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ESTIMATES FOR A-SPIRALLIKE FUNCTION OF COMPLEX ORDER
ON THE BOUNDARY

OLIHKMH JUISI CHIPAJIENOAIBHOI \-®YHKIII
KOMILJIEKCHOI'O OPSIZIKY HA I'PAHUIII

We give some results for A-spirallike function of complex order at the boundary of the unit disc U. The sharpness of these
results is also proved. Furthermore, three examples for our results are considered.

Hagseneno nmesiki pes3yibTaTi LIS cIipanenomionoi A-(yHKII1 KOMIUIEKCHOTO MOPSIKY Ha IpaHMIi OAMHUYHOTO nucka U, a
TAKOX JIOBEJICHO TOYHICTh LUX pe3ynbrariB. KpiM TOro, po3mIssHyTO TpH NMPHUKIAIH UL UTIOCTpAllii X Pe3yJIbTarTiB.
1. Introduction. Let f be a holomorphic function in the unit disc U = {z: [2| < 1}, f(0) = 0 and
|f(2)] <1 for |z| < 1. In accordance with the classical Schwarz lemma, for any point z in the disc
U, we have |f(2)| < |z] and |f’(0)| < 1. Equality in these inequalities (in the first one, for z # 0)
occurs only if f(z) = ze?, where 6 is a real number [7, p. 329]. The study of generalizations and
variations of Schwarz’s lemma as well as Littlewood’s theorem is of fundamental significance in the
area of geometric function theory and attracts many authors’ interest during the last years (see, for
example, [3, 7, 20] and the references therein). The generalization of the Schwarz lemma as follows:
7)) < 2O
14 [2][f/(0)]

Inequality (1.1) and its generalizations have important applications in geometric theory of functions

z el (1.1

(see, e.g., [7, 16, 19]). Therefore, the interest in such type results has also continued in recent years
(see, e.g., [2, 3, 5, 6, 11, 12, 16 —19] and references therein).
Let A denote the class of functions

f(2) =242 +e32+ ...
which are holomorphic in the unit disc U. Let M denote the class of bounded holomorphic functions
h(z) in U, satisfying the condition 2(0) = 0 and |h(z)| < |z| for z € U. For a function belonging
to the class A we say that f(z) is A-spirallike function of complex order in U if and only if

R <bCiSA [eiA ZJJ:;S) ~(1—b)cosA —isin AD >0, (1.2)

for some real A, |A| < g, b # 0, complex.We denote this class by A/ (\). It was introduced and
studied by Al-Oboudi and Haidan [1].
It is easy to show that f(z) € N'()) if and only if there is an h € M such that
; ! 1 2b—1)h
sec )\e”\izf (2) _ itan A = al Jh(z)
72) 1= h(2)
™

2

(1.3)

for z € U and for some A\, |A| <
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4 T. AKYEL

Therefore, from (1.3), we take

S

h(Z) — ez’)\ (f)(z)
i (212) cos '
el ( 8 1> + 2bcos A

Since h(z) € M, from Schwarz lemma, we obtain
coz + (203 — 03)22 + ...

h — A : ’
(2) = e e (coz + (2¢3 — c3)22 4 ...) + 2bcos A
h(z) o+ (23— c3)z+ ...

. ¢ o (c 2.2 ’
0z + (203 02)2 + .. ) + 2bcos A

By = 2l <

I(0) 2|blcos A —

and
|ca| < 2|b| cos . (1.4)

Moreover, the equality in (1.4) occurs for the function
B z
f(Z) - (1 _ Z)Zbe*“‘ cos A\’

It is an elementary consequence of Schwarz lemma that if f extends continuously to some
boundary point ¢ with |¢| = 1, and if | f(c)| = 1 and f’(c) exists, then |f’(c)| > 1, which is known
as the Schwarz lemma on the boundary. Passing to the angular limit in (1.1), we obtain the boundary
Schwarz lemma [16]

2
1f(0)] > — - (1.5)
o)
For ¢ = 1, the equality in (1.5) occurs for the function
z+a
f(Z) - Z]. 4 CLZ’
where 0 < a < 1. It follow that
[f(e)l > 1 (1.6)

with equality only if f is of the form f(z) = ze%, 6 is real.

V. N. Dubinin has continued this line and has made a refinement on the boundary Schwarz lemma
by considering the function f(z) = cpzP + cpy12P T + ... with a zero set {z;} (see [5]).

S. G. Krantz and D. M. Burns [10] and D. Chelst [4] has studied the uniqueness part of the
Schwarz lemma. P. R. Mercer [11] has proved a version of the Schwarz lemma where the images of
two points are known. Also, he has considered some Schwarz and Carathéodory inequalities at the
boundary, as consequences of a lemma due to Rogosinski [12]. For more general results and related
estimates, we refer to the papers [13-15].

Also, M. Jeong [9] has obtained some inequalities at a boundary point for different form of holo-
morphic functions and has found the condition for equality and also in [8], has defined a holomorphic
self map on the closed unit disc with fixed points only on the boundary of the unit disc.

In the proofs of our main results, we will resort to the following lemma due to Julia— Wolff [19].
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ESTIMATES FOR A-SPIRALLIKE FUNCTION OF COMPLEX ORDER ON THE BOUNDARY 5

Lemma 1 (Julia— Wolff lemma). Let f be a holomorphic function in U, f(0) =0 and f(U) C
C U. If, in addition, the function f has an angular limit f(c) at ¢ € OU, |f(c)| = 1, then the
angular derivative f'(c) exists and 1 < |f’'(c)| < oc.

Corollary 1. The holomorphic function f has a finite angular derivative f’(c) if and only if [’
has the finite angular limit f'(c) at ¢ € OU.

2. Main results. In this section, for holomorphic function f(z) = 2z + c22% + 323 + ...

/
belonging to the class of N'()\), the modulus of the angular derivative of the function fo ((j) will be
z

estimated from below on the boundary point of the unit disc. The sharpness of these results is also
proved. Furthermore, examples will be presented for the inequalities obtained.

Theorem 1. Let f(z) € N(N). Assume that, for some ¢ € OU, [ has angular limit f(c) at c
cf'(c) 1 bcos)\
fle) e

and . Then we have the inequality

(e

The equality in (2.1) occurs for the function

b
> |2|cos A (2.1)

z
f(Z) - (1 _ Z)Qbe—“‘ cos A’

Proof. Since f(z) € N()\), we write

W) 14— Dh()
o A T

sec e

for z € U and for some A\, || < g and h(z) € M. Thus, we get

)

h(Z) — 6i)\ Zf/(zj;(z) :

e“‘( — 1> + 2bcos A
f(2)
h(z) is a holomorphic function in the unit disc U, |h(z)| < 1 for |z| < 1 and h(0) = 0. For ¢ € U
!
and cf'(9) =1- bCO.S)\, we take
f(e) et
!
Cf(C)il 1_bCO§A_1
_ |ix f(e) _ oin B
|h(c)| = |e ; = =
A fcf'(c) . Ccos \
eM ==~ —1) +2bcos e 1 —b——1]+2bcos\
f(e) e
B —bcos A _ |bcosA|
" | =bcos A+ 2bcos\|  |bcosA|
Let f’( )
zf(z
g(z) = .
=50
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6 T. AKYEL
So,

ix g9(z) —1
M) e* (g(z) — 1) + 2bcos A’

From (1.6), we obtain

1< | ()] = |e

i 2bcos A\g'(c) B
(e (g(c) — 1) + 2bcos A)?

2bcos Ag'(c)

) CcoS A 2
et 1_be“‘ —1) +2bcos )\

B ‘ 2bcos \g'(c) B ‘QbCOS A (e)|  2]g'(c)]
(=bcos A + 2bcos A)? (beos \)? |b| cos A

and

14

lg' (c)| > 5 cos A
Now, we shall show that inequality (2.1) is sharp. Let

z

fz) = (2.2)

(1 _ Z)Qbe—“‘ cos A\’

Differentiating (2.2) logarithmically, we have

z

In f(z) =1n (1 — Z)Qbe*i/\ cos\’

f'(z) 1  2be ™ cos\

flz) =z 1—=z

and

!
= 2f'(2) =1+ 2be ? cos )\L.

9(2) ) T

Therefore, we take

1
(1-2)?

lg'(-1)| = |2b|cos A

g (z)= 2be ™™ cos A

and

Theorem 1 is proved.
Inequality (2.1) can be strengthened as below by taking into account c which is the second

coefficient in the expansion of the function f(z).
Theorem 2. Under the same assumptions as in Theorem 1, we have the inequality

‘(zf’(z))/ S 2|b]? cos® A
f(z) ) ._.| ~ 2[bjcos A+ [ea|

(2.3)
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Inequality (2.3) is sharp with equality for the function

z

f(z) = = 7
(22 1 ods 4+ 1)6 Abcos A

2] is an arbitrary number on [0, 1] (see (1.4)).

where d = —————
2|b| cos A
Proof. Let h(z) be as in the proof of Theorem 1. By using inequality (1.5) for the function

h(z), we obtain

2 , 2bcos \g’ 2|g’
/ < |h/(C)| _ ezA : COS Ag (C) S| = ’g (C)‘ ,
1+ [P/ (0)] (e (g(c) — 1) + 2bcos \) |b] cos A
2f'(z
where g(z) = ( ]J:((z)>>
Since
B(z) = e — 2bcos \g'(2) N
(e (g(2) — 1) + 2bcos \)
/
B (0) = ¢ — 2bcos Ag'(0) :
(e (g(0) — 1) 4+ 2bcos \)
and cal
C2
W(0) = =2
[#0)] 2|b| cos A’
we take .
> 2
leal  — |blcos A
b 2|b| cos A

Thus, we obtain inequality (2.3).
Now, we shall show that inequality (2.3) is sharp. Choose arbitrary d € [0, 1]. Let

& (2.4)

—iAbcos A’

fle) = (22 + 2dz + 1)6

Differentiating (2.4) logarithmically, we get

z
Inf(z) =1In — ,
(22 1ods + 1)6 Abcos A
fiz) 1 i z+d
— = _ 9t e
flz) =z ¢ bCOS)\22+2dz+1
and ) )
zf'(z _ix 2+ dz
= =1-2e "bcos \5————.
9(2) f(2) ¢ A o4y 1+ 1
2| , we obtain

Thus, since d = ——
us, since 2| cos \
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8 T. AKYEL

2|b]? cos? A

/
)| = s A
lg (L) 2|b| cos A + | ez

Theorem 2 is proved.
Now, inequality (2.3) can be strengthened as below by taking into account c3 which is the third
coefficient in the expansion of the function f(z).

Theorem 3. Let f(z) belong to N'(X\). Assume that, for some ¢ € U, f has angular limit f(c)

cf'(c) cos A
o e

()| [bleosh 2(2[b| cos A — |ca])? 25
f(z) )= 2 41|12 cos? X — |ca|? + |(2c3 — ¢3)2bcos A — eirc3| ) ‘

at c and Then we have the inequality

Inequality (2.5) is sharp with equality for the function

f(Z) = (1 _ Z2;i)‘bcos)\‘

Proof. Let h(z) be as in the proof of Theorem 1 and 7(z) = z. By the maximum principle for
each z € U, we have |h(z)| < |n(2)|. So,

h(2)
n(z)

p(z) =

is a holomorphic function in U and |p(z)| < 1 for |z| < 1.

Since
h(z) = ¢ 22+ (25— )2+ ..
el (CQZ + (203 — 03)22 + .. ) + 2bcos \
and
p(2) = h(z) _ A 2(024—(203—0%),24—...) _
z (ei)‘ (022 + (203 — C%)ZQ +.. ) + 2bcos )\) z
i (c2+ (23— c3)z+...)

(ei’\ (02,2 + (203 — cg) 224 .. ) + 2bcos )\) ’

in particular, we have

Ip(0)] = 215’10;’“ < (2.6)
and
, |(2c3 — ¢3)2bcos A — ec3
(0] = 4|b|? cos? A
Moreover, it can be seen that
/ /
) e = ] = L.

The function
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ESTIMATES FOR A-SPIRALLIKE FUNCTION OF COMPLEX ORDER ON THE BOUNDARY 9

_ p(2) = p(0)
1= p(0)p(2)
is holomorphic in the unit disc U, |I'(z)| < 1 for |z| < 1, I'(0) = 0 and |I'(c)| = 1 for ¢ € OU.
From (1.5), we obtain

1+ |p(0)]

2 1 — |p(0)[?
—— < / _ —|p/(C)| < |p/(0)| _
o) == e 1= [p(0)|
1+\p( I
W' ()| —1F.
= (o "=
Since
1—|p(0 2
F,(Z) = L )’ 2p/(2)’
(1=pOp(=)
’(263 —c3)2bcos A\ — ei)‘cg‘
|F/(0)’ _ |p/(0)| . 4|b|2 cosZ \ . ‘(263 — C%)2bCOS)\ _ ei)\cg‘
1 —[p(0)[? o] 2 4162 cos? X — |eo|?
1—( —=
2|b| cos A
we take
|ca]
1+ -—=
’ T apfeosd (el )
n |(2c5 — 3)2bcos A — 3| L el b cos A
41b|% cos? X — |ca|? 2|b| cos A

_ 2[b[cos A+ ez [ 2[g'(c)] 1
o 2|b| cos A — |ea| | |b] cos A ‘

Therefore, we get

2(4[b|? cos® A — |e2]?) 2[blcos A —Jea| _ 2|g'(c)l
4162 cos? X — |ca|? + | (2¢5 — 3)2bcos A — eAc3| 2[b| cos A +- |ea| T [b[ cos A

and

|b| cos A 2(2[b| cos A — |02|)2 < |4'(0)|
2 4|b|? cos? X — |ea|? + | (23 — c3)2bcos A — 3| ) gl

So, we obtain inequality (2.5).
To show that inequality (2.5) is sharp, take the holomorphic function

z
f(Z) - (1 _ ZZ)e—i)‘bcos)\‘

2.7)

Differentiating (2.7) logarithmically, we obtain

z
n (1 _ ZQ)e*Mbcos)\’

In f(2) =
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10 T. AKYEL

?éj; = % +e b cos)\1 322
and 2f'(2) , 222
g(z) = 5 =1+ e_’)‘bcos/\1 —
Therefore, we take
g (2) = e Pbcos )\(1_4222)2

and
lg' ()] = [b] cos A.

Since |c2| = 0 and |c3]| = |b| cos A, (2.5) is satisfied with equality.

Theorem 3 is proved.

If f(z) — z has no zeros different from z = 0 in Theorem 3, inequality (2.5) can be further
strengthened. This is given by the following theorem.

Theorem 4. Let f(z) € N()), f(2) — z has no zeros in U except z = 0 and ¢y > 0. Suppose

/!
A
that, for some ¢ € OU, f has angular limit f(c) at ¢ and CJ{(S) =1- bczisA . Then we have the
inequality
4 1 2 ‘02‘
‘(zf’(z))/ - |b| cos A 1 czl[blcos Aln (2\1)008)\
f(2) ) = 2 4|co||b| cos A In (2|b|602(|)s)\> — | (203 - C%) 2b cos A — eircd|

(2.8)

Proof. Let co > 0 in the expression of the function f(z). Having in mind inequality (2.6) and
the function f(z) — z has no zeros in U except z = 0, we denote by Inp(z) the holomorphic branch
of the logarithm normed by the condition

|cal
Inp(0) =In|{ ———— 0.
up(0) =n (2\()\ cosh) =

In p(2)  In p(0)
T =
(2) Inp(z) + Inp(0)
is holomorphic in the unit disc U, |Y(z)| < 1, Y(0) =0 and |Y(c)| =1 for ¢ € JU.
From (1.5), we get

The auxiliary function

2 2mp©)  [#( “921np(0)
— <) = = B (c)|—1}.
Replacing arg? p(c) by zero, then
! —1 {2|g'(0) }
- < -1
) 1 | (2¢3 — c3) 2bcos A — eAc3| — n <|02|> |b| cos A
|col 2|ca||b| cos A 2|b| cos A
2In [ ————
2|b| cos A
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ESTIMATES FOR A-SPIRALLIKE FUNCTION OF COMPLEX ORDER ON THE BOUNDARY 11

and o
4ca|[b] cos AIn? | =12

1 |02H ’COS n <2]b|cos)\> 2’9/(C)|

4lca||b] cos Aln (2’()“602018/\> — | (2¢3 — 3) 2bcos A — €A 3| |b] cos A

Thus, we obtain inequality (2.8).

The following inequality (2.9) is weaker, but is simpler than (2.8) and does not contain the
coefficient c3.

Theorem 5. Under the same assumptions as in Theorem 4, we have the inequality

2f'(2)\ |b| cos A 1 |
> l1—=-In{ ———1. 2.9
‘( 1) )Z:c = 2" \ 3o cos A 29
Proof. Let co > 0. Using inequality (1.6) for the function I'(z), we obtain
21np(0 p'(c —21np(0
[ Inp(c) +Inp(O)* | p(c) | n®p(0) + arg? p(c)
Replacing arg? p(c) by zero, then
—2 2|g'(c)|
1 <Y (e)] < — 1.
<ol < (e {|b|cos>\
2|b| cos A

Therefore, we obtain inequality (2.9).
Theorem 4 is proved.
3. Examples.
Example1. Let us consider the function f(z) defined by

z
f(Z) - (1 _ Z)Zbe—i’\ cos A’

From here, we have

zf'(z) —iA <
=14 2be™" A .
f(z) + 20e CcoS -

So, we take

1 |:ez'>\2f/(z) _(l—b)COS)\_iSin)\:| =

bcos \ f(2)

— 1 A i z o B
= Toonn [e <1+2be cos)\l_z> (1 —b)cos A zsm)\} =
1 ZA z . .
=——7—|e" + 2bcos A —cosA+bcosA—isin\| =

bcos A 1— 2
1 i z \
_——— 2 2 _ 7 _
beos [e + bcos/\l_z e —i—bcos)\]

1 2z 1+2
= 1 = .
bcos A [bCOS)\<1—z+ )} 1—-=z
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12 T. AKYEL

Obviously, the function
14z

1z
maps the unit disc U to the right half plane and, hence, the real part of the function k(z) is nonne-
gative. Therefore, we obtain

L [ asf) T (1
%(bcos)\ [e)‘ ) (1b)cos)\181n)\D—3‘E<1_Z>>0.

Thus, the function f(z) satisfies condition (1.2) and Theorem 1. That is,

k(z)

f(Z) - (1 _ Z)Qie“ cos A

and, for some ¢ € U, we have
(=1f(=1) ix ( -1 > —ix (—1>
2 =142 cosA | ——~ | =1+ 2be " cos A\ | —
f(=1) 1—(-1) 2

nd (=D f'(=1)
7_ _ = —_ eii)\ .
= 1-5b CcoS A\

Example?2. Let us consider the function f(z) defined by

z
f(z) = 3 )
(22 1 2ds + 1)6 Abcos A
where d = ﬂ is an arbitrary number from [0, 1] (see (1.4)). Hence, we get
2|b| cos A
z2f'(z) —ix 22 +dz
=1-—2e"bcos \————.
) ¢ S d + 1

Therefore, we obtain

L [naC) N
bcos A [e f(2) _(1—b)COS)\—zsm/\} =

- bcis/\ [e”‘ (1 — e—i/\zbcos)\%> —(1-0) cos)\—isin)\] =
- bcis)\ [ei/\ _2bCOSAm — e +bcos)\] -
= bccl)s)\ [—Zbcos)\ﬁm+bcos)\} =
= bciSA [bcos)\ (—222’122—1_6152le +1>} - 22_11_;(;2“

Since d € [0, 1], we see that

ISSN 1027-3190. Vkp. mam. scypn., 2022, m. 74, Ne 1



ESTIMATES FOR A-SPIRALLIKE FUNCTION OF COMPLEX ORDER ON THE BOUNDARY 13

1 a2l (2) . B 122
%<bcos)\ [e’\ ) —(1—b)cos)\—zs1n)\]> _%<z2—|—2dz—|—1> > 0.

Thus, the function f(z) satisfies condition (1.2) and Theorem 2. That is,

f(z) =

z

(22+2d2+1)e*“bcos)\’

for some ¢ € JU, we have

() _ix 1+d i) 1+d
7(1) SR I | R SCTTEY)
and (1)
=1—ebcos\.
f(1)

Example3. Let us consider the function f(z) given by

z
f(Z) - (1 _ Z2)e_i’\bcos)\'

Similar to other examples, it can be easily shown that the function f(z) provides the properties of

class N'(N).
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