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NONHOMOGENEOUS ELLIPTIC KIRCHHOFF EQUATIONS
OF THE p-LAPLACIAN TYPE

HEOJHOPIAHI EJIIIITUYHI PIBHAHHA KIPXT'O®PA TUILY p-JTAIIVIACIAHA

We use variational methods to study the existence and multiplicity of solutions for an nonhomogeneous p-Kirchhoff
equation involving the critical Sobolev exponent.

Bapiariiini MeTomu 3aCTOCOBYIOTHCS AJIsl BUBYCHHS iICHYBAaHHS Ta KPaTHOCTI PO3B’SI3KiB HEOXHOPITHOTO EIINTHYHOTO p-
piBasHHA Kipxrodda 3 kpurnaaum nokasaukom Cobonesa.

1. Introduction. This paper deals with the existence and multiplicity of solutions to the following
Kirchhoff problem with the critical Sobolev exponent

— (alul” +b) Apu = wP 71 + Ag () in RV, .
we W' (RY) '

where N >3, 1 < p < N, A, is the p-Laplacian operator, ||.| is the usual norm in W7 (R")
given by

Jull? = / VulPd,
]RN

p* = pN/ (N — p) is the critical Sobolev exponent of the embedding
(W RN, L) = (L (RN, )1,

with g € [p, p*] and [|ul|7 = /RN |u|%dz is the norm in L? (R™) , a and b are two positive constants,

A is a positive parameter and g belongs to (Wl’p (]RN ))* such that / I dzr # 0, where u, is a
R

function defined below in (1), ((W“’(]RN ))" is the dual of WLP(RY )).

In recent years, the Kirchhoff-type problems in bounded or unbounded domaine have been studied
in many papers by using variational methods. Some interesting studies can be found in [1, 4-6, 8].
Since the Sobolev embedding (W1P(RY), ||.||) — (Lq (RY), ||Hq) is not compact for all ¢ € [p,
p*], many authors considered the following Kirchhoff-type problem without the critical Sobolev
exponent

—(a||ull” +b) Apu +V () u = h(z,u) in RY, (Pv)

where V € C (]RN ,]R) and h € C (IRN X R, ]R) is subcritical, satisfies sufficiently conditions to
show the boundedness of any Palais Smale or Cerami sequence. They imposed some conditions on
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the weight function V' (z) for recovering the compactness of Sobolev embedding (see, for example,
[11]). We should mention here that, to the best of our knowledge, there is no result concerning
Kirchhoff equations of p-Laplacian type with the presence of nonlinear term of critical growth and
without potential term in higher dimension.

Main result of this paper is the following theorem.

Theorem 1.1. Assume that a > 0, b > 0, N = 3k, p = 2k, and k € IN*. Then there exists
Ay > 0 such that problem (Py) has at least two nontrivial solutions for any X € (0, A).

This paper is organized as follows. In Section 2, we give some technical results which allow us
to give a variational approach of our main result that we prove in Section 3.

2. Auxiliary results. In this paper we use the following notation: X = W12k (]R?’k) where
k € IN*,||.||« denotes the norm in X*, B, is the ball centred at 0 and of radius p, — (resp., —)
denotes strong (resp., weak) convergence and o,, (1) denotes o, (1) — 0 as n — oo. S is the best
Sobolev constant defined by

[[ul”

wewtp(RYY llullp.’

S = (1

it is well known that S is attained in R"Y by a function u, (see [10]).
Since our approach is variational, we define the functional I, by

a b 1 6k
Inw) = gl + e lllP = ol — [ gudo
]RSk

for all k € IN* and u € X. It is clear that I is well defined in X and belongs to C! (X, R).
u € X is said to be a weak solution of problem (P)) if it satisfies

<a||u\|2k + b) / \Vu|?*~2VuVp dr — / uF o de — A / gpdr =0 forall p € X.
]R3k R3k ]R3k
To prove our main result, we need following lemmas.
Lemma 2.1. Let (u,) C X be a (PS), sequence of I for some ¢ € R. Then u, — u in X for
some u with I} (u) = 0.
Proof. We have

Cc+on (1) = I (un) and o, (1) = <I$\ (Un) aun> ) ()
then
1
c+on (1) =1, (uy) — ok <I§\ (up) ,un> >
> — — — .
> Sl ol P = A2 g, e

Hence, (u,,) is bounded in X. Up to a subsequence if necessary, we obtain
Up — u in X, u, — uin L5k (]ng) ,Up —> u a.e. in ng, and Vu, — Vu ae. in R,
Thus, (I} (uy), @) = 0 for all ¢ € C§° (R?*) , which means that I} (u) = 0.
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Lemma 2.2. There exist positive constants N1, p1 and 61 such that for all A € (0, A1) we have

2k —1 _ _ _
Iy (W)lg,, > 81 and Iy (u)|p,, > =5 = A0 g /G0,

Proof. Letu e X\ {0} and p = |lul|. Then by Sobolev and Holder inequalities, we have

a b S—3
I > 4k 2% _ 6k _ .

By applying the inequality
1 1
aff < —aft + —pr
P P2

1 1
for any «, 3, p1, p2 > 0 such that — + — =1, we get
p1 P2

Mgl o= (A= gl ) (A/4) <

< 26— 1y (r-1)/(ak-2) lg|[24/@=D) RNV

2%k
- 2k 2k ’

0
Therefore, if A < b2, then
2k —1 _ _ _
I(u) 2 W (p) — = = AUETD/E2) g E/ERD

where

_a 4k75’773 6k _ 3\1/2k
V(p)=—p o’ and, hence, r;lg(}){kll (p) =V ((aS ) > .

Taking

4k—2
4k

. k 1/2k\ | %=1 =T 1 1/2k
A1 = min {bQ, [Zk‘ — 1\11 ((a53) / )} lgll+ 4k} and 61 = 5\11 ((a53) ) .

Then the conclusion holds.
Lemma 2.3. Let (u,) C X be a (PS), sequence of I for some c € R such that u,, — u in
X. Then

either u, — wor c > I\ (u) + Cap k.3,

aS® 2 1/2

2 15%)%) + 2
g |0+ (@ + 0507+
Proof. By the proof of Lemma 2.1, we obtain (u,,) is a bounded sequence in X. Furthermore,

if v, = u,, — u, we derive v, — 0 in X. Then, by using Brezis— Lieb lemma [3], we have

3
where Cyp 5 = [a + (a® + 4653)1/2] [ b ] :

un | = [Joall®* + [[ull®* + 0n(1) and [Junl|Sy = lvalloF + [|ullsF + 0n(1). 3)
Putting together (2) and (3), we get

a 2k 2k
o ol llul

a g, b % 1 6k
c+op(1) = In(u) + 1% oI ** + % vall™ + o llonl] ok l|vn llgx
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and
4k 2k 2k 2k 6k
on(1) = a|lvnl|™ + b llonll™ + 2a [loal|™ Jul™ — [lvnllg - 4

Therefore,
1
c+on(l) =1y (up) — ok <I§\ (up) ,un> =

= I(u) +

4k 2k a 2k 2k
ol o ol e o (5)

Assume that ||v,|| — [ > 0, then by (5) and the Sobolev inequality we obtain
ST > alt 4 bI*F,

this implies that
P> 250+ 53(a +4b5—3)?

From the above inequality and (5), we conclude

b
¢ > I(u) + — 4k 4 2k >

12k 3k~
aS® 3\1/2 bs? 2 3\1/2] _
z[()+48—k[a+(a + 4b57) } +6—k[a+(a + 4b5°%) ]_

=I\(u) + Copk,s-

Lemma 2.3 is proved.
3. Proof of the Theorem 1.1. The proof is given in two parts.
3.1. Existence of a local minimizer. By Lemma 2.2, we define

ey =inf {1\ (u);u€ B, }.

Since g # 0, we can choose ® € C§° (R3*\ {0}) such that / ,, 9% dz > 0. Hence, there exists
R
to > 0 small enough such that [[to®|| < p; and

k
It0®) = S o] + g o) — el - o [ geds <o

]R3k

4k 2k

which implies that ¢; < 0 = I),(0). Using the Ekeland’s variational principle [7], for the complete
metric space B,, with respect to the norm of X, we obtain the result that there exists a (PS) o
sequence (un) C B, such that u,, — u; in X for some u; with |Ju1]| < p1. Assume u, /4 u; in
X, then it follows from Lemma 2.3 that

c1 > Iy (u) + Caprs > c1,

which is a contradiction. Thus w; is a nontrivial solution of (P,) with negative energy.
3.2. Existence of Mountain Pass type solution. The existence of a Mountain Pass type solution
follows immediately from the following lemma.
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Lemma 3.1. Let Ay > 0 such that

2k —1

A. BENAISSA, A. MATALLAH

o AT gl PR 4 Cups > 00 YA€ (0, Ag).
Then there exist z, € X and 0 < A, < Ay such that
supIy(tz:) < c1 4+ Capr,s YA€ (0,Ay).
>0
Proof.  Since /% gusdr # 0, we can choose z.(x) = u«(x) or zi(zr) = —u«(x) such
R

that / o 9% dx > 0.
R

We consider functions

and

So, for all A € (0,As), we have

at ak | b o tOF 6k
L PN L N
@g(i)z@l(t)—At/gz*dx.
]RSk
2k —1 _ _ _
_7)\(4’6 1)/(4k—2) Hgsz/(Qk’ 1)+Ca,b,k,5'-

$5(0) =0 <

Hence, by the continuity of ®5(t), there exists ¢; > 0 small enough such that

0]
2(t) < %

_2k’ — 1)\(4k—1)/(4k—2) ||g||zk/(2k—1) +0,

bk,s — Vte (0,t1).

On the other hand, the function ®(¢) attains its maximum at

t2k _

1/2
4k 8k 2k 6k
@l + (@ a4 40 20| |15

*

From the definition of .S, we have

1/2
4k 8k 2k 6k
@l (@2 )2l + 40 20 | ) 2] )

6k
2|zl

2

2
6k 6,7 1/2
[ uz*||6k] _

atfﬁk ||Z*||4k _ i HZ*||4]€ -
4k 4k 2 ||z llg
6k 12k
a |ax] [ 2% + 4b | 2.
- 6k 12k
16k ”Z*HGk ||Z*||6k:
a 1/2]2
= = [a8® 4 [0 + 5] 2]
6k [a + [a + }
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Similarly, we obtain

b2k b
2 = [as?’ + (286 + 4bs3)1/2}
nd toF ok S7° 3 2a6 3\1/213

By the above estimates, we deduce that sup;> Q1(t) < Copk,s-
On the other hand, by using Lemma 2.2, we see that

2k —1
- A=)/ (4k=2) | ) 28/ (2k—1) Ve (0,A)),

furthermore, if

4k—2
2ktq 2=
e | et Il [ gede|
]R3k
we get
cl>—t1)\/gz*daj.
]RSk
Taking
4k—2

Uty | 2
A* - i A, A fk_l *
win § Ar Ao, | 52 (g7 [ 9o do

]RSkZ
Then we deduce that

sup Ix(tz) < c1 + Cop s Ve (0,A).
>0

189

Note that 15 (0) = 0 and I\ (t22«) < 0 for ¢ large enough, also from Lemma 2.2, we know that

I>\(’LL)|83‘21 >0 >0 V)\E(O,Al).
Then, by the Mountain Pass theorem [2], there exists a (PS),, sequence, where

= inf I t
¢ = inf max A(v (@),

with
I'={yeC([0,1],X),7(0) = 0 and (1) = tozs}.

By using Lemma 2.1, we have (u,,) has a subsequence, still denoted by (u,,), such that w,, — ug in

X for some ug. Furthermore, we know, by Lemma 3.1, that

sup Iy (tzy) < Capk,s + 1 Ve (0,A),
t>0

then, from Lemma 2.3, we deduce that u,, — uo in X. Thus we obtain a critical point uy of Iy

satisfying I (u2) > 0.
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