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SOLUTION OF THE BOUNDARY-VALUE PROBLEM OF HEAT CONDUCTION
WITH PERIODIC BOUNDARY CONDITIONS

PO3B’SI30K T'PAHUYHOI 3AJTAYI TEILJIOIMPOBITHOCTI
3 NIEPIOANYHUMHU TPAHUYHUMHU YMOBAMMU

We investigate the solution of the inverse problem for a linear two-dimensional parabolic equation with periodic boundary
and integral overdetermination conditions. Under certain natural regularity and consistency conditions imposed on the
input data, we establish the existence, uniqueness of the solution and its continuous dependence on the data by using the
generalized Fourier method. In addition, an iterative algorithm is constructed for the numerical solution of this problem.

BuBuaeTscs po3B’sA30K 00€pHEHOT 33/1a4i IS JIIHIHOTO ABOBHMIPHOTO NapaboIiyHOTO PiBHAHHS 3 NEPIOANYHUMHU IPaHUY-
HMMH yMOBaMH Ta iHTErpaJbHUMH YMOBaMH MEPEBH3HAYCHHS. 3a JESIKUX IPUPOJHUX YMOB PETYISIPHOCTI i y3rofKeHOoCTI,
IO HAKJIaJCHI Ha IOYATKOBI JaHi, BCTAHOBIICHO 1CHYBaHHS, €JMHICTh PO3B’SI3Ky Ta HOTO HENEPEPBHY 3aJICKHICTh BiJI JAHUX
3a JIOMOMOTroI0 y3aranbHeHoro Merony ®yp’e. Kpim Toro, moOynoBaHo iTepaTUBHHMI adrOpUTM AJS HOOYIOBH YHCETHHOTO
PO3B’s3Ky wHi€l mpobieMu.

1. Introduction. The study of mathematical models for many important applications such as chemi-
cal diffusion, applications in heat conduction processes [5, 8], population dynamics, thermoelasticity,
medical science, electrochemistry, engineering, wide scope, chemical engineering [9] and control
theory give rise in the two-dimensional parabolic partial differential equation with nonlocal boundary
conditions [13, 14, 17].

Inverse problems are the problems that consist of finding an unknown property of an object,
or a medium, from the observation of a response of this object, or medium, to a probing signal.
Thus, the theory of inverse problems yields a theoretical basis for remote sensing and nondestructive
evaluation. For example, if an acoustic plane wave is scattered by an obstacle, and one observes the
scattered field far from the obstacle, or in some exterior region, then the inverse problem is to find the
shape and material properties of the obstacle. Such problems are important in identification of flying
objects (airplanes missiles, etc.), objects immersed inwater (submarines, paces of fish, etc.) and in
many other situations. In geophysics one sends an acoustic wave from the surface of the earth and
collects the scattered field on the surface for various positions of the source of the field for a fixed
frequency, or for several frequencies. The inverse problem is to find the subsurface inhomogeneities.
In technology one measures the eigenfrequencies of a piece of a material, and the inverse problem
is to find a defect in this material, for example, a hole in a metal. In geophysics the inhomogeneity
can be an oil deposit, a cave, a mine. In medicine it may be a tumor or some abnormality in a
human body. If one is able to find inhomogeneities in a medium by processing the scattered field
on the surface, then one does not have to drill a hole in a medium. This, in turn, avoids expensive
and destructive evaluation. The practical advantages of remote sensing are what make the inverse
problems important in [20].

There are several methods for the numerical approximation of two-dimensional parabolic inverse
problem. In [13], three different implicit finite difference schemes for solving the two-dimensional
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parabolic inverse problem with temperature overspecification are considered. These schemes are
developed for identifying the control parameter which produces, at any given time, a desired tempe-
rature distribution at a given point in the spatial domain. The numerical methods discussed, are
based on the second-order Backward Time Centered Space (BTCS) implicit formula, and the second-
order Crank — Nicolson implicit finite difference formula and the fourth-order implicit scheme. These
finite difference schemes are unconditionally stable. The implicit formula takes a huge amount of
central processor (CPU) time, but its fourth-order accuracy is significant. The results of a numerical
experiment are presented, and the accuracy and CPU times needed for each of the methods are
discussed and compared. The implicit finite difference schemes use more central processor times
than the explicit finite difference techniques, but they are stable for every diffusion number.

Over the last couple of years, considerable efforts have been put in to develop either approximate
analytical solution or purely numerical solution to nonlocal boundary-value problems [5, 10-12,
15], implemented finite difference scheme to obtain the numerical solution of the one dimensional
nonlocal boundary-value problem [12, 13, 16].

The periodic boundary conditions arise from many important applications in heat transfer, life
sciences [1 —4].

In this paper, we prove the existence, the uniqueness and the continuous dependence on the data
of the solution and we will develop the numerical solution of two-dimensional diffusion problem
with periodic boundary conditions. We will use Fourier method and the finite difference method for
two-dimensional inverse parabolic equation [1-3].

The paper is organized as follows. In Section 2, the existence and uniqueness of the solution of
the problem are proved by using the Fourier method. In Section 3, stability of the solution is shown.
In Section 4, the numerical procedure for the solution of the problem is given.

Let T > 0 be fixed number and denote by Q := {(z,9,t): 0 <z <m0<y<m0<t<T}.

Consider the problem of finding a pair of functions {r su(z, y, t)} satisfying the following

equations:
ou  O*u  0*u
ge_g2 7" t) € 1
ot 02 T oy +rt) f(2,y,t), (z,y,t) €Q, (1)
U(O, Y, t) = u(ﬂ-7y7t)v (/S [0777]’ te [OaT]v
2
u(z,0,t) = u(x, 1), re(0,n], tel0,T],
uz(0,y,t) = ug(m,y,t), y€[0,x], tel0,T],
3)
Uy(:L‘,O,t) = uy(.’E,ﬂ',t), LS [O’ﬂ-}v te [OvT]’
//a:yu z,y,t)dedy, te€]|0,T], (5)
0 0
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for a two-dimensional parabolic equation with the periodic boundary conditions. The functions
o(z,y) and f(x,y,t) are given functions on [0, 7] x [0, 7] and 2, respectively. In heat propagation
in a thin rod in which the law of variation E(¢) of the total quantity of heat in the rod is given in
[18]. This integral condition in parabolic problems is also called heat moments which are analyzed
in [19].

Condition (4) is initial condition, conditions (2) and (3) are periodic Dirichlet and Neumann
conditions, respectively.

Problem (1)—(5) will be called an inverse problem, the pair {r(t),u(z,y,t)} from the class
C0,T] x (C**1(Q) N CH10(Q)) for which conditions (1)—(5) are satisfied, is called a classical
solution of the inverse problem (1)-(5).

The inverse problem of finding the heat source in a parabolic equation has been investigated in
many studies for the cases when the unknown heat source is space-dependent in [6, 7] and time-
dependent in [5].

Nomenclature:

o(z,y) — initial temprature,
r(t) — unknown coefficient,
E(t) — energy,
u(zx,y,t) — temperature distribution,
f(z,y,t) — source function,
Uo(t), Uemn () Uesmn (), Usemn (t), Usmn (t) — Fourier coefficients,
M — arbitrary constant,
My, Ma, M3, My, M5, Mg — dimensionless constants,
F(t) — continuous function, K (¢, 7) — kernel function,
Q:={(z,y,1): 0<z<7,0<y<m0<t<T}— domain of z,y,¢.

2. Existence and uniqueness of the solution of inverse problem. Let us look for the solution
of (1)—(5) in the form:

uo(t)
4

o
+ Z Uemn (t) cOS 2ma cos 2ny =

m,n=1

u(z,y,t) =

o0 o0
+ Z Uesmn () COS 2ma sin 2ny + Z Usemn (t) sin 2ma cos 2ny+

m,n=1 m,n=1

(o]
+ Z Usmn (1) sin 2ma sin 2ny.

m,n=1
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By applying the standard procedure of Fourier method, we obtain Fourier coefficients:

0+/// £ (&, 7) dé dn dr,

t ™
temm (£) = Gemme (2222 % / / / +(2n)2)(t-7) o,
0

X f(&,m, T) cos 2m& cos 2nn d€ dn dr,

t ™7
Ucsmn (1) = @csmnei((zm) +any? 42// +(2n)? )(tiT)X
™
0
X f(&,n,T) cos 2mé& sin 2nn d€ dn dr,
t m™oTm
Usemn (1) = @scmnei(@m) *en)® 42// +(2n)? )(tiT)X
T

0

x f(&,n, ) sin 2mé& cos 2nn d¢ dn dr,

Usmn (t) = @smne_((2m) o 711'12/// )27 o

x f(&,n, ) sin 2m¢& sin 2nn d€ dn dr,

m™ T T 7
4 4
= 7T2//90(957@ dx dy, Pemn = 7T2//gp(:z;,y) cos 2max cos 2ny dx dy,
00 00

™
4
pesmn = 2//g0(x,y) cos 2ma sin 2ny dx dy,
T
0 0

where

Psemn =

4
w2

o\:

/ x,y) sin 2max cos 2ny dx dy,
0

4
Psmn = // x,y) sin 2ma sin 2ny dx dy.
7T
0

We obtain the solution of the problem (1)—(4) for arbitrary r(t) € C[0,T] by

Py

t
u(z,y,t) = wo + % /T(T)fo(T)dfdndT +
0
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o t
+ Z ¢cmn€_((2m)2+(2n)2)t + % /T(T)e((2m)2+(2n)2)(tT)fcmn(’l')d’i' cos 2mux cos 2ny—+
m,n=1 9
o t
+ Z (Pcsmne_((zm)2+(2n)2)t + % /T(T)e_((Qm)2+(2n)2)(t_T)fcsmn(7‘) dr | cos 2mzx sin 2ny+
mn=1 )
o t
+ Z wscmnef(@m)zﬂ%y)t + % /T(T)e_((2m)2+(2")2)(t_7)fscmn(7') dr | sin 2ma cos 2ny+
mn=1 5
o t
+ Z %mnef(@m)%r@")%t + % /T(T)e_((2m)2+(2n)2)(t_T)fsmn(T) dr | sin 2ma sin 2ny,
mn=1 0
(6)
where

4 4
772//f x,y,t)dz dy, Semn(t —7T2//f x,y, t) cos 2mz cos 2ny dz dy,

fcsmn(

T2

4 ™ T
t)://f(x,y,t)cos2m:csin2nyd:cdy,
0

4 s s
fsemn(t) = 2//f(m,y,t) sin 2max cos 2ny dx dy,
T
0 0

4
Jomn(t) 2//f x,y, t) sin 2ma sin 2ny dx dy.
o
00

Theorem 1. Suppose that the following conditions hold:
(A1) E(t) € CM0, T,

(A) o(z,y) € C%2([0,7]x[0,7]), ©(0,y) = @(m, 1), ¢2(0,y) = @a(m,y), p(x,0) = p(z,7),

oy(x,0) = @y (z,T) and
[ [ avetan) dzdy = E),
00

(A3) f('CL‘? y? t) e 0272,0(5)7 f(07 y? t) 71-: ﬂ_f(ﬂ-7 y? t)? fx(O? y? t) = fx(ﬂ-? y? t)’ f(x7 0’ t) =
= S0, £ 0.0) = Syt and [ [ ayfn) deay 20
then solution of the system (1)—(5) has a unique solution.

Proof. The assumptions ©(0,y) = ¢(m,y), ¢(x,0) = @(z,7), f(0,y,t) = f(my,1),
f(z,0,t) = f(z,n,t) are consistency conditions which are necessary for solution u(x,y,t) to be in
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21 (Q)n 01’1’0 Q). Further under the smoothness assumptions ¢(z,y) € C%%([0, 7] x [0, 7])
and f(z,y,t) € C% 2( )Vt € [0, 7], the series (6) and its z,y-partial derivative con-
verge unlformly in {2 since the1r majorizing sums are absolutely convergent. Therefore, their
sums u(z,y,t),us(z,y,t) and wuy(x,y,t) are continuous in 2. In addition, the ¢-partial deriva-
tive and xx,yy-second order partial derivative series are uniformly convergent for ¢ > 0. Thus,
u(z,y,t) € C?%1(Q) N CH19(Q) and satisfies conditions (1)—(5). In addition, w(z,y,t) is
continuous in  because the majorizing sum of t-partial derivative series is absolutely conver-
gent under the conditions ¢, (0,y) = w.(7,y), ¢y(z,0) = @y(x,7), f2(0,y,t) = fz(7,y,t) and
Jy(2,0,t) = fy(z,m,t) in Q.
We differentiate equation (5) under the condition (A;) to obtain

0 0

™ U

Further, under the consistency assumption / / zyp(x,y)dxdy = E(0), formulas (6), (7)

0 Jo
yield the following Volterra integral equation of the second kind:

t
+/K T)dr, te€]0,T],
0

where

Ew+T Z‘X’ 1 w%mne—(@m)%(?n)ﬂt

F(t) = N S e , (8)
folt) + me:l wﬁmn(t)

4 mn

e (2m)® + (2n)? —(@m)2+(2n)?)(t—7)
— —fsmn(T)e
K(t,7) = 4 Zrmnzl mn ) )

7'('2 o0 m 2 n 2
fo(t) + Z Zm,nzl Wfsmn(t)

Under the assumption (A;)—(A3) the function F'(¢) and the kernel function K (¢,7) are continuous
functions in [0,7] and [0, 7] x [0,T7], respectively. We obtain a unique function r(¢) continuous on
[0, T'] which, together with the solution of the problem (1)-(4) given by the Fourier series u(z,y,t),
form the unique solution of the inverse problem (1)-(5).

Theorem 1 is proved.

3. Continuous dependence of (r,u) upon the data. The following result on continuous
dependence on the data of the solution of the inverse problem (1)—(5) holds.

Theorem 2. If ® = {p, E, f} satisfies the assumptions (A))—(Asz) of Theorem 1, then the
solution (r,u) of problem (1)—(5) depends continuously upon the data ¢, E, f.

Proof. Let @ = {p,E,f} and ® = {p, E, f} be two sets of the data, which satisfy the
assumptions (A1) —(A3). Suppose that there exist positive constants M;, ¢ = 1,2, 3,4, 5, such that

I fllcz2000) < M, 1fllc2200) < M,
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lelle22(0,7)x[0,7)) < M, 1@l c22(0,7)x[0,7)) < M1,
”EHcl[O,T] < MQ’ ||E||CI[O,T} < M27 ||F||C[0,T] < M37 HFHC[O,T] < M37
HKHC([U,T]X[U,T]) < My, 0< M5 < miniff(:c,y,t)‘, 0< M5 < miniﬁ(m, yvt)‘
(z,y,t)EQ (z,y,t)EQ

Let us denote 91| = (1Eloxor) + 2] o (g o) * 1/ lc220@)- Let (r.u) and (7.7) be

solutions of inverse problems (1)—(5) corresponding to the data ® = {¢, E, f} and ® = {%, E, f },
respectively, where

lo —%Ilcn(
_ 2 ([0,7]x[0,])
H‘p - ('0||C272([0,7T}><[0,7r}) < 4 +

+ Z H Soxy cmn (Soxy)cmn + 6 H(szy)csmn - (‘ny)csmn

mn—

c2:2([0,x]x[0,7]) 22 ([0,x)x[0,7])

TR P T oy

1 .
+6 H(‘Pﬂcy)scmn - (%y)scmn

22 ([O,W] x [OJr]) 22 ([o,w] x [O,W]) ’

(Pay)emn = / / (z,y) sin 2ma sin 2ny dz dy,

(Pay)esmn = / / (x,y) sin 2mx cos 2ny dz dy,

0 0

(x,y) cos 2ma sin 2ny dx dy,

((Pmy)scmn = 2 mn

(Pay)smn = Oay(,y) cos 2ma cos 2ny dx dy.

From (10), the following equality can be written:

yr 3 O, (e
F(t) — F(t) = mn=1 mn _

o) m n 2
fo(t) + T me:l wfsmn(t)

4 mn

’ 0o 2 2
Fn+T3" Cm)"+ @) (em) )t

4 n= mn smn

7T2 oo m 2 n 2_
?0<t) + Z me:l Wfsmn(t)

Applying Holder inequality and taking maximum of both sides of the last inequality, we obtain
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2M 73
NGV

_ IM _ _
IF =7l < 5z |70 - B0 + Zo o -l + Mo £ = 71

and, similarly, we have

15 = K| < Ms |1 = 7,

MT _
=g, 1K~ Kl

|r — 7| < HF —FH + MyT ||r — 7| + 7

oM __ Mo _
< —"___ _\Ew-F H S
I =7l < M2 (1 — TMy) H ) = B'W|| + 777, 1 = 7+
2M 3

VEMZ (1 — T My)

T™ -
+m\}f—f“+

le =l

)

lu =7l < My | E'(t) - B + M llo — 1l + Mo || £ — F

lu — || < Mg ||@ - @],

where
u My w3 My Y T32M 7
=mMaxs ———5, —F——= (> = Imax 5 )
0 6MZ " /6M2 ° NVERIVE
2MT 4M3m3T
M; = 5 , Mg = max < 1, il ,
3M2(1 — TM,) 3V6M2(1 — TMy)
2MT 2M2MgT?
My = Mg = 1, M7, Mg, Mg}.
9 maX{3M52(1—TM4)’ 3(1—TM4)}’ 10 = max{1, My, Mg, My}

If ® — & then r — 7 and u — .

Theorem 2 is proved.

4. Numerical method for the problem (1) -(4). In this section, we use implicit finite-difference
approximation for the discretizing problem (1)—(5):

1/ 4 1
+1 k k+1 k+1 k+1
- (u” — u”) =12 (ui_Lj — Zui’j + ui—l—l,j) +

1 k
+1 k+1 k+1 k+1 pk+1
+ﬁ (u : — 2ui,j + ui,jJrl) +7r f R

,L'v.]*l 2,]
0 _
ui,j — ¢i7
(10)
E .k
ko k k U T Uy
Uoj = UM+t UM+ T T 5
k k
ko ok k _ Wi T WM
Ui 0 = Ui M+1> Ui M+1 = 5
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where we discretize the computing domain [0, 7] x [0, 7] x [0,T] by z; = ih, i = 0,1,..., M,
yj = jh, 7 =0,1,...,M, and t;, = k7, k = 0,1,...,N, where h = 7/M and 7 = T'/N are
the space and time steps, respectively, and M, N are two positive integers, uf i = w(xs, yj, tk),

flkjj = f(gjhy])tk), T‘k = ’I"(tk)
Let us integrate equation (1) with respect to « and y from 0 to 7w and use (2), (3) and (5), we
obtain

E/(t)_/() yuﬁ(ﬂ-7y>t) dy—/o ZL‘Uy(l‘,ﬂ',t) dx
r(t) = 7
/0 /0 zyf(x,y,t) de dy

The finite difference approximation of (11) is

o (EF+2 — BF) /1 — </07r yus (7, y, 1) dy>k - </Oﬂ vuy(z, 1) dx)k

‘ ([ [ wosenaear)

where E¥ = E(t3), k =0,1,..., N. We mention that the integrals are numerically calculated using
Simpson’s rule of integration and also the first derivatives are calculated using central difference

scheme.

k
k) 5-5) are the values of 7%, u¥

(11)

)

; at the sth iteration step, respectively. At each (s + 1)th

iteration step, 5 T1(5+1) s as follows:

™ k(s) ™ k(s)
2= 5 r = ([Cwatmnnay) - ([ oufen o)

</0W/0ﬂ$yf(a:,y,t)dxdy>k

1 <Uk+1(s+1) _ uk+1(s)> _ % ( EI(st1) _ g kl(st1) k+1(s+1)) +

pht1(s+1)

The iteration of (10) is

- \Yij ij i—1,j i,j Uit1,j
L/ kti(s+1) k+1(s+1) | k+1(s+1) ktl(si1) rktl
2 (“z‘,j—l — 2u; + Ui )J”" CHUFE
0
u; ;= i,
(12)
k+1(s) k+1(s)
k+1(s) _ k+1(s) k+1(s) Y15 0 T Uy
Yo = Uiy UMy T 2 ’
k+1(s) k+1(s)
k+1(s) _ k+1(s) k+1(s) _ Yi — UM
U; o = U prg1o U M+1 = 9
The system of the equations (12) is solved and uF D g determined. If the difference of values

i,]
between two iterations reaches the prescribed tolerance, the iteration is stopped.

In order to illustrate the behavior of our numerical method, an example is considered.

ISSN 1027-3190. Ykp. mam. scypn., 2020, m. 72, Ne 2



218

F. KANCA, I. BAGLAN

Example 1. This example investigates finding the exact solution

{r@®),

for the given functions

u(z,y, t)} = {2 exp(t?), (2 + cos 2z + cos 2y) exp(tQ)}.

4

o(z,y) = (2 + cos 2z + cos 2y), E(t) = T exp(t?),

2
F(z,y,t) =2t + (t + 2)(cos 2x + cos 2y).

The step sizes are h = 0.0393, 7 = 0.005.

Note that the convergence criterion for r(t), was [rF+1(s+D) — ph+1()| < 1 /200.
The comparisons between the exact solution and the numerical finite difference solution are

shown in Figs. 1 -3 and Table 1 when 7" = 1.

(1)

u(l,y,1)

4.5

3.5

2.5

Fig

S

(a) (b)

line.

Fig. 2.

. 1. The exact and approximate solutions of r(¢) (a) and of u(1,y, 1) (b). The exact solution is shown with dashes

(a) (b)

The approximate (a) and the numerical () solutions of u(z,y,1/10).
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Absolute
error

X
{ons '
)
AR
é.“’o‘o’o‘o‘o‘o‘o‘o‘o‘.:.:::::: X

T
Wty
Uyl
s

Q5
55

W
Y /
o‘:’::o','ilm"

Fig. 3. The absolute error of u(zx,y,1/10).

Table 1. The some values of 7(t)

Exact | Approximate | Error |Relative error
2 2.0614 ]0.0614 0.0307
2.0201 2.0717  ]0.0516 0.0255
2.0816| 2.1098 ]0.0282 0.0135
21883 2.2099 ]0.0216 0.0099
2.3470] 2.3664 |0.0194 0.0083
2.5681 2.5874  10.0193 0.0075
2.8667| 2.8873 |0.0206 0.0072
3.2646 | 3.2878  ]0.0232 0.0071
3.7930| 3.8201 ]0.0272 0.0072
4.4958| 4.5287 |0.0410 0.0075
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