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STRONGLY STATISTICAL CONVERGENCE
CUJIBHO CTATUCTUYHA 3BI)KHICTb

We introduce A-strongly statistical convergence for sequences of complex numbers, where A = (ank),, , oy is an infinite

matrix with nonnegative entries. A sequence () is called strongly convergent to L if limy o Zoo | @nk |zx, — L] =0
in the ordinary sense. In the definition of A-strongly statistical limit, we use the statistical limit instead of the ordinary limit
via a convenient density. We study some densities and show that the (a,x )-strongly statistical limit is a (am,, » )-strong limit,
where the density of the set {m,, € N: n € N} is equal to 1. We introduce the notion of dense positivity for nonnegative
sequences. A nonnegative sequence (r,) is dense positive provided the limit superior of a subsequence (7,,, ) is positive
for all (my) with density equal to 1. We show that the dense positivity of () is a necessary and sufficient condition for

oo
the uniqueness of A-strongly statistical limit, where A = (anx) and r,, = Z __ ank. Furthermore, necessary conditions
for the regularity, linearity and multiplicativity of A-strongly statistical limit are established.

Beeneno noHsaTrs A-CHUILHO CTaTUCTHUYHOI 301KHOCTI JJId MOCIZOBHOCTENH KOMIUIEKCHUX 4dMcel, ae A = (ank)n,keN —
HECKiHYEHHAa MATPHIl 3 HEeBiX €MHHMH eleMeHTaMH. [10CIinoBHICTh (r,) HA3WBAETHCS CHIIBHO 30DKHOIO 10 L, sSKIo
limy, 00 Z::l ank |zx — L| = 0 y 3BuuaitHoMy ceHci. YV BU3HaueHHI A-CHJIBHO CTATHCTHYHOI TPAHUIL 3aCTOCOBYETHCS
IIOHSTTS CTATUCTUYHOI TPAHHLI 3aMiCTh 3BUYAIHOI IPAHULI 3 BiAIOBIAHOW WIiIbHICTIO. BHBUCHO esKi MinbHOCTI i OKa-
3aHO, WO (A )-CUIBHO CTATUCTHYHA TPAHUIS — UE (@, ) -CUIIbHA TPAHHUII, € MILTBHICTE MHOKHHA {m.,, € N: n € N}
JopiBHIOE 1. BBeIeHO MOHATTS WIINBHOT MO3UTUBHOCTI UL HEBiA €MHHX MOCTiZoBHOCTEH. HeBin’eMHa mocmigoBHiCTh (7,)
€ MTBHO MO3UTHUBHOIO 38 YMOBH, 1110 BEPXHs IPAHULIA [T AMOCTIIOBHOCTI (7', ) € NONATHOO I BCiX (mMy,) 3 UIUIBHICTIO,
1o gopisuioe 1. [Tokas3aHo, IO IiIbHA TIO3UTHBHICTH (7, ) € HEOOXIIHOIO Ta IOCTAaTHHOIO YMOBOIO JUTSl EAMHOCTI A-CHITBHO
CTaTHCTHYHOI rpanuyi, 1e A = (ank) Ta ry = Z:ll ank. KpiM TOrO, BCTAaHOBIICHO HEOOXiHI YMOBH PETYISIPHOCTI, Ji-

HIHOCTI Ta MYJIBTHUILTIKATUBHOCTI A -CHJIBHO CTATUCTUYHOI TPAHMIII.

1. Imntroduction. The usual limit concept has many useful applications in several fields of ma-
thematics, statistics, physics, engineering and so on. It is well known that a complex sequence is
convergent to a point if and only if every neighbourhood of the given point includes all the elements
of the sequence but a finite number. If a sequence (z,,) is convergent to L, we write

lim |z, — L| = 0. (1.1)
n—oo

Hamilton and Hill [8] developed this concept by introducing strong summability in 1938. They
generalized equality (1.1) as follows:

n—oo

oo
lim Z ani |2k — LIP =0, (1.2)
k=1

where A = (an) is an infinite matrix and p > 0. If equality (1.2) holds, (z,) is said to be
strongly summable to L. In the case that A is identity matrix and p = 1 in (1.2), then we get usual
convergence in (1.1).

Whenever a new convergence method is introduced, mathematicians investigate the typical pro-
perties of it, such as uniqueness of limit point, regularity, linearity and so on. Under some conditions,
Hamilton and Hill studied these typical properties of strong convergence.

In 1963, Wlodarski [15] generalized the strong summability into strong continuous summability
method. He considered a sequence of continuous functions (ay (t)) instead of an infinite matrix
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222 U. KAYA, N. D. ARAL

(ank) and gave his definition as follows:

o0
lim Zak (t) |z, — LIP = 0.
k=1

t—=T

Besides, he defined some pseudonormed, normed and Banach spaces by using the new convergence
method.

Maddox [10] generalized the strong convergence in 1966 by introducing A-strong convergence
of order (pg),cy for a positive sequence (pg ),y as follows:

o0
lim ank |z — L|P* = 0.
Jim. kzl | |
Maddox also investigated the uniqueness, regularity, linearity of this concept and studied its applica-
tion to some Cesaro-type space.

The concept of statistical convergence which is an extension of the usual concept of sequential
limit was independently introduced by Fast [4] and Steinhaus [14]. This new method was not as strict
as usual convergence, i.e., it is easy that a sequence is statistical convergent in comparison with usual
convergence. Indeed, a sequence is statistically convergent to a point if and only if it is convergent
to this point in a subset of naturals N with the asymptotic density of 1. Here, we must define the
asymptotic density. Let K C N. If the limit

1
exists, then 0 (K) is said to be the asymptotic density of K, where the notation |-| denotes the
cardinality of a set. By means of the asymptotic density, the statistical limit can be defined by the
condition

1
lim —{k<n:|zy—L| >e} =0 (1.3)

n—oo N

for every € > 0.

In 1980, Salat [13] showed that the statistical limit can be considered as a linear operator and
every statistical convergent sequence has a unique limit. Also, Salat proved that the space of the
bounded statistical convergent sequences is nowhere dense in the space of bounded sequences and
the space of statistically convergent sequences of real numbers is a dense subset in the first Baire
category in the Fréchet space.

Fridy [6], in 1985, proved that if a sequence is convergent to L, then it is also statistically
convergent to the number L, i.e., statistical convergence is regular. He introduced the concept of
statistically Cauchy sequence and proved that it is equivalent to statistical convergence. Finally, he
proved some Tauberian theorems.

The relation between A-strong convergence and statistical convergence was studied by Connor
[2]. Freedman and Sember [5] investigated densities on natural numbers and showed that the density
used in statistical convergence can be defined by Cesaro matrix. Also, they generalized this concept
for arbitrary regular matrix.

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 2



STRONGLY STATISTICAL CONVERGENCE 223

Karakaya and Chishti [9] introduced the concept of weighted statistical convergence in 2009.
Later, Mursaleen et al. [12] modified this concept in 2012. Let (p,,) be a nonnegative sequence such
that pg > 0 and P, = Z:_lpk — o0 as n — oo. A complex sequence (x,,) is said to be weighted
statistically convergent to a number L if

Jim 2 [ < P el — 2] 2 €} = 0
for every € > 0. Also, they found its relationship with the concept of statistical summability (W, p)
and gave its applications to Korovkin-type approximation theorems.

Belen and Mohiuddine [1] introduced weighted A-statistical convergence and statistical summa-
bility (W)\, p) in 2013. They determined a Korovkin-type approximation theorem through the statis-
tical summability (NA, p) and showed that their approximation theorem was stronger than classical
Korovkin theorem by using classical Bernstein polynomials.

Edely et al.[3], in 2013, used the weighted statistical convergence to give a Korovkin-type
approximation theorem for 27-periodic functions.

In 2014, Ghosal [7] modified the concept of weighted A-statistical convergence by adding the
condition

lim inf p,, > 0, (1.4)
n—o0

where (p;,) is the weight sequence. Ghosal proved that (1.4) is a sufficient condition for the unique-
ness of the limit.

In this work, we introduce a new convergence method which we call strongly statistical conver-
gence. Let

a21 a22 a23

A= (ank) = as;  as  ass

n

. . oo
be a nonnegative matrix, r,, = Z ani < +o0o for every n € N and S, = Z i —> 00 as

n — oco. We call that (z,) C C is A—:strongly statistically convergent to L € C if

1 o0
lim — {kgsn: Zamxi—Lst:o

for all € > 0.

This new method is generalizations of the following:

1) statistical convergence,

2) weighted statistical convergence,

3) strong convergence.

Relation (1.4) is a sufficient condition for the uniqueness of the weighted statistical limit point.
In this study, we give a necessary and sufficient condition, which we call dense positivity, for the
uniqueness of the strongly statistical limit point (and naturally for the uniqueness of the weighted
statistical limit point).
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224 U. KAYA, N. D. ARAL

Finally, we investigate the regularity, linearity and multiplicativity of this new concept. The
strongly statistical convergence is a new concept and it can be applied the approximation theory,
Fourier analysis, topology and so on. For example, it can be given a Korovkin-type approximation
theorem. Also, it can be determined whether the space of the strongly statistically convergent se-
quences is a subspace of [, or not. It can be described strongly statistically Cauchy sequence and
studied its properties.

2. Preliminaries.

Definition 2.1 [5]. Let § is a function from all the subsets of natural numbers to the closed
interval [0, 1] . If the following conditions hold, then ¢ is said to be a lower density in the sense of
Freedman and Sember:

1) if the symmetric difference of the sets A and B is finite, then 0 (A) = ¢ (B),

2) if ANB =0, then §(A) + 6 (B) < §(AUB),

3) 0(A)+d(B)<1+4+06(ANB) forall A and B,

4) §(N)=1.

If 6 is a lower density, then § is called an upper density associated with § defined by the equality

S(A)=1-8(N\ A).

Proposition 2.1. Assume that (S,) C R is a nondecreasing, nonnegative and unbounded se-
quence. Then

1
dg, (K) = linginfS—HkSSn: ke K} (2.1)
is a lower density, where |E| denotes the cardinality of a set E, and K C N.

Proof. Let

1
P 3 3 < .
s, (K) : hnrgg.}ff[[snﬂ {k < [Sn] : ke K}, (2.2)
where [S),] denotes the integral part of Sy, and K C N. We now show that dg (K) = drg,] (K)
for each K C N.

Obviously, the relations S, — 1 < [S,] < Sy, and {k < S,: ke K} = {k <[S,] : k€ K}
hold for each n € N. By these relations, we have the inequality

1 1
g k< Suike K} < ok < [S.] : ke K} <
< gk <5 keR)| (2.3)

" —

———— =1, the limit inferiors of
Sh

Since lim,,

Siy{kgsn;kef(}\ and k< S,: ke K} 2.4)

Sp—1

coincide. Therefore, we get dg, (K) = dyg,] () for each K C N.
Now, we will prove that dg ; is a lower density. Let

ISSN 1027-3190. Vkp. mam. scypn., 2020, m. 72, Ne 2



STRONGLY STATISTICAL CONVERGENCE 225

1, if 0<S5,<1 and k=1,
M = (an) = [[51]] if S,>1 and k<S,,
0, otherwise.

Note that M is a nonnegative Toeplitz matrix (see [11], Chapter 7.1, Theorem 3). Moreover, the
equality
dg, (K) = liminf(Mxx),
n—oo

holds for every K C N, where x  is the characteristic function of the set K i.e.,

PO E L
XEI= 00, if jeNK.

Hence, d¢ is a lower density by [5] (Proposition 3.1).

Proposition 2.1 is proved.

Remark2.1. In (2.1), (2.2), (2.3), and (2.4), some of the numbers S,,, [S,] and S,, — 1 may
be zero for some n. In this case, since lim,, o, S, = +00, there exists ng € N such that S,, > 0,
[Sn] > 0 and S,, — 1 > 0 for each n > ng. Thus, we will assume n > nyg.

By Proposition 2.1,

ds, (K) :=limsup(Mxk),,
n—oo

is an upper density. If 0, (K) = dg, (K), then we say that K has density (see [5]). In this case,
g, (K) = dg, (K) will be denoted by dg, (K) and we say that dg, (K) is the density of K with
respect to (Sy,) . When S,, = n, we will say that dg, is Cesaro density and write ¢ instead of Jg,, .
K is said to be an S,,-null set in case dg, (K) = 0. K is called a Cesaro-null set when S,, = n and
J(K)=0.

It is easy to observe the following:

0<dg (K)<ds, (K)<1.

~S5n —

In addition, if dg, (K) exists, then 0 < dg, (K) < 1. We say that K is dense with respect to (.5,,)
provided dg, (K) = 1.

Now, we give a proposition about the intersection of dense subsets of natural numbers.

Proposition 2.2. The intersection of two dense subsets of N is dense, ie., if dg, (K1) =
=g, (K2) =1, then dg, (K1 N K3) = 1.

By using [5] (Propositions 2.1-2.3), one can easily prove this assertion.

We now give an example for an S, -null set that fails to be Cesaro-null set.

Example2.1. Let K,, = (2"2,2"2“} NN and K = UOO OKn. Since
n=

< n2+1: }‘ n ( k21 o k2) n k2 2
{r<2tine YL 2 ST g

on?+1 on?+1 on?+1 = 9n241 27

then & (K) > ~. Similarly, by the following:

N =

ISSN 1027-3190. Ykp. mam. scypn., 2020, m. 72, Ne 2



226 U. KAYA, N. D. ARAL

‘{k <o’ ke KH an (2’f2+1 _ 2k2> Z”_l ok?
_ £—k=0 K0 _

on? on? on? -

(n—1)*
Z 2k 9(n—1)°+1 _ 1

< S - (P2,
we get
Hk§2n2:kEKH
nh_)rgo o7 =0, (2.5)
ie, d(K)=0.

Consequently, K has no Cesaro density. However, by (2.5), we obtain dg, (K) = 0, where
S, = 27", K is 2"" -null set but is not Cesaro-null.

We now give some definitions.

Definition 2.2 [4]. Let (x,) C C and L € C. If 6 {k € N: |z — L| > €}) = 0 for each
e > 0, then (x,,) is called statistically convergent to L.

Definition 2.3 [12]. Let (py) be a sequence of nonnegative numbers such that p; > 0, P, =
= Z:_l pr — 00 as n — 00. A sequence x = (xy,) is called weighted statistically convergent to
L if the set {k € N: py, |xy — L| > €} is Py-null set for every > 0.

Definition 2.4 [8]. Let A be an infinite matrix, (x,) C C and L € R. Then (x,) is called
A-strongly convergent to L if lim,_, oo Zzo_l ank |zr — L| = 0. This convergence is denoted by
xn, — L[A]. -

3. A-strongly statistical convergence.

Definition 3.1. Let

air a2 a13
az1 a2 a3

A= (ank) = as;  as  ass

. . o0 n . .
be a nonnegative matrix, ry, = Zk:l Gni and Sy, = Zi:l r;. Assume that the matrix A satisfies
the following conditions:
(1) rp < 400 foreach n € N,
(1) limp_yeo Sn = +00.
We say that (z,,) C C is A-strongly statistically convergent to L € C if

{kSSn Zak1|xZ—LZ€}|:0

=1

. 1
lim —
n—oo n

for all & > 0. We write 2, L [A] when (x,) is A-strongly statistically convergent to L.
We will say that A matrix A satisfying (i) and (ii) in Definition 3.1 is an .S-type matrix.
If
1, if n=k,
A=1= (an) = )
0, if n#k,
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STRONGLY STATISTICAL CONVERGENCE 227

then A-strongly statistical convergence coincides with the statistical convergence which was intro-
duced in [4].
If
A = (ank) = {pn’ lf " k;’
0, if n#k,
then A-strongly statistical convergence coincides with the weighted statistical convergence which
was introduced in [12], where p, > 0, p1 > 0 and Z:;l Pp = Fo00.

Theorem 3.1. Let A be an S-type matrix, (x,,) be a complex sequence, L € C and Ay =
= Zzl ay; |z; — L|. Hence, a:ns—t>L[A] if and only if there exist two nonnegative sequences
(Bg), (Ck) such that Ay, = By, + Ci, limy, oo By, =0 and dg, ({k € N: C #0}) = 0.

Proof. Necessity. Assume that xnig L[A]. Then we get

o0
{kgsn: Zaki|xi—L25}|:0

i=1

. 1
lim —
n—o0 n

for each € > 0. Therefore, if ¢ > 0 and r > 0, then there exists n,. € N such that the inequality

{k:gSn: Zaki|a:i—L| 25}

=1

5 <r 3.1)

1
holds for every n > n,.. We choose ¢ = r = — and N; = n,.. for j € N. Then, the relation (3.1)
J

turns into the inequality

Sn

ad 1
kZSSn aiZCZ'—LZf
fiesisSonin-n>1}

=1

1
< -, 3.2)
J

where n > N;. Note that the sequence (/V;) of naturals can be constructed as strictly increasing. We
define the sequences (By) and (C}) as follows:

1
B A, if 1<E<N; orif Nj<k<N;y; and A; < -,
L= J

0, otherwise,
and
Cy = Ay — By,
where k,j € N. It is obvious that Ay = By + C), and By, Cy > 0 for each k € N.
Given € > 0, there exists j € N such that 1 < e. Let K > N;. Since (N;) is a strictly
increasing sequence, there exists M > j such that 37\7 M < k < Npr41. There are two cases for Ay :
A < £ or Ay > a In the former case, B, = A < % < j < €. In the latter case, By, =0 < ¢.

M
Therefore, lim,, o, B, = 0.

Now, we will show that dg, ({k € N: Cy # 0}) = 0. By the definition of (C%), the inclusion
1
{]{7 <S,: Nj <k< Nj+1,Ck % 0} C {]{7 <S5,: Nj <k< Nj+1,Ak > ]} (3.3)
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228 U. KAYA, N. D. ARAL

holds, where n, j € N. For n € N, there exists 7 € NU {0} such that
N; < Sp < Njiq, (3.4

where Ny = 0. Suppose that Cj, # 0 and k£ < S,,. Since (IV;) is a strictly increasing sequence, (3.4)
implies that there exists M; € N such that M; < j and Ny, < k < Npp,+1. By using (3.3), we
1 1
have Ap > — and, so, Ax > —. Thus, we get
M, J

{kgsmcg¢0}c{k§&,Akz;}. (3.5)

By (3.2) and (3.5), we have

1

1

1 1
J J

(3.4) implies that j — oo as n — oo. Therefore,

n—oo S

1
lm — [{k < S,: Cy # 0} =0.

This implies that g, ({k € N: Cy # 0}) = 0.

Sufficiency. Assume that there exist (By) and (C}) sequences which satisfy the following con-
ditions:

(i) Bg,Cr >0 forall k € N,

(i) Ay = B+ Cj forall k € N,

(ifi) limy_eo By = 0,

(iv) 6g, ({k € N: C #0}) = 0.
Let £ > 0. Condition (iii) implies that the set {k € N: By > ¢} is finite. So, the equality

1
ds, {keN: B, >¢}) = li_>m S—\{k:gSn:BkZ»sH:O

holds. By (i) and (ii), if Ay > ¢, then either C}, = 0 and By > € or Cj # 0. By using (iv), we have
the following:

lim |k < S A >} <

n—oo

gﬁﬂmi{kg&ﬂBkdewgkél%gsg%%#oﬂ=0+0:0

Theorem 3.1 is proved.

By choosing By, = Ay and C}, = 0, for £ € N, we have the following corollary.

Corollary3.1. Let A be an S-type matrix, (z,) C C and L € C. Then xn,— L[A] implies
a5 L[A].

The converse of Corollary 3.1 is not true. There exists a statistically convergent but not conver-
gent sequence when A = I (see [6]).

We will use dg,, (m,,) instead of dg, ({m, € N: n € N}) for short notation.
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STRONGLY STATISTICAL CONVERGENCE 229

Corollary3.2. Let A be an S-type matrix, (x,) C C and L € C. Hence, 05 L Al if and
only if there exists a strictly increasing sequence (my,) of naturals such that 6g, (my,) = 1, B =
= (bnk) = (am, k) and x, — L[B].

Remark3.1. Corollary 3.2 asserts that A-strongly statistical convergence is strong convergence
on the matrix obtained by eliminating some rows from the matrix A, where the density of the indices
of these rows is 0.

4. Main results.

Definition 4.1. Let (S,,) be a nondecreasing, nonnegative and unbounded sequence. We say
that a nonnegative sequence (ry,) is Sy-dense positive provided the condition

limsup ry,, >0
n—oo
holds for every indices of (my,) satisfying 0s, (my) = 1. When S,, = n, we write dense positive
instead of n-dense positive for a sequence.
Remark4.1. S,,-dense positivity of a sequence (r,,) is weaker than the condition lim inf (r,,) >
n—o0

> 0 and stronger than the condition lim sup () > 0. That is, if the limit inferior of a nonnegative
n—o0

sequence is positive, then it is S, -dense positive. Similarly, if a nonnegative sequence is .S,,-dense
positive, then its limit superior is positive. However, the converses of these assertions are not true in
general, as we show in next two examples.

Example4.1. Let
1, if k=n?
A, =
"o, if k #£n2,

and S,, = n. Obviously, limsupa,, = 1. However, if we choose (m,,) as all nonsquare numbers,
n—oo

the conditions ¢ (m,) = 1 and limsup a,,, = 0 hold. So, limsup a, > 0 but (a,) is not dense
. n—oo n—o0
positive.

Example4.2. Let
1, if k#n?

by =
{m if k=n2

and S,, = n. Obviously, lirr_l) inf b, = 0. However, for each (m,,) C N satisfying § (m,,) = 1, the

equality lim sup b,,,, = 1 holds. Hence, (b,,) is dense positive but lim inf b,, = 0.
n—oo n—0o0

Theorem 4.1. Let A = (ani) be an S-type matrix. A-strongly statistical limit is unique if and
only if (ry) is Sy-dense positive, where r,, = Z:O_I Q-

Proof. Sufficiency. Assume that (r,) is S, -dense positive and a sequence (x,) of complex num-
bers strongly statistically tends to both L and R. By Corollary 3.2, since 0S5 L [A] and 03 R [A],
there exist indices (m,,) and (j,) such that B = (am,x), D = (a;,k), ©n = L[B], , — R[D]
and dg, (my) = ds, (jn) = 1. By Proposition 2.2, we get dg, ((my,) N (jn)) = 1. We now define
(in) by (in) = (my) N (jn) . Obviously, the inclusions (i,,) C (m,,) and (i) C (jn) hold. From
here, we have z,, — L[E| and x,, — R[E], where E = (a;,x) . Since (r,,) is dense positive, we
obtain lim sup r;, > 0. Then, by [8] (Theorem 3), we have L = R.

n—oo
Necessity. Assume that A-strongly statistical limit is unique. We claim that the sequence (r,) is

Sp-dense positive. Consider a set of indices (m,,) C N satisfying dg,, (m,) = 1. Let B = (am, k) -
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We now define two classes of sequences as follows:
st st
= {(:cn) cC:3LeC: xn—>L[A]} ,
Cip) == {(v,) CC: 3L € C:x, — L[B]}.

By Corollary 3.2, we have Cp C Cﬁf‘]. From here, since A-statistically strong limit is unique,
B-strong limit is also unique. So, limsup r,,, > 0 by [8] (Theorem 3).

n—oo
Theorem 4.1 is proved.

Corollary 4.1. If A is nonnegative Toeplitz matrix, then A-strongly statistical limit is unique (see
[11], Chapter 7.1, Theorem 3).

Remark4.2. Recall the Definition 2. By Theorem 4.1, the uniqueness of weighted statistical
limit requires that (p,) is P,-dense positive. Indeed, this condition is necessary and sufficient
for uniqueness. A sequence may have infinitely many weighted statistical limits when (p,,) is not
P,,-dense positive, as we show in next example.

Example4.3. Consider the matrix

1
—, if n=k,
A= (ank) =4q"
0, if n#k,
.. 1 n 1
and the constant sequence (z,,) = (0,0,...). By Definition 3.1, we get r,, = — and S,, = Z LT
n i=1 g
Obviously, the equality lim,, .~ S, = +00 holds. So, A is an S-type matrix. Let L € C and ¢ > 0.

L]

Since the sequences (.S,,) and <> tend to infinity and zero, respectively, then the cardinality of
n

L
{k§5n1|k‘25}

is a constant for sufficiently large n. Thus, we have the following:

{kSSn:i‘ZSH—O.

the set

1
lim —
n—oo n

1 1
{kgSn:k]mk—MZg}‘— lim T

n—oo n

) -weighted statistical

SRS

This shows that each complex number L is A-strongly statistical limit or (
limit of (zy,) .

Theorem 4.2. Let A = (ani) be an S-type matrix. If there exist some indices m, € N
such that dgs, (my) = 1, limy o0 G,k = 0 for each k € N and sup,cy rm, < 400, then A-
strongly statistical convergence is a regular summability method, i.e., x,, — L implies xns—t> L[A]
<rm" - Z:O:l am”k> '

Proof. Let x,, — L and B = (ay,, ;). By the hypothesis and [8] (Theorem 1), =, — L[B].
Finally, by Corollary 3.2, we obtain z,,=% L [A].

Proposition 4.1. [f (x,) C C is statistically strongly summable to L by a matrix A = (anx) of
which (ry,) is dense positive, then L must be a limit point of (x,,) .

The proof of this assertion is directly obtained from Corollary 3.2 and [8] (Theorem 4).
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Theorem 4.3. Let A = (ani) be an S-type matrix, (x,), (yn) be two complex sequences and
L, M,«a, B € C. Then the followings hold.

@A) anSL [A], yni@M [A] implies (axy, + Byn) Kol +BM [A],
(i) 2, 5L [A], yn S M [A] implies (xnyn) M [A] if either () or (yn) is bounded,

(ili) zn 3L (4], yn S M [A] implies (%) iﬂ [A] if there exists a positive number d such
Yn

that y,| > d for sufficiently large n and one of the conditions that either M # 0 or (ry) of A is
dense positive is true.

Proof. By Corollary 3.2, 2, 5L [A] implies x,, — L [B] and yn S M [A] implies y,, — M [D],
where B = (am,k), D = (a;,k) and &g, (myp) = 6s, (jn) = 1. Thus, we have z,, — L [E]
and y, — M [E], where E = (a;,) and (i) = (my) N (jn). By Proposition 2.2, the equality
ds, (in) =1 is true. By [10] (Theorem 1), we have the followin:

(i) For each o, € C, (axy, + Byn) — oL + M [E]. Hence, we get, by Corollary 3.2, that
(axn + Byn) KoL+ BM [A].

(ii) If either (x,) or (y,) is bounded sequence, then (xpyx) — LM [E]. Similarly, (z,y,) i
ALMI[A].

(iii) If (r,,) of A is dense positive, we conclude |M| > d by Proposition 4.1. So, we can assume
that (ry,) of A is dense positive or M # 0 . Since (y,) satisfies the condition |y,| > d, by (ii), we

n S L
have (;) —@M [A].
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