f € A, we observe that:

(1) RIf(2) = R°f(2)(6 > —1), where R’ denotes the Ruscheweyh derivative of order §
(see [10]);

(2) ROf() = f(=) and REF(2) = 2f'(2).

By using k£-Ruscheweyh derivative operator Ri, we introduce the following subclass of univalent
functions.

Definition 1. For fixed parameters A, B with —1 < B < A<1and 0 < )\ < 1, we say that a
function f € A'is in the class S)(\; A, B) if it satisfies the subordination condition

1 <Z(Rif(z))/ _)\) . 14+ Az

L-=A\ RIf(2) 1+ Bz’

which is equivalent to

2 (RifG)
Rif(z) <1, ze€eU
2(ROf(2)) 7 .
BN (5 (4= B - )
We note that ( 5 ),
z(Ry.f(2)
D SN -1)=8)A) ={ fed: R R LS b
(1) k( ) k() {fE { Rif(z) = /
@ S{NA,B) = S(NAB) = {feAillA{Z}c(S)_A}{igz} "
01 1) eer) - o J2(2) :
SeX1,=1) =S5 {fGA.%{ f(z) }>>\}’ 1 " 1+ A
(3) S{(NAB) = C(LAB) = {fGAi1_A{1+z£(i§)_A}<1iBi} and
5,’;(A;1,—1):C(A):{feA:éR{HZJ{,/;S)}>A}.
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To prove main results, we need the following lemmas.
Lemma 1 [4]. Let h be a convex function in U with h(0) = 1. Suppose also that the function
g of the form g(z) =1+ cp2"™ + cpr12™ T + ... is analytic in U. Then

g(z) + Z’{T(Z) < h(z), R{c}>0, o#0, (1.6)

implies
9(z) < Q(2) = %z*% /tilh(t) dt < h(z),
0

and Q) is the best dominant of (1.6).

Lemma 2 [12] (see also [8]). Let v be a positive measure on the unit interval [0,1]. Let h(z,t)
be a complex-valued function defined on U x [0, 1] such that h(-,t) is analytic in U for each t € [0, 1],
and h(z,-) is v-integrable on [0, 1] for all z € U. In addition, suppose that R{h(z,t)} > 0, h(—r,t)
is real, and

1 1
> < .
%{h(z,t)}_h(—r,t)’ 2| <r<1, te]0,1]

If the function H is defined by

1
H(z) = / h(zt) du(t),
0

then

%{Aa}zﬂéw e <r <1

Lemma 3 [5]. Suppose A\ # 0 be a real number, % >0, n €[0,1), and let g be an analytic
function in U of the form g(z) = 1+ ap2" + ans12" ™ +..., 2 € U, with

M
P(z) <1+Rz, R=-1"_,
nA + -y

where

(- (1+22)

-
\1—)\+)\n\+\/1+<1+rﬁ:\>

If p is an analytic function in U of the form p(z) = 1 +b,2" + b, 12"+ ... 2 € U, and satisfies
the subordination

M = Mn()\f%n) =

g1 =A+ XA =n)p(z) +n)] <1+ Mz,

then R{p(z)} > 0 for all z € U.
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Lemma 4 ([7], Corollary 3.2). If -1 < B < A <1, n >0, and the complex number ( satisfies

n(l—A)
R P E—
=-1=
then the following differential equation:
! 1+ A
q(z) + (=) 1+4 with q(0) =1

ng(z)+¢ 1+ Bz

has a univalent solution in U given by

( URNS n(A-B)/B
Zz (1+ Bz) —g, i B0,
0 / (111 4 BryA-B)/B gy T
az) =4 "
n+¢
Zz exp(nAz) B g, if B=0
77/ t1 " exp(nAt) dt

0
Moreover, if the function g is analytic in U and satisfies the following subordination:

2q'(2) 1+ Az
9(2) + ng(z)+¢ 1+ Bz’

(1.7)

then
1+ Az
9(z) < q(2) < 1+ B2
and q is the best dominant of (1.7).
For real or complex numbers o1, az and 5y with 8y ¢ Z; = {0,—1,-2,...}, the Gauss

hypergeometric function o F is defined by

aag 2 o (a1 +1)ag(ag+1) zj N
B 1 B1(B1+1) 2!
We note that the above series converges absolutely for z € U and hence represents an analytic
function in U (see, for details, [11], Chapter 14).
Each of the identities (asserted by Lemma 5 below) is well-known (cf., e.g., [11], Chapter 14).
Lemma 5 ([11], Chapter 14). For real or complex numbers oy, ao and [y with 51 ¢ {0, —1,
—2,...}, we have

oFi (a1, 00 f152) =1+

[(ag)l'(B1 — a2)
['(61)

1
/tOQ_l(l —t)ﬁl_aQ_l(l —tZ)_al dt = QFl(Ctl,Ckg;,@l;Z), (1.8)
0

R{f1} > R{az} >0,

z
2Fi(on, ag; B152) = (1= 2)"* o FY (ahﬂl — ag; fu; Z_1> ; (1.9)
and

oy (a1, a2; 15 2) = 2F1 (a2, a1; b1 2). (1.10)
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126 T. M. SEOUDY

2. Properties involving the operator ’R,z. Unless otherwise mentioned, we assume throughout
this paper that —1 < B < A< 1,6 > —k, k> 0,0 >0,0 < XA < 1 and all the powers are
considered the principal ones.

Theorem 1. If the function f € A satisfies the subordination condition

a _H)Riif(z) IPLAIONRE YT

2.1
z 1+ Bz’ @D
then
RO f(2) 1+ Az
e 2.2
POy oo 2.2)
where the function () given by
A A 1 0+ (1+0)k Bz
A=) = 5+ k
1+——A B=0
Tsraror’” !
is best dominant of (2.1). Furthermore,
Ré
afe{kf(z)}>M, 2 e, (2.3)
z
where
A A _1 6+ (1+0)k B
B+<1_B>(1_B) 2F1<1717 0k ,B_1>7 B#()’
M= 5+k
_ AN B=0
§+(1+0)k
The estimate in (2.3) is the best possible.
Proof. Letting
Ré
g(z) = kaf(z) zel, (2.4)

then ¢ is analytic in U. Differentiating (2.4) with respect to z and using identity (1.5) in the resulting
relation, we get

RIf(z)  RITRf(2) Ok 14 Az
1—6)—k o—* = —— 24 = h(z).
1—0)——+ . 9(2) + 5579 () < 5, = h(2)
k
Now, by using Lemma 1 for o = ;_T, and making a change of variables followed by the use of

identities (1.8), (1.9), and (1.10) with a; = 1, ap = 52_71{;, and 51 — ag = 1, we deduce that
Rif(z) O+ k sk / stk 11+ At
e = t dt =
RLCEE S L so-

0
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A+<1—A>(1—|—Bz)12F1<1,1;5+(1+9)k' b ) B #0,

|B B 0k 14 B

B S+k
L L B=0
T iAo’ !

which proves assertion (2.2). From here, to prove inequality (2.3) it is sufficient to show that
inf {?R{Q(z)}: lz| < 1} =Q(—

Indeed, we have

14+ Az 1— Ar
> < 1.
%{1—1—32}_1—31“’ sl <7<

Setting

1+ A S+k
h(z,s)zliiBz and dv(s) = ;ﬂ sk~ ds, 0<s<1,

which is a positive measure on the closed interval [0, 1], we get

2) = /1 h(z, s)dv(s)
0

and

Q) = [ [ dv(s) = @), |l <r<l

127

Letting » — 17 in the above inequality we obtain (2.3). Finally, the estimate (2.3) is the best possible

as the function () is the best dominant of (2.1).
Theorem 1 is proved.

For a function f € A the generalized Bernardi - Libera - Livingston integral operator J, : A —

— A is defined by (see [2])

T =" [t >

0

It is easy to verify that, for all f € A, we have

2 (RUuF(2)) = (14 WRLF () — iR f (2).

Theorem 2. [fthe function f € A satisfies the subordination condition

RUIG) | 1+ Ac
z 1+ Bz

and J,, is the integral operator defined by (2.5), then
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128 T. M. SEOUDY

RETIE) oy 1Az
z 1+ Bz’

where the function K given by

A A Bz
= 1— = )(1+ B2tk (1,1, p p——— B
B+< B>(+ z) 21(”M+’1+Bz>’ #0,
K(z)= i1
1+ 55— Az, B =0,
nt2

is the best dominant of (2.7). Furthermore,

5
%{W}>L, z €U, (2.8)

z

where

A A —1 . . B
B+<1—B>(1—B) 2F1<1,1,/.L+2,B_>, B#O,

L= +1 1
1_F A, B=0.
w2
The estimate in (2.8) is the best possible.
Proof. Let
RYJ
o(z) = M, zeU. (2.9)
z

Then ¢ is analytic in U. Differentiating (2.9) with respect to z and using identity (2.6) in the
resulting relation, we get

p 7 i+l 1+ Bz

RUG) o, 226 1t

Employing the same technique that we used in the proof of Theorem 1, the remaining part of the
theorem can be proved similarly.
Theorem 3. [fthe function f € A satisfies the condition

) R§+k
(1—9)ka(z) PSS GO N D VAl U O LS VA o1 (2.10)
z z o+ k
with
5+ (1+0)k
<
STh Ny <1, (2.11)
where

Ny =min{z € (0,1): ®(z) =0} (2.12)

and
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2(c) = [(%(1 —)\))2 RN <5+(1+9)k>2]$2_

§+k 5+ k 5+ k
0k(1 — \) Ok(1 — \) 0k(1—X)\?
S ‘ 5+ k 5+Fk ’ @13)
then f € SJ(\).
Proof. Let
S
g(z) = Rkﬁ(z), zeU.

Then ¢ is analytic in U. From assumption (2.11), according to Theorem 1 for the special case
A = M; and B = 0, we obtain that assumption (2.10) implies

0+ k
1+ ————Miz=1+ N
9G) <1t S gy e = L s

which is equivalent to

lg(z) — 1| < Ny, ze€U. (2.14)
Setting

1 Z(Rif(z))l
= -, 2.15

assumption (2.10) could be written as

‘(1—9’“(1”)) (5) + L= S+ (+o)k

—1 N . 2.1
- L paa -1« I eu e

Now, we will show that (2.16) implies R{p(z)} > 0 for all =z € U, thatis, f € SJ()).

Supposing that this last inequality is false, since p(0) = 1, there exist zyp € U and a number
z € R such that p(z9) = iz. Therefore, in order to show that (2.16) implies R{p(z)} > 0 for all
z € U, it is sufficient to obtain a contradiction with (2.16), for example,

E= ' (1 - W) oz0) + L= ) ) - 1‘ S CaY

Thus, if we put g(20) = u + v, then

5= (1= 5 oo + EEZ D Plaotan) -1

= (u® +v?) <9k(§1_|__k)\)>2x2 + QIUW + ‘ <1 - w> p(z0) — 1

2

2
(2.18)

By using (2.14), we have
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o0+ k

Ok(1—\) Ok(1—\)
>— |1 — . 2.1
= 0+k ‘ s+k | (19)
Now, we will prove that under our assumptions the next inequality holds:
1_
70]{( A — ‘1 ok 'Nl > 0. (2.20)

Thus, if we denote

_Ok(1— ) (S (10K
Z—W>O, m—(M >07

then the function ® given by (2.13) becomes
() = (1% — 2l — m)x? — 2|1 — Iz + 12,
and
P0)=012>0, ®(1)=-20+k)(1—1+1-1)—m<0.

k(1 — )

Ifl=
0+k

=1, it is obvious that (2.20) holds for any number Ny. If [ # 1, since

l 2(1+m)
O —— | =——F75- <0,
(H—H) =12
we deduce that if N is given by (2.12), then inequality (2.20) is also true.
Hence, from (2.18), (2.19) and (2.20), we obtain that

2
E? — M? > (u? +v?) <9k a )\)> 2+ 2:131)7% a )\)+

5+ k 5+ k
Ok(1— ) k(1 — A S+ (1+0k\?
+< 5+k _'1 5+k ’N1> _< 5+k i

Denoting

2
FKx)::(u2%—v2)<9k§:_%A)> 249 vgkgﬂ‘;A)

0k(1— \) 0k(1— ) 25+ (+ 0k,
+< 5+ k '1 s+R | 5+ k i

0k(1— X))\ ?
0+ k
and only if the discriminant A < 0, that is,

since (u? + v?) > 0, it follows that the inequality F'(x) > 0 holds for all x € R, if
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0k(1— X))\ ? 0k (1 — )\ >
A =42 (2 2 %
{“ < S+ k ) W+ =555

0k(1 — \) Ok(1 — X S+ (14+0)k\>
B S A R S A = " "/ <
X[( S+ k ‘1 S+ k ‘N1> < S+ k N =0

which is equivalent to

Ok(1 — \) LR 5+ (1+0)k\?
2 2
— - 7 _ -~ @7 Z\Z -~ @7 <

Ok(1 — \) Ok(1 — \) 26+ (1 +0)k\?
<l — A -h1-—"" 2N — | ——) NZ|. 2.21
—u[< 5+ k ‘ S+k |t S+ k L (221)
Putting (29) = 1 + pe’® for some € € R, it is easy to show that

v? _ p?sin?e 0>

e eR.

u? (14 pcose)? = 1—p?’
From (2.14) we have p < N; < 1 and, by using the above inequality, we obtain
2 2 2
P e s
U 1-0p 1— Ny

(2.22)
Since the function

T(p) = L 0,1
(p) et p€0,1),

is a strictly increasing function on [0, 1), we need to determine the maximum value of Ny € [0,1)
(this condition follows from the previous comments) such that

0k(1 — \) Ok(1 — \) 25+ (140K
2 (- A A _ (oUW TU)k 2
Nl—( 5+ k ‘1 sk | 5+ k Ni

A simple computation shows that this value is given by (2.11), where ® has the form (2.13). Ac-
cording to the above reasons, from (2.22) it follows that

CEu eka—»'zv) . (““*W“)zw

v2< p? N? d+k 6+ k S+ k
w2 " 1—p2 " 1-N2— _ _ 2
p P (k=N |, _okQ N1 + 54+ (1+0)k N2
0+ k 5+l<; 0+ k
hence
2 2
i Ok(L—N) |, _ k(=) N - 54 (14 0)k N7
v o+ k o+ k 0+ k
w2 = - - 2 2 ’
L (AN | k(- N 4 S+ (1+0)k N
0+ k 0+ k 0+ k

which is equivalent to (2.21), that is, A < 0. Therefore, (2.17) holds.
Theorem 3 is proved.
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R(F
Theorem 4. [f the function f € A such that L(z)
z

subordination condition

# 0 for all z € U and satisfies the

R\ R (RUF()N
1—-0) —2=2 k k 1+ M 2.2
( 0)( p, >+0sz(z)< p; ><—|— 27, (2.23)
where
(1 — N0k < 0k )
1+
o0+k (o +k) . >0,
1-MNk 0k
Mo = 1— (7 1 14+ —
=105 ‘+\/ (i)
(1 —X\)0k B
5 + k 9 /'L - 07
then f € Sp(N).
Proof. 1f ;= 0, then assumption (2.23) is equivalent to
:(Rif(2)
— " A< (1=-XN)(1+2),
Ryf(2)
which implies that f € SJ()).
If we consider p > 0, let define the function
) Iz
g(z) = (ka(z)> , 2z€0, (2.24)
z

where we choose the principal value of the power function. Then ¢ is analytic in U with ¢g(0) = 1,
and differentiating (2.24) with respect to z, we obtain

_ Rif(z))“ Ry f(2) <Rif<z>)“_ N R
-0y (B 4 o T P (BTE) = 4 e (),
which in view of Lemma 1 yields
g(z) <1+ po L k)

u(+ k) + 0k 2

Also, the subordination assumption (2.23) can be written as

[(1 )10 (Wp(z) + Aékj]j)] 9(z) < 14 My,

where p(z) is given by (2.15). Therefore, from Lemma 3 we deduce that ®{p(z)} >0, z € U.
Theorem 4 is proved.
Remarks. 1. Putting § = 0 in Theorem 4, we obtain the result of Liu [5] (Theorem 2.2).
2. Taking § = 0 and 6§ = 1 in Theorem 4, we have the result of Liu [5] (Corollary 2.1).
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3. Taking 6 = 0 and § = p = 1 in Theorem 4, we get the result of Mocanu and Oros [9]
(Corollary 2.2, with n. = 1).

4. Putting § = 0 and 6 = %(O < A < 1) in Theorem 4, we obtain the result of Liu [5]
(Corollary 2.2).

5. Taking 6 = 0, 6 = % (0 <A< 1)and g = 1 in Theorem 4, we have the result of

Mocanu and Oros [9] (Corollar;/ 2.4).
3. Inclusion relationships for the class SP (\; A, B).
Theorem 5. If f € SY™"(\; A, B) such that R)f(z) # 0 for all z € U* = U\ {0} and

(Z+>\)(1B)+(1)\)(1A)20, (3.1)
then
1 Z(Rif(z))/ 14+ Az
1—)\< RS f(2) “A) s =g (3-2)
where
1 1 1)
20~ (g &) e
and
1 1 B (I—A)éA—B)
/si< + ZS) ds, B#0,
0 ]. + BZ
Q1(z) = X
/ sk exp [(1 = A)(s —1)Az] ds, B =0,
0
and q1 is the best dominant of (3.2). If, in addition to (3.1),
(2 + A+ 1)B
< — —1<
A< T ) 1< B<O0, (3.4)
then f € S2(p1), where
Ak (L= NB-4) §+2k B s
= 125 B Tk O B-1 K
The result is the best possible.
Proof. Let
1 Z(Rif(z))/
= -, e U. 3.5

Then ¢ is analytic in U with ¢(0) = 1. Using identity (1.5) in (3.5), we get
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§+ERITFF(2) )

A sz(z) =(1-XNo¢(z) + % + A, (3.6)

and differentiating (3.6) with respect to z, we obtain

[z (Rire)

2¢'(2) 1+ Az
A =0¢(2) + < . (3.7
_ S+k 0
L=A 1 R f(2) (1= N)o(=) + 5 + A L+ Bz
From the assumption (3.1), by using Lemma 4, we get
1+ Az
P(2) < qi(z) < 1¥ B2
where ¢; is given (3.3) is the best dominant of (3.7), and this proves (3.2).
Now, we will show that
inf {R{q1(2)}: 2| <1} = q1(-1),
or, equivalently,
1 1
inf ?R{} z <1}: . (3.9)
Ham) H < - o
1-— B-A 2
Denoting o1 = ( )\)B ), ay = HT]C and 5 = 52 k, since 1 > ag > 0, from (1.8),

(1.9), and (1.10), we deduce that

Qu(z) = (1+ B2)™ s”1<1+st>alds—”“”gm(%al;m; = ) “H(z),

T(51) Bz+1) o+k

S —

where

Bz
H(z)= oFy(1 01 39
(Z> 2 1( 7a17617Bz+1>7 ( )

whenever B # 0. From (3.4), excepting the case of equality, we have 81 > a3 > 0, hence from
(1.9) we get

1
H(z)= /h(z,s)du(s),
0

where

1+ Bz

Mz ) = 14+ (1—s)Bz

and

I'(51)
[(a)L(B1 — 1)

dv(s) = s 1 —g)mlgs, 0<s<1,
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which is a positive measure on [0, 1]. Using the fact —1 < B < 0, it is easy to check that

%{Héi}>Q z e U,

h(-r,s)eR, 0<r<1;s€]0,1],

1 1-(1—-s)Br 1
= - =r<l 1].
%{M%$}_ 1—Br M—n$”d—r<’ s €[0,1]

Therefore, according to Lemma 2, we deduce that

) mey HEr<t

and by letting » — 17, taking into the account the relation (3.9), we obtain inequality (3.8).
0/k+X+1)B 0/k+X+1)B
o/ I_;\F ) for the case A = —( / T_j\_ )
that (3.8) holds whenever the inequality (3.4) is satisfied, which prove f € S9(p1). The result is the
best possible as the function ¢ is the best dominant of (3.7).

Theorem 5 is proved.

Theorem 6. If f € S)(\; A, B) such that R}.J,f(z) # 0 for all z € U* and

A+ ) (1 — B) + (1 — A)(1— 4) >0, (3.10)

then J,f(z) € S)(\; A, B), where the operator J, is defined by (2.5). Furthermore, if f €
€ S,‘g()\;A,B), then

Further, by taking A T — , we conclude

1 z (RiJ#f(z))/ 1+ Az
1—>\< RO, f(2) “A) sl = 1+ Bz’ .11
where
1 1
w0 = 15 (g )
and

1 1+ Bzs <17M1(3A73>
H d B#0
)= /0 5 < 1+ Bz > . 70,

/1 sexp [(1—A)(s —1)Az] ds, B=0,
0

Q3(=

and qs3 is the best dominant of (3.11). If, in addition to (3.10),

A +p+1)B

A< —
- 1-A

with —1 < B <0,
then J,f(2) € S(ps), where

p3=(1+u)[2F1<1, (1_/\)1(3B_A); ot 2; BB_1>]_1—M-

The result is best possible.
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Proof. Let
1 [(2(RyJ.f(2)
= - A, e U. 3.12
o) =13 R2J,f(2) ‘ (3-12)
Then ¢ is analytic in U with ¢(0) = 1. Using the identity (2.6) in (3.12), we get
Ry (2)
(14 p) =20 = (1= N)b(2) + A+ p. (3.13)
RO, f(2)

Differentiating (3.13) with respect to z, we obtain

1 z(Rif(z))/
1—A RS f(z)

24 (2) 1+ Az
(1—-=XNop(z)+A+pu 1+ Bz’

“A) = o)+

and employing the same technique that used in the proof of Theorem 5, the remaining part of the
theorem can be proved similarly.
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