DOI: 10.37863/umzh.v74i6.2357

UDC 512.5

M. Bibak (Payame Noor Univ., Tehran, Iran), G. H. Rezaeezadeh (Univ. Shahrekord, Iran)

## CHARACTERIZATION BY ORDER AND DEGREE PATTERN OF THE SIMPLE GROUPS $O_8^-(q)$ FOR CERTAIN q

## ХАРАКТЕРИСТИКА ПОРЯДКІВ ТА СТЕПЕНІВ ПРОСТИХ ГРУП $O_8^-(q)$ ДЛЯ ЗАДАНОГО q

In this paper, it is demonstrated that every finite group G with the same order and degree pattern as  $O_8^-(q)$  for certain q is necessarily isomorphic to the group  $O_8^-(q)$ .

Доведено, що будь-яка скінченна група G, яка має ті ж самі порядок та степінь, що й група  $O_8^-(q)$  для деякого q, необхідно має збігатися з  $O_8^-(q)$ .

1. Introduction. Let G be a finite group,  $\pi(G)$  the set of all prime divisors of its order and  $\pi_e(G)$  the spectrum of G, that is, the set of its element orders. The Gruenberg-Kegel graph  $\Gamma(G)$  or prime graph of G is a simple graph with vertex set  $\pi(G)$ , in which two distinct vertices p and q are adjacent by an edge if and only if  $pq \in \pi_e(G)$ .

For the first time the concept of degree pattern of prime graph was defined in [7]. Let G be a finite group and  $\pi(G) = \{p_1, p_2, \ldots, p_k\}$  with  $p_1 < p_2 < \ldots < p_k$ . If  $\deg(p)$  of a vertex  $p \in \pi(G)$  is the number of edges incident to p, then the degree pattern of G is defined as  $D(G) = (\deg(p_1), \deg(p_2), \ldots, \deg(p_k))$ . A finite group G is called k-fold OD-characterizable if there are exactly k nonisomorphic groups H such that |H| = |G| and D(H) = D(G). Usually a 1-fold OD-characterizable group is called an OD-characterizable group.

A characterization of the finite group G by degree pattern was defined in [7], in which the authors proved that all the sporadic simple groups, the alternating groups  $\mathbb{A}_p$ , where p and p-2 are prime numbers, and some simple groups of Lie type are OD-characterizable, however the projective symplectic group  $SP_6(3)$  is 2-fold OD-characterizable. In [6, 8, 12], it is shown that some projective special linear groups are OD-characterizable. In [15], it is proved that the automorphism groups of orthogonal groups  $O_{10}^+(2)$  and  $O_{10}^-(2)$  are OD-characterizable. Also, in a series of papers [4, 5, 9, 10], the characterization by order and degree pattern for some finite almost simple groups has been studied (recall that a group G is an almost simple group, if  $S \leq G \leq \operatorname{Aut}(S)$ , for some non-Abelian simple group S). In this paper, we prove that  $O_8^-(q)$  where  $q \in \{3-5, 8, 9, 13\}$  is OD-characterizable.

Throughout this paper, we use the following definition and notions related to  $\Gamma(G)$ : A set of vertices of a graph is called independent if its elements are pairwise nonadjacened. We denote by t(G) the maximal number of vertices in independent sets of  $\Gamma(G)$  and by t(r,G) the maximal number of vertices in independent sets of  $\Gamma(G)$  containing a prime r. Denote by s(G) the number of connected components of  $\Gamma(G)$  and by  $\pi_i = \pi_i(G), i = 1, 2, \dots, s(G)$ , the ith connected component of  $\Gamma(G)$ . If  $1 \in T$  we always suppose  $1 \in T$ .

Also, we use the following notations. For  $p \in \pi(G)$ , we denote by  $\mathrm{Syl}_p(G)$  and  $G_p$  the set of all Sylow p-subgroups of G and a Sylow p-subgroup of G, respectively. If p is a prime and

m be a natural number, then we write  $|m|_p$  for the p-part of m, i.e., the highest power of p that divides m. Given a prime p, we denote by  $\mathfrak{S}_p$  the set of all finite non-Abelian simple groups G such that  $\max \pi(G) = p$ . Note that the full list of all finite non-Abelian simple groups S in  $\mathfrak{S}_p$  for  $5 \le p \le 997$ , has been determined in [16]. In this paper, we deal with the finite non-Abelian simple groups in  $\mathfrak{S}_p$ , where  $p \in \{41, 193, 241, 257, 313, 631\}$ , and for convenience, we list them in Table 2. The other unexplained notations are standard and refer to [11].

2. Preliminaries. In this section, we list some basic and known results that will be used.

**Definition 2.1.** A group G is a 2-Frobenius group if there exists a normal series  $1 \triangleleft H \triangleleft K \triangleleft G$ such that K and G/H are Frobenius groups with kernels H and K/H, respectively.

The structure of finite groups with nonconnected prime graph is described in the following lemma.

**Lemma 2.1** (Gruenberg – Kegel theorem of [14]). Let G be a finite group with  $s(G) \geq 2$ . Then one of the following statements holds:

- (a) G is a Frobenius or a 2-Frobenius group;
- (b) G has a normal series  $1 \le H \le K \le G$  where H is a nilpotent  $\pi_1$ -group, K/H is a non-Abelian simple group and G/K is a  $\pi_1$ -group such that |G/K| divides  $|\operatorname{Out}(K/H)|$ . Moreover, each odd-order components of G is also an odd-order component of K/H.
- **Lemma 2.2** (Corollary 3.8 of [1]). Let G be a finite group with  $n = |\pi(G)|$  and let  $d_1 \le$  $\leq d_2 \leq \ldots \leq d_n$  be the degree sequence of  $\Gamma(G)$ . If  $d_1 + d_{d_1+2} \leq n-3$ , then  $t(G) \geq 3$ .

**Lemma 2.3** (Lemma 2.8 of [6]). Let  $\Gamma(G)$  be the prime graph of G with exactly two vertices of degree 1. Then  $t(G) \ge 3$ , if one of the following statements holds:

- (1)  $|\pi(G)| = 6$  and  $\Gamma(G)$  has at least two vertices of degree 2;
- (2)  $|\pi(G)| \ge 7$  and  $\Gamma(G)$  has at least two vertices of degree 3.

**Lemma 2.4** [13]. Let G be a finite group with  $t(G) \geq 3$ ,  $t(2,G) \geq 2$ , and K be the maximal normal solvable subgroup of G. Then there exists a non-Abelian simple group S such that  $S \leq$  $\leq G/K \leq \operatorname{Aut}(S)$ .

**Lemma 2.5** (Lemma 2.7 of [6]). Let G be a finite group of even order with  $t(G) \geq 3$ . Then G is nonsolvable, and so it is not a 2-Frobenius group. If, moreover,  $|G|_3 \neq 3$  or  $|G|_5 \neq 5$ , then G is not a Frobenius group.

The following two lemmas give a complete description of the spectra of groups  $O_{2n}^-(q)$  for all possible values q.

**Lemma 2.6** (Corollaries 8 and 9 of [2]). Let  $O = O_{2n}^{\varepsilon}(q)$ , where q be a power of an odd prime  $p, n \geq 4$  and  $\varepsilon \in \{+, -\}$ . Moreover, assume that  $d = (4, q^n - 1)$  and  $c = \frac{d}{2}$ . Then  $\pi_e(O)$  consists of all divisors of the following numbers:

- (1)  $\frac{q^{n} \varepsilon}{d}$ ; (2)  $\frac{[q^{n_{1}} \delta, q^{n_{2}} \varepsilon \delta]}{e}$ , where  $\delta \in \{+, -\}$ ,  $n_{1}, n_{2} > 0$ ,  $n_{1} + n_{2} = n$ ; e = 2 if  $(q^{n_{1}} \delta)_{2} = 0$  $=(q^{n_2}\delta)_2$  and e=1 otherwise;
- (3)  $[q^{n_1} \delta_1, q^{n_2} \delta_2, \dots, q^{n_s} \delta_s]$ , where  $s \geq 3$ ,  $\delta_i \in \{+, -\}$ ,  $n_i > 0$  for all  $1 \leq i \leq s$ ,
- $n_{1} + \ldots + n_{s} = n \text{ and } \delta_{1}\delta_{2} \ldots \delta_{s} = \varepsilon;$   $(4) \ p\left[q \pm 1, \frac{q^{n-2} + 1}{2}\right];$   $(5) \ p[q \pm 1, q^{n_{1}} \delta_{1}, q^{n_{2}} \delta_{2}, \ldots, q^{n_{s}} \delta_{s}], \text{ where } s \geq 2, \ \delta_{i} \in \{+, -\}, \ n_{i} > 0 \text{ for all } 1 \leq i \leq s,$  $n_1 + \ldots + n_s = n - 2$  and  $\delta_1 \delta_2 \ldots \delta_s = \varepsilon$ ;

| $\overline{S}$ | S                                                          | D(S)                                    |
|----------------|------------------------------------------------------------|-----------------------------------------|
| $O_8^-(3)$     | $2^{10}.3^{12}.5.7.13.41$                                  | (4,2,2,1,1,0)                           |
| $O_8^-(4)$     | $2^{24}.3^4.5^3.7.13.17.257$                               | (3, 5, 5, 2, 3, 2, 0)                   |
| $O_8^-(5)$     | $2^{10}.3^4.5^{12}.7.13.31.313$                            | (5,5,3,2,3,2,0)                         |
| $O_8^-(8)$     | $2^{36}.3^{7}.5.7^{3}.13.17.19.73.241$                     | (2,6,3,6,3,1,2,2,1)                     |
| $O_8^-(9)$     | $2^{13}.3^{24}.5^3.7.13.17.41.73.193$                      | (6,3,6,3,3,1,3,2,1)                     |
| $O_8^-(43)$    | $2^{10}.3^4.5^2.7^3.11^3.13.17.37.43^{12}.139.193.521.631$ | (9, 9, 6, 9, 9, 9, 5, 2, 6, 5, 2, 2, 4) |

Table 1. The order and degree pattern of simple groups  $O_8^-(q)$  for certain q

(6) 
$$p^{l} \frac{q^{n_1} \pm 1}{3}$$
, where  $l > 0$  and  $p^{l-1} + 3 + 2n_1 = 2n$ ;

(7)  $p^{L}[q^{n_1} \pm 1, \dots, q^{n_s} \pm 1]$ , where l > 0,  $s \geq 2$  and  $n_i > 0$  for all  $1 \leq i \leq s$  and  $p^{l-1} + 3 + 2(n_1 + n_2 + \dots + n_s) = 2n$ ;

(8) 
$$p^l$$
 if  $2n = p^{l-1} + 3$  for  $l > 0$ .

**Lemma 2.7** (Corollary 4 of [2]). Let  $O = O_{2n}^{\varepsilon}(q)$ , where q is even,  $n \geq 4$  and  $\varepsilon \in \{+, -\}$ . The set  $\pi_e(O)$  consists of all divisors of the following numbers:

(1)  $\left[q^{n_1} \pm \tau_1, q^{n_2} \pm \tau_2, \dots, q^{n_s} \pm \tau_s\right]$ , where  $s \ge 1$ ,  $\tau_i \in \{+, -\}$ ,  $n_i > 0$  for all  $1 \le i \le s$ ,  $n_1 + \dots + n_s = n$  and  $\tau_1 \tau_2 \dots \tau_s = \varepsilon$ ;

(4) 
$$p \left[ q \pm 1, \frac{q^{n-2} + 1}{2} \right];$$

(5)  $p[q\pm 1, q^{n_1} - \delta_1, q^{n_2} - \delta_2, \dots, q^{n_s} - \delta_s]$ , where  $s \ge 2$ ,  $\delta \in \{+, -\}$ ,  $n_i > 0$  for all  $1 \le i \le s$ ,  $n_1 + \dots + n_s = n - 2$  and  $\delta_1 \delta_2 \dots \delta_s = e$ ;

(6) 
$$p[q \pm 1, q = 0_1, q = 0_2, \dots, q = 0_s]$$
, where  $s \ge n_1 + \dots + n_s = n - 2$  and  $\delta_1 \delta_2 \dots \delta_s = e$ ;  
(6)  $p[\frac{q^{n_1} \pm 1}{3}]$ , where  $l > 0$  and  $p^{l-1} + 3 + 2n_1 = 2n$ ;

(7)  $p^{L}[q^{n_1} \pm 1, \dots, q^{n_s} \pm 1]$ , where l > 0,  $s \ge 2$  and  $n_i > 0$  for all  $1 \le i \le s$  and  $p^{l-1} + 3 + 2(n_1 + n_2 + \dots + n_s) = 2n$ ;

(8) 
$$p^l$$
 if  $2n = p^{l-1} + 3$  for  $l > 0$ .

By using Lemmas 2.6, 2.7 and [16], we contain some results which are listed in the Table 1.

**Lemma 2.8** (Lemma 2.1 of [12]). Let S be a finite non-Abelian simple group in  $\mathfrak{S}_p$  where  $5 \le p \le 997$ . Then  $\pi(\operatorname{Out}(S)) \subseteq \{2, 3, 5, 7, 11\}$ .

**Lemma 2.9** (Lemma 2.12 of [3]). Let G be a group and N be a normal subgroup of G with order  $p^n$ ,  $n \ge 1$ . If  $(r, |\operatorname{Aut}(N)|) = 1$ , where  $r \in \pi(G)$ , then G has an element of order  $p^n$ .

**3. Main results.** In this section, we study the characterization problem for the simple groups  $O_8^-(q)$  with  $q \in \{3, 4, 5, 8, 9, 43\}$  by their orders and degree patterns.

**Proposition 3.1.** The orthogonal group  $O_8^-(3)$  is OD-characterizable.

**Proof.** Assume that G be a finite group such that  $|G| = |O_8^-(3)| = 2^{10}.3^{12}.5.7.13.41$  and  $D(G) = D(O_8^-(3)) = (4, 2, 2, 1, 1, 0)$ . By Lemma 2.3, it follows that  $t(G) \geq 3$ . Furthermore,  $t(2,G) \geq 2$  because  $\deg(2) = 4$  and  $|\pi(G)| = 6$ . Consequently, from Lemma 2.4 we imply that there exists a finite non-Abelian simple group S such that  $S \leq G/K \leq \operatorname{Aut}(S)$ , where K is the maximal normal solvable subgroup of G.

We show that K is a  $\{13,41\}'$ -group. Assume that K is not a  $\{13,41\}'$ -group. Then either  $13 \in \pi(K)$  or  $41 \in \pi(K)$ . Suppose that  $\{r,s\} = \{13,41\}, r \in \pi(K)$  and R is a Sylow r-subgroup

of K. Then  $N_G(R)$  contains an element of order s, so G contains an element of order r.s, which is a contradiction. Therefore, K is a  $\{13,41\}'$ -group.

Since  $S \leq G/K \leq \operatorname{Aut}(S)$ , it follows that  $\{13,41\} \subseteq \pi(G/K) \subseteq \pi(\operatorname{Aut}(S))$ . On the other hand,  $\pi(\operatorname{Aut}(S)/S) = \pi(\operatorname{Out}(S)) \cap \{13,41\} = \varnothing$  by Lemma 2.8. Hence,  $\{13.41\} \subseteq \pi(S)$  and so by using the collected results contained in Table 2, we conclude that S is isomorphic to  $O_8^-(3)$ . Therefore,  $O_8^-(3) \leq G/K \leq \operatorname{Aut}(O_8^-(3))$ , and since  $|G| = |O_8^-(3)|$ , we deduce that |K| = 1 and  $G \cong O_8^-(3)$ .

**Proposition 3.2.** The orthogonal group  $O_8^-(4)$  is OD-characterizable.

**Proof.** Suppose that G be a finite group such that  $|G| = |O_8^-(4)| = 2^{24}.3^4.5^3.7.13.17.257$  and  $D(G) = D(O_8^-(4)) = (3, 5, 5, 2, 2, 3, 0)$ . Then the prime graph of G has the following form:



Since  $\{13,17,257\}$  is an independent set in  $\Gamma(G)$ , it follows that  $t(G) \geq 3$ . By Lemma 2.5, G is neither a Frobenius group nor a 2-Frobenius group, and hence Lemma 2.1 implies that G has a normal series  $1 \leq H \leq K \leq G$ , where K/H is a non-Abelian simple group and G/K is a  $\pi_1$ -group such that  $|G/K| \mid |\operatorname{Out}(K/H)|$ . Moreover, each odd-order components of G is also an odd-order component of K/H. Thus 257 is an isolated vertex of prime graph of K/H. Now, according to the results collected in Table 2, we deduce that K/H is isomorphic to one of the following groups:  $L_2(2^8)$  or  $O_8^-(4)$ .

If K/H is isomorphic to  $L_2(2^8)$ , then (|G/K|, 13) = 1 by |Out(K/H)| = 16 and so the Sylow 13-subgroup of H is of order 13 and is normal in G. Since  $(257, |\text{Aut}(H_{13})|) = 1$ , it follows that G has an element of order 257.13 by Lemma 2.9, which contradicts our assumption  $\deg(257) = 0$ .

Therefore, K/H is isomorphic to  $O_8^-(4)$ , and since  $|G|=|O_8^-(4)|$ , we obtain |H|=1 and  $G\cong O_8^-(4)$ .

**Proposition 3.3.** The orthogonal group  $O_8^-(5)$  is OD-characterizable.

**Proof.** Assume that G be a finite group such that  $|G|=|O_8^-(5)|=2^{10}.3^4.5^{12}.7.13.31.313$  and  $D(G)=D(O_8^-(5))=(5,5,3,2,3,2,0)$ . According to these conditions on G, we conclude that  $\Gamma(G)$  has the following form:



From the structure of the prime graph of G, as shown in Fig. 2, we deduce that  $t(G) \geq 3$ . Hence, by Lemma 2.5 implies that G is neither a Frobenius group nor a 2-Frobenius group. So, it follows by Lemma 2.1 that G has a normal series  $1 \leq H \leq K \leq G$ , where K/H is a non-Abelian simple group and G/K is a  $\pi_1$ -group such that  $|G/K| \mid |\operatorname{Out}(K/H)|$ . Moreover,  $\{313\}$  is a prime component of K/H. By using Table 2, one can easily obtain that  $K/H \cong L_2(5^4)$  or  $O_8^-(5)$ .

If  $K/H \cong L_2(5^4)$ , then (|G/K|, 31) = 1 by  $|\operatorname{Out}(L_2(5^4))| = 8$ . Hence, the Sylow 31-subgroup of H is of order 31 and is normal in G. Since  $(313, |\operatorname{Aut}(H_{31})|) = 1$ , we deduce that G has an element of order 31.313 by Lemma 2.9, which is a contradiction.

Therefore, we have  $K/H \cong O_8^-(5)$ . Because  $|G| = |O_8^-(5)|$ , we can get that |H| = 1, and, thus,  $G \cong O_8^-(5)$ .

**Proposition 3.4.** The orthogonal group  $O_8^-(8)$  is OD-characterizable.

**Proof.** Suppose that G be a finite group such that  $|G|=|O_8^-(8)|=2^{36}.3^7.5.7^3.13.17.19.73.241$  and D(G)=(2,6,3,6,3,1,2,2,1). By Lemma 2.3,  $t(G)\geq 3$ . Since  $\deg(2)=2$  and  $|\pi(G)|=9$ , it follows that  $t(2,G)\geq 2$ . Consequently, from Lemma 2.4 we implies that there exists a finite non-Abelian simple group S such that  $S\leq G/K\leq \operatorname{Aut}(S)$ , where K is the maximal normal solvable subgroup of G.

We show that K is a p'-group, where  $p \in \{73,241\}$ . Assume to the contrary that  $p \in \pi(K)$ . Let  $r \in \{13,17,19\}$  and r|K|, then a Hall  $\{p,r\}$ -subgroup of K is a cyclic group of order p.r, and, hence, p is adjacent to r for all  $r \in \{13,17,19\}$ , which is a contradiction. Now, we may assume that  $r \notin \pi(K)$ . Let  $K_p \in \mathrm{Syl}_p(K)$ , then  $N_G(K_p)$  contains an element of order p for all  $r \in \{13,17,19\}$ , which is again a contradiction. Therefore, K is a  $\{73,241\}'$ -group.

By Lemma 2.8,  $\pi(\operatorname{Out}(S)) \cap \{13,41\} = \emptyset$ . On the other hand, since K is a  $\{73,241\}'$ -group and  $S \leq G/K \leq \operatorname{Aut}(S)$ , it follows that the order of S is divisible by 73.241. According to the results in Table 2, we obtain the only possibility for S is  $O_8^-(8)$ . Therefore,  $O_8^-(8) \leq G/K \leq \operatorname{Aut}(O_8^-(8))$ , and since  $|G| = |O_8^-(8)|$ , we conclude that |K| = 1 and  $G \cong O_8^-(8)$ .

**Proposition 3.5.** The orthogonal group  $O_8^-(9)$  is OD-characterizable.

**Proof.** Let G be a finite group such that  $|G| = |O_8^-(9)| = 2^{13}.3^{24}.5^3.7.13.17.41.73.193$  and D(G) = (6,3,6,3,3,1,3,2,1). By Lemma 2.3, we have  $t(G) \geq 3$ . Furthermore,  $t(2,G) \geq 2$  because of  $|\pi(G)| = 9$  and  $\deg(2) = 6$ . Therefore, Lemma 2.4 implies that there is a finite non-Abelian simple group S such that  $S \leq G/K \leq \operatorname{Aut}(S)$ , where K is the maximal normal solvable subgroup of G.

We show that K is a p'-group, where  $p \in \{73, 193\}$ . By way of contradiction, let  $p \in \pi(K)$ . If  $r \in \{13, 17, 41\}$ , then, by using the same technique as in the proof of Propositions 3.4, we derive that G has an element of order pr for all  $r \in \{13, 17, 19\}$ , which is impossible because  $\deg(73) = 2$  and  $\deg(193) = 1$ . Therefore, K is a  $\{73, 193\}'$ -group.

From Lemma 2.8, we know that  $\pi(\operatorname{Out}(S)) \cap \{73,193\} = \varnothing$ . Since K is a  $\{73,193\}'$ -group and  $S \leq G/K \leq \operatorname{Aut}(S)$ , it follows that the order of S is divisible by 73.193. Now, Table 2 shows us that S is isomorphic to  $O_8^-(9)$ . Since  $O_8^-(9) \leq G/K \leq \operatorname{Aut}(O_8^-(9))$  and  $|G| = |O_8^-(9)|$ , we conclude that |K| = 1 and  $G \cong O_8^-(9)$ .

**Proposition 3.6.** The orthogonal group  $O_8^-(43)$  is OD-characterizable.

**Proof.** Let G be a finite group with  $|G| = |O_8^-(43)| = 2^{10} \cdot 3^4 \cdot 5^2 \cdot 7^3 \cdot 11^3 \cdot 13 \cdot 17 \cdot 37 \cdot 43^{12} \cdot 139 \cdot 193 \cdot 521 \cdot 631$  and D(G) = (9,9,6,9,9,9,5,2,6,5,2,2,4). Since  $d_1 = 2$  and  $d_4 \leq |\pi(G)| - 5$ , then Lemma 2.2 implies that  $t(G) \geq 3$ . Moreover,  $t(2,G) \geq 2$  because  $|\pi(G)| = 12$  and  $\deg(2) = 9$ . Thus, by Lemma 2.4, there exists a finite non-Abelian simple group S such that  $S \leq G/K \leq \operatorname{Aut}(S)$ , where K is the maximal normal solvable subgroup of G.

We show that K is a p'-group, where  $p \in \{521, 631\}$ . Assume to the contrary that |K| is divisible by p. If  $r \in \{13, 17, 37, 139, 193\}$ , then, by using a similar arguments as in the proof of Proposition 3.4, we can show that G has an element of order pr for all  $r \in \{13, 17, 37, 139, 193\}$ , which is contradiction because  $\deg(631) = 4$  and  $\deg(521) = 2$ . Therefore, K is a  $\{521, 631\}'$ -group.

By Lemma 2.8,  $\operatorname{Out}(S)$  is a  $\{521,631\}'$ -group. Since  $S \leq G/K \leq \operatorname{Aut}(S)$  and K is a  $\{521,631\}'$ -group, it follows that S is a simple group with  $\{521.631\} \subseteq \pi(S)$ . Therefore, by using Table 2 implies that S is isomorphic to  $O_8^-(43)$  and so  $O_8^-(43) \leq G/K \leq \operatorname{Aut}(O_8^-(43))$ . As  $|G| = |O_8^-(43)|$ , we deduce that |K| = 1 and so  $G \cong O_8^-(43)$ .

Table 2. The orders of finite simple groups  $S \in \mathfrak{S}_p$  except alternating groups

|                 | Lal                                                                                                         |  |
|-----------------|-------------------------------------------------------------------------------------------------------------|--|
| S               |                                                                                                             |  |
| . 4.            | p = 41                                                                                                      |  |
| $L_2(3^4)$      | $2^4 \cdot 3^4 \cdot 5 \cdot 41$                                                                            |  |
| $S_4(9)$        | $2^8 \cdot 3^8 \cdot 5^2 \cdot 17$                                                                          |  |
| Sz(32)          | $2^{10} \cdot 5^2 \cdot 31 \cdot 41$                                                                        |  |
| $L_2(41)$       | $2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 41$                                                                      |  |
| $O_8^-(3)$      | $2^{10} \cdot 3^{12} \cdot 5 \cdot 7 \cdot 13 \cdot 41$                                                     |  |
| $L_4(9)$        | $2^{10} \cdot {}^{12} \cdot 5^2 \cdot 7 \cdot 13 \cdot 41$                                                  |  |
| $O_9(3)$        | $2^{14} \cdot 3^{16} \cdot 5^2 \cdot 7 \cdot 13 \cdot 41$                                                   |  |
| $S_8(3)$        | $2^{14} \cdot 3^{16} \cdot 5^2 \cdot 7 \cdot 13 \cdot 41$                                                   |  |
| $L_2(41^2)$     | $2^4 \cdot 3 \cdot 5 \cdot 7 \cdot 29^2 \cdot 41^2$                                                         |  |
| $S_4(41)$       | $2^8 \cdot 3^2 \cdot 5^2 \cdot 7^2 \cdot 29^2 \cdot 41^4$                                                   |  |
| $L_2(2^{10})$   | $2^{10}\cdot 3\cdot 5^2\cdot 11\cdot 31\cdot 41$                                                            |  |
| $S_4(32)$       | $2^{20} \cdot 3^2 \cdot 5^2 \cdot 11^2 \cdot 31^2 \cdot 41$                                                 |  |
| $U_5(4)$        | $2^{20} \cdot 3^2 \cdot 5^4 \cdot 13 \cdot 17 \cdot 41$                                                     |  |
| $O_{10}^+(3)$   | $2^{15} \cdot 3^{20} \cdot 5^2 \cdot 7 \cdot 11^2 \cdot 13 \cdot 41$                                        |  |
| $U_6(4)$        | $2^{30} \cdot 3^4 \cdot 5^6 \cdot 7 \cdot 13^2 \cdot 17 \cdot 41$                                           |  |
|                 | p = 193                                                                                                     |  |
| $L_2(3^8)$      | $2^5 \cdot 3^8 \cdot 5 \cdot 17 \cdot 41 \cdot 193$                                                         |  |
| $S_4(3^4)$      | $2^{10} \cdot 3^{16} \cdot 5^2 \cdot 17 \cdot 41^2 \cdot 193$                                               |  |
| $L_2(193)$      | $2^3 \cdot 3 \cdot 5^3 \cdot 97 \cdot 149 \cdot 193^2$                                                      |  |
| $S_4(193)$      | $2^{14} \cdot 3^2 \cdot 5^3 \cdot 97^2 \cdot 149 \cdot 149 \cdot 193^4$                                     |  |
| $U_3(109)$      | $2^4 \cdot 3^3 \cdot 5^2 \cdot 11^2 \cdot 61 \cdot 109^3 \cdot 193$                                         |  |
| $O_8^-(9)$      | $2^{13} \cdot 3^{24} \cdot 5^3 \cdot 7 \cdot 13 \cdot 17 \cdot 41 \cdot 73 \cdot 193$                       |  |
| $L_4(3^4)$      | $2^{13} \cdot 3^{24} \cdot 5^3 \cdot 7 \cdot 13 \cdot 17 \cdot 41^2 \cdot 73 \cdot 193$                     |  |
| $S_8(9)$        | $2^{18} \cdot 3^{32} \cdot 5^4 \cdot 7 \cdot 13 \cdot 17 \cdot 41^2 \cdot 73 \cdot 193$                     |  |
| $O_9(9)$        | $2^{18} \cdot 3^{32} \cdot 5^4 \cdot 7 \cdot 13 \cdot 17 \cdot 41^2 \cdot 73 \cdot 193$                     |  |
| $O_{10}^{+}(9)$ | $2^{20} \cdot 3^{60} \cdot 5^4 \cdot 7 \cdot 11^2 \cdot 13 \cdot 17 \cdot 41^2 \cdot 67 \cdot 73 \cdot 193$ |  |

Table 2 (continued)

| S               | S                                                                        |
|-----------------|--------------------------------------------------------------------------|
|                 | p = 241                                                                  |
| $U_3(16)$       | $2^4.3.5.11^2.241$                                                       |
| $S_8(8)$        | $2^{48}.3^9.5^2.7^4.13^3.17.19.241$                                      |
| $L_2(2^{12})$   | $2^{48}.3^9.5^2.7^4.13^3.17.19.241$                                      |
| $O_8^-(8)$      | $2^{36}.3^{7}.5.7^{3}.13.17.19.73.241$                                   |
| $L_4(64)$       | $2^{36}.3^{7}.5^{2}.7^{3}.13^{2}.17.19.73.241$                           |
| $^{3}D_{4}(4)$  | $2^{36}.3^{7}.5^{2}.7^{3}.13^{2}.17.19.73.241$                           |
| $G_2(16)$       | $2^{36}.3^4.5^3.7^2.13^3.17.37.109.241$                                  |
| $U_4(64)$       | $2^{36}.3^4.5^3.7^2.13^3.17.37.109.241$                                  |
| $S_6(64)$       | $2^{54}.3^{6}.5^{3}.7^{3}.13^{3}.17.19.37.109.241$                       |
| $F_4(8)$        | $2^{72}.3^{10}.5^{2}.7^{4}.13^{2}.17.37.73^{2}.109.241$                  |
| $L_3(2^{12})$   | $2^{36}.3^5.5^2.7^2.13^2.17.19.37.73.109.241$                            |
| $O_8^+(64)$     | $2^{72}.3^{7}.5^{3}.7^{4}.13^{4}.17^{2}.37.73.109.241^{2}$               |
| $S_4(64)$       | $2^{60}.3^{9}.5^{2}.7^{5}.13^{2}.17^{2}.19.31.73.151.241$                |
| $O_{10}^{+}(8)$ | $2^{60}.3^{9}.5^{2}.7^{5}.13^{2}.17^{2}.19.31.73.151.241$                |
| 10 ( )          | p = 257                                                                  |
| $L_2(257)$      | $2^8.3.43.257$                                                           |
| $L_2(2^8)$      | $2^8.3.5.17.257$                                                         |
| $S_4(16)$       | $2^{16}.3^2.5^2.17^2.257$                                                |
| $U_4(16)$       | $2^{24}.3^2.5^2.17^3.241.257$                                            |
| $O_8^-(4)$      | $2^{24}.3^4.5^3.7.13.17.257$                                             |
| $S_8(4)$        | $2^{32}.3^5.5^4.7.13.17^2.257$                                           |
| $L_2(241^2)$    | $2^5.3.5.7^3.11^2.113.241^2.257$                                         |
| $S_4(241)$      | $2^{10}.3^2.5^2.11^4.113.241^2.257$                                      |
| $U_3(257)$      | $2^{11}.3^2.7.13.43.241.257^3$                                           |
| $O_{10}^{-}(4)$ | $2^{40}.3^{5}.5^{6}.7.13.17^{2}.41.257$                                  |
| $L_3(2^8)$      | $2^{24}.3^2.5^2.7.13.17^2.241.257$                                       |
| $S_6(16)$       | $2^{36}.3^4.5^3.7.13.17^3.241.257$                                       |
| $O_8^+(16)$     | $2^{48}.3^{5}.5^{4}.7.13.17^{4}.241.257$                                 |
| $F_4(4)$        | $2^{48}.3^6.5^4.7^2.13^2.17^2.241.257$                                   |
| $O_{10}^+(4)$   | $2^{40}.3^6.5^4.7.11.13.17^2.31.257$                                     |
| $L_5(16)$       | $2^{40}.3^{5}.5^{4}.7.11.13.17^{2}.31.41.257$                            |
| $S_{10}(4)$     | $2^{50}.3^{6}.5^{6}.7.11.13.17^{2}.31.41.257$                            |
| $S_{20}(2)$     | $2^{100}.3^{14}.5^{6}.7^{3}.11^{2}.13.17^{2}.19.31^{2}.41.43.73.127.257$ |

## Table 2 (continued)

| S               | S                                                                                                                                  |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| $U_{10}(4)$     | $2^{90}.3^{6}.5^{10}.7.11.13^{3}.17^{2}.29.31.37.41^{2}.109.113.257$                                                               |  |
| $L_7(16)$       | $2^{84}.3^{8}.5^{7}.7^{2}.11.13^{2}.17^{3}.29.31.41.43.113.127.241.257$                                                            |  |
| $S_{14}(4)$     | $2^{98}.3^{7}.5^{6}.7^{2}.11.13^{2}.17^{3}.29.31.41.43.113.127.241.257$                                                            |  |
| $O_{16}^+(4)$   | $2^{112}.3^8.5^7.7^2.11.13^2.17^4.29.31.41.43.113.127.241.257^2$                                                                   |  |
| $O_{22}^+(2)$   | $2^{110}.3^{14}.5^{6}.7^{3}.11^{2}.13.17^{2}.19.23.31^{2}.41.43.73.89.127.257$                                                     |  |
| $E_{7}(4)$      | $2^{126}.3^{11}.5^{8}.7^{3}.11.13^{3}.17^{2}.19.29.31.37.41.43.73.109.113.127.241.257$                                             |  |
|                 | p = 313                                                                                                                            |  |
| $L_2(5^4)$      | $2^6 \cdot 3 \cdot 5^4.13.313$                                                                                                     |  |
| $S_4(25)$       | $2^9 \cdot 3^2 \cdot 5^8 \cdot 13^2 \cdot 313$                                                                                     |  |
| $O_8^-(5)$      | $2^{10}.3^4.5^{12}.7.13.31.313$                                                                                                    |  |
| $O_9(5)$        | $2^{15} \cdot 3^5 \cdot 5^4.7 \cdot 13^2.31.313$                                                                                   |  |
| $S_8(5)$        | $2^{15} \cdot 3^5 \cdot 5^4.7 \cdot 13^2.31.313$                                                                                   |  |
| $L_4(25)$       | $2^9 \cdot 3^4 \cdot 5^{12}.7.13^2.31.313$                                                                                         |  |
| $L_3(313)$      | $2^7 \cdot 3^4 \cdot 13^2 \cdot 157.181^2.313^3$                                                                                   |  |
| $L_2(313^2)$    | $2^6 \cdot 3 \cdot 5 \cdot 13.97.101.157.313^2$                                                                                    |  |
| $S_4(313)$      | $2^9 \cdot 3^2.5 \cdot 13 \cdot 97.101.157^2.313^4$                                                                                |  |
| $L_4(313)$      | $2^{13} \cdot 3^4 \cdot 5 \cdot 13^3.97.101.157^2.181^2.313^6$                                                                     |  |
| $^{3}D_{4}(29)$ | $2^6 \cdot 3^4 \cdot 5^2 \cdot 7^2.13^2.29^{12}.37.61.67^2.271^2.313$                                                              |  |
|                 | p = 631                                                                                                                            |  |
| $L_3(43)$       | $2^4 \cdot 3^2 \cdot 7^2 \cdot 11 \cdot 43^3 \cdot 631$                                                                            |  |
| $L_2(43)$       | $2^2 \cdot 3^2 \cdot 7 \cdot 11 \cdot 13 \cdot 43^3 \cdot 139 \cdot 631$                                                           |  |
| $L_3(587)$      | $2^4 \cdot 3 \cdot 7^2 \cdot 293^2 \cdot 547 \cdot 587^3 \cdot 631$                                                                |  |
| $L_3(631)$      | $2^5 \cdot 3^4 \cdot 5^2 \cdot 7^2 \cdot 79 \cdot 307 \cdot 433 \cdot 631$                                                         |  |
| $L_4(43)$       | $2^7 \cdot 3^4 \cdot 5^2 \cdot 7^3 \cdot 11^2 \cdot 37 \cdot 43^6 \cdot 631$                                                       |  |
| $G_2(43)$       | $2^6 \cdot 3^4 \cdot 7^2 \cdot 11^2 \cdot 13 \cdot 43^6 \cdot 139 \cdot 631$                                                       |  |
| $O_8^+(43$      | $2^8 \cdot 3^4 \cdot 5^2 \cdot 7^3 \cdot 11^3 \cdot 37 \cdot 43^{12} \cdot 139 \cdot 631$                                          |  |
| $S_6(43)$       | $2^9 \cdot 3^4 \cdot 5^2 \cdot 7^3 \cdot 11^3 \cdot 37 \cdot 43^9 \cdot 139 \cdot 631$                                             |  |
| $O_7(43)$       | $2^9 \cdot 3^4 \cdot 5^2 \cdot 7^3 \cdot 11^3 \cdot 37 \cdot 43^9 \cdot 139 \cdot 631$                                             |  |
| $L_3(43^2)$     | $2^7 \cdot 3^2 \cdot 5^2 \cdot 7^2 \cdot 11^2 \cdot 13 \cdot 37 \cdot 43^6 \cdot 139 \cdot 631$                                    |  |
| $L_4(43)$       | $2^9 \cdot 3^4 \cdot 5^2 \cdot 7^3 \cdot 11^3 \cdot 13 \cdot 37 \cdot 43^6 \cdot 139 \cdot 631$                                    |  |
| $O_8^-(43)$     | $2^{10} \cdot 3^4 \cdot 5^2 \cdot 7^3 \cdot 11^3 \cdot 13 \cdot 17 \cdot 37 \cdot 43^{12} \cdot 139 \cdot 193 \cdot 521 \cdot 631$ |  |
| $S_8(43)$       | $2^{14} \cdot 3^5 \cdot 5^4 \cdot 7^4 \cdot 11^4 \cdot 13 \cdot 37^2 \cdot 139 \cdot 193 \cdot 521 \cdot 631$                      |  |
| $O_9(43)$       | $2^{14} \cdot 3^5 \cdot 5^4 \cdot 7^4 \cdot 11^4 \cdot 13 \cdot 37^2 \cdot 139 \cdot 193 \cdot 521 \cdot 631$                      |  |

## References

- B. Akbari, A. R. Moghaddamfar, Recognizing by order and degree pattern of some projective special linear groups, Int. J. Algebra Comput., 22, № 6, 1 – 22 (2012).
- 2. A. A. Buturlakin, Spectra of finite symplectic and orthogonal groups, Siberian Adv. Math., 21, № 3, 176-210 (2011).
- 3. Y. H. Chen, G. Y. Chen, J. B. Li, *Recognizing simple K*<sub>4</sub>-groups by few special conjugacy class sizes, Bull. Malays. Math. Sci. Soc., **38**, № 1, 51–72 (2015).
- 4. M. R. Darafsheh, G. R. Rezaeezadeh, M. Bibak, M. Sajjadi, *OD-characterization of almost simple groups related to*  ${}^{2}E_{6}(2)$ , Adv. Algebra, 6, 45 54 (2013).
- 5. M. R. Darafsheh, G. R. Rezaeezadeh, M. Sajjadi, M. Bibak, *OD-characterization of almost simple groups related to*  $U_3(17)$ , Quasigroups and Related Systems, **21**, 49–58 (2013).
- 6. A. Daneshkhah, Y. Jalilian, A characterization of some projective special linear groups, Ital. J. Pure and Appl. Math., 38, 32-44 (2017).
- 7. A. R. Moghaddamfar, A. R. Zokayi, M. R. Darafsheh, A characterization of finite simple groups by the degree of vertices of their prime graphs, Algebra Colloq., 12, № 3, 431–442 (2005).
- 8. G. R. Rezaeezadeh, M. Bibak, M. Sajjad, *Characterization of projective special linear groups in dimension three by their orders and degree patterns*, Bull. Iranian Math. Soc., **41**, № 3, 551–580 (2015).
- 9. G. R. Rezaeezadeh, M. R. Darafsheh, M. Sajjadi, M. Bibak, *OD-characterization of almost simple groups related to* L<sub>3</sub>(25), Bull. Iranian Math. Soc., **40**, № 3, 765 790 (2014).
- 10. G. R. Rezaeezadeh, M. R. Darafsheh, M. Bibak, M. Sajjadi, *OD-characterization of almost simple groups related to*  $D_4(4)$ , Iran. J. Math. Sci. and Inform., **10**, No. 1, 23–43 (2015).
- 11. D. J. S. Robinson, A course in the theory of groups, 2nd ed., Springer-Verlag, New York etc. (2003).
- 12. M. Sajjadi, M. Bibak, G. R. Rezaeezadeh, *Characterization of some projective special linear groups in dimension four by their orders and degree patterns*, Bull. Iranian Math. Soc., 42, № 1, 27 36 (2016).
- 13. A. V. Vasil'ev, On connection between the structure of a finite group and the properties of its prime graph, Sib. Math. J., **46**, № 3, 396 404 (2005).
- 14. J. S. Williams, Prime graph components of finite group, J. Algebra, 69, 487-513 (1981).
- 15. Y. Yan, G. Chen, L. Wang, *OD-characterization of the automorphism groups of*  $O_{10}^{\pm}(2)$ , Indian J. Pure and Appl. Math., 43, No 3, 183 195 (2012).
- 16. A. Zavarnitsine, Finite simple groups with narrow prime spectrum, Sib. Elektron. Mat. Izv., 6, 1-12 (2009).

Received 04.02.20