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PALEY - WIENER TYPE THEOREM FOR FUNCTIONS
WITH VALUES IN BANACH SPACES *

TEOPEMA THWITY ITEJI-BIHEPA JJIS1 ®YHKIIINA
I3 3BHAYUEHHAMHU Y BAHAXOBHUX ITPOCTOPAX

Let (X, ||.|lx) denote a complex Banach space and L(X) = BC(R — X) be the set of all X-valued bounded continuous
functions f: R — X. For f € L(X) we define ||f||L(x) = sup{||f(z)|lx: « € R}. Then (L(X),||.||x)) itself is a
Banach space. The Beurling spectrum Spec(f) of a function f € L(X) is defined by

Spec(f) ={( €R:Ve>03p € S(R): suppd C (( —€,{ +€), o= f £0}.

We obtain the following Paley — Wiener type theorem for functions with values in Banach spaces:
Let f € L(X) and K be an arbitrary compact set in R. Then Spec(f) C K if and only if for any 7 > 0 there exists
a constant C» < oo such that
I1P(D)fllee < Crliflloee sup |P(z)

zeK(T)
for all polynomials with complex coefficients P(z), where the differential operator P(D) is obtained from P(x) by
substituting  — —3 T dn S the usual derivative in L(X) and K () is the T-neighborhood in C of K.
.’ dx
Moreover, Paley — Wiener type theorem for integral operators and one for some special compacts K are also given.
Hexait (X ||.|lx) — xommnekcuuii npocrip Banaxa i L(X) = BC(R — X) — MHOXHHA BCiX 0OMEXEHHX HEHEPEPBHHX

X-snaunnx dymkuiii f: R — X. Ima f € L(X) Beomutses mosHauenus || f||nax) = sup{]|f(z)|x: « € R}. Toxi
(LX), ||/l ¢x)) cam e 6Ganaxosum mpocropom. Crextp bepninra Spec(f) ¢ynxuii f € L(X) Bu3HauaeThes gk

Spec(f) ={Ce€R:Ve>0Tp € S(R): suppp C (( — €6, +€),ox f £Z0}.

Otpumano taky Teopemy tumy [leni— Binepa mis ¢yHkuii i3 3HaueHHsAME y ipocTopax banaxa:

Hexait f € L(X) i K — noBinpHa kommakTHa MHOXHHA B R. ¥V mpomy Bumaaky Spec(f) C K Tomi # nmme Tomi,
KoJ| Juist Oymb-sikoro 7 > 0 icHye crana Cr < 0o Taka, 1o

IPD) flleey < Crllflleee sup |[P(x)]
zeK(T)

IUISL BCIX TIOJIHOMIB 3 KOMIUTEKCHHUMH Koedimientamu P(x), ne mudepenmiansauii oneparop P(D) orpumano 3 P(x)

. .d d . . . .
3aMiHOI0 - — —i —, — — 3BuyaitHa noxizaa y L(X) i K7 — 7-oxin mis K y C.

dz’ dx
Taxox HaBeseHO TeopeMy Tury Ileni — Binepa ans iHTerpanbsHUX OnepaTopis Ta JESAKHX CIEHialbHUX KOMMAKTIB K.

1. Introduction. The relation between properties of functions and their spectrum (the support of
their Fourier transform) are interested for many mathematicians. The Paley — Wiener theorem is one
of the well-known results belonging to this direction. The initial Paley — Wiener theorem was proved
for L?-functions, was extended to generalized functions by L. Schwartz and has many generalizations
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732 H. H. BANG, V. N. HUY

(see, for example, [1-8, 10-14, 16, 17]. In this paper we provide Paley — Wiener type theorem for
functions with values in Banach space.
Let f € L'(R) and f = Ff be the Fourier transform of f

~

+oo
1 —ix
flo) = m/ ¢ f() de,

and f = F~1f denote its inverse Fourier transform

+o00
FO = o7 () da
f<¢>—m4 (@) d.

Let (X, ||.]|x) denote a complex Banach space and L(X) = BC(R — X)) be the set of all X-valued
bounded continuous functions f: R — X. For a given function f € L(X) we define ||f[/1x) =
= sup{||f(z)|lx: * € R}. Then (L(X), ||.||5(x)) itself is a Banach space. We define the derivative
Df of f € L(X), as usual,

z—0 X
Given f € L(X). It was shown in [15] that for every A € C\iR the equation A\u(x) — Du(x) = f(x)
has a unique solution uy € L(X). That means the operator A — D is invertible and (A — D)1 f =

= uy ). More exactly,

1 /OOO e Mf((+ax)de, if Red>0,

()\_D) f(C): /oo v .

— [ eMf((+x)dr, if Rel<O.
0

Hence, the spectrum of the differential operator A — D is iR and

+o0o +o00o
/ p@)(A=D)" f(z)dr = / (A= D)"p(x)] f(z) dx

for any f € L(X) and ¢ € S(R), where S(R) is the Schwartz space. The convolution ¢ * f of f
with a Schwartz function ¢ is defined as follows:
+o0o

ox F(O) = / (¢ — 2) f(x) do.

The Beurling spectrum Spec(f) of a function f € L(X) is defined by
Spec(f) ={C€R:Ve>03dp € S(R): suppp C (( — €, +¢€), o f#O0}.
Note that Spec(f) is always a closed subset of R. Let X C R and 7 > 0. We put
KM .={(eC:IreK:|z—(| <7},
which is the 7-neighborhood in C of K and K7 := {(€R:qx e K: |z (| <7}, Zy =

=1{0,1,2,...}.
Let P(x) be a polynomial. The differential operator P(D) is obtained from P(x) by substituting
d

T — —1—.
dx
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PALEY - WIENER TYPE THEOREM FOR FUNCTIONS WITH VALUES IN BANACH SPACES 733

2. Paley — Wiener type theorem for differential operators. 2.1. Paley— Wiener type theorem
for any compact K.

Theorem 2.1. Let f € L(X) and K be an arbitrary compact set in R. Then Spec(f) C K if
and only if for any T > 0 there exists a constant C; g < oo independent of f such that

IP(D)fllze) < Crgllfllee sup [P(z)] (1)
z€K (™)

for all polynomials with complex coefficients P(x).
To obtain the theorem, we need the following results.
Lemma 2.1 (Young inequality for Banach spaces). Let f € L(X) and ¢ € S(R). Then ¢ f €
€ L(X) and
o * Fllzee < I lneo el

Proof. We see that

—+o00
o+ Fll e = sup / s — D F(t)dt] < sup / lots — )£ (0)llx dt <
seR seR
—0o0

<l sup / (s — )] dt = | fll oo el

which completes the proof.

Lemma 2.2 [15]. Let f € L(X) and ¢, ¥ € S(R). Assume that ¢ = 0 on Spec(f) and
Y= (2m)~1/2 on Spec(f). Then ¢ f =0 and ¢ * f = f.

It was proved in [9] the following radial spectral formula.

Lemma 2.3. Let f € L(X) and P(x) be a polynomial. Assume that Spec(f) is compact. Then
there always exists the following limit:

lim ||P™(D)f/%)
and
Tim | P™(D) %) = sup {|P(Q)]: ¢ € Spec(f)} .

Proof of Theorem 2.1. Necessity. We choose a function ¥ € C$°(R) such that 9(¢) = (27)~1/2
if ¢ € K™/* and 9(¢) = 0 if ¢ ¢ K™/2. Then it follows from Spec(f) C K and Lemma 2.2 that
f=F W)« fand D"f = (D"F (V) = f = F 1 (9()(i¢)")  f for all n € Z,.. Combining
these and the definition of the differential operator P(D), we obtain

P(D)f = F 1 (9(QP()) * f.
Therefore, by Lemma 2.1, we have
IP(D)flleee < I llee | F~H QP 0 =

= [[fllz) I @(OPE L = [1f e 1Pz
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734 H. H. BANG, V. N. HUY

where

Hence, from

/|\Il(x)d:c < <i«2§‘ (1+:1:2) \Il(x)) (/ 1?_:22) :Wilelg‘(l—kxz) U(z)|,
R R

we obtain

I1P(D)fllrxy < 7l fll o Slelg |(1+2%) U(2)]. ()

For 5 € {0,1,2} we get the following estimate:

sup [o0(z)| = (2m) 2 sup | [ 7 #D% W(OP(O) de| =
zeR zeR 2

— (2m) "2 sup / e DP (I(C)P(C)) de | <
x€ER
CGKT/Q

<en 2 [ D oPo) d.

CEKT/Q
Then it follows from Leibniz’s rule that
|
sup o0 () < (2) 2 [ |30 s DD () de <
zeR < (6 7)
CGKT/Q ’7718

(2) 1/22 ﬁ ) sup
v

pp@)| [ DTl | <

v<B weKT/? CEKT/?
|
< —1/2 0 B8 / v .
< (27) max sup |D'P 3:)‘ 7§<Bj TP 1DVY(C)| dC 3)

CGKT/Z

For each z € K7/2, we consider 7, = {z € C: |z — z| = 7/2} as a simple closed curve oriented
counterclockwise. Because P(x) is a holomorphic function and by Cauchy’s integral formula for
derivatives, we obtain, for n =0,1,2,...,

D" P(z) = n'/ : P(z)dz

2mi ) (2 — )"t
Vo

Hence,
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PALEY - WIENER TYPE THEOREM FOR FUNCTIONS WITH VALUES IN BANACH SPACES 735

nisup.ey, |P(2)|
(r/2)"

Since 7, C K7 and above inequalities are true for all z € K™/2, we deduce

|D"P(x)] <

! - | P
sup [D"P(2)] < nlsup, ¢ |[P(2)]

veKT/2 (r/2)"
forn=20,1,2,.... So,
sup |D"P(z)| < A; sup |P(x)] 4)
T€EKT/2 zeK ()

for n =0,1,2, where A, =2 (14 (2/7)?) is independent of P(z). By using (3), (4), we have

sup [+#0(2)| < (2m) 2 3 A sw [P@)] [ D1 | <

AN '7<B /6 7) q;EK(T) CGKT/Z
<4(2m) Y24, A sup |P(x)| (5)
zeK (™)
for all 8 =0,1,2, where
A; g = max / |D79(¢)]| dC.
<2
CEKT/2
Then it follows from (5) that
sup |(1 + z?) U(z)| < 8(2m) V2A, Ak sup |P(z)]. (6)
z€R zeK (™)

From (2) and (6) we obtain (1).

Sufficiency. Assume (1) is true, we need to prove Spec(f) C K. Indeed, assume the contrary
that there exists o € Spec(f) and o ¢ K. We construct the polynomial G(z) =t — (z — 0)?, where
t = sup,c i (7 — 0). Then applying (1) for P(z) = G™(x), we get, for all m € Z,

IG™(D) fllpxy < Crllfllnex) Sup 1G™ (@)l
z€K(7)

which gives

) m 1/m
limsup (|G™(D)f ) < sup |G(@)]

m— 00

Letting 7 — 0, we obtain

) " 1/m
timsup (|67 (D)) < sup 1G(2)] )

m—0o0

Then it follows from Lemma 2.3 that

|G(0)| < sup |G(z)]
rzeK
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736 H. H. BANG, V. N. HUY

and then

t=1|G(o)| < sup (t — (z — 0)?).
zeK

This is a contradiction. So, Spec(f) C K.

Theorem 2.1 is proved.

It follows from Lemma 2.3 that if f € L(X) and Spec(f) C K, then for any 7 > 0 there exists
a constant Cp - ¢ < 00 (Cp s depends on P, 7 and f) such that

IP"(D)fll Ly < Crrglflliee sup [P™(x)] Vm €N,
$EK(T>
while by Theorem 2.1 we have the stronger result that for any 7 > 0 there exists a constant C; < 0o
(independent of P, m, f) such that

1P™(D)fll e < Collfllngey sup |P™()].
z€K(T)

2.2. Paley— Wiener type theorem for sets generated by polynomials. Let P(x) be a polynomial
with complex coefficients. We put, for r» > 0,

Q(P)r:={zx eR: |P(x)| <r}

and Q(P), is called the set generated by P(z) with respect to r. Note that if deg(P) > 1, then
the Q(P), is compact. Moreover, if a,b € R, a < b, a > 0, then [a,a + o] U [b,b + o] are sets
generated by polynomials.

Theorem 2.2. Let f € L(X),r > 0 and P(x) be a polynomial. Then Spec(f) C Q(P), if and
only if for any T > 0 there exists a constant C, p < 0o independent of f such that

|P™(D) fll ) < CorarpllFll iy (r + 7)™ ®)

forall m e Z,.

Proof. Necessity is follows from Theorem 2.1.

Sufficiency. Assume the contrary that there exists o € Spec(f) and o ¢ Q(P),. Combining
o ¢ Q(P), and Q(P), = {xr € R: |P(z)| < r}, we have

|P(o)| > 7.
By using (8), we obtain
. m 1/m
limsup (|P"(D)fll ) <77 ©)
m—0o0
Applying Lemma 2.3, we have
o " 1/m
timinf (|P™(D)f ) 2 IP(o)]: (10)

From (9) and (10), we get |P(0)| < r 4+ 7. Letting 7 — 0, we obtain |P(c)| < r. This is a
contradiction. So, Spec(f) C Q(P),.

Theorem 2.2 is proved.

By Theorem 2.2 we get the following corollary.
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Corollary2.1. Let v > 0 and f € L(X). Then Spec(f) C [—r,r] if and only if for any 7 > 0
there exists a constant C < 0o such that

D™ fll iy < Cr(r + 7)™ f L)

forall m € Z.

In general, for a,b € R, a < b, then [a,b] is the set generated by the polynomial P(x) =

b b—
—z-2 ;_ with respect to a4

. Therefore, Spec(f) C [a,b] if and only if for any 7 > 0 there

exists a constant C- < oo such that

a+b\"
|(-57) @
forall m € Z.

Moreover, for a,b € R, a < b, a > 0, then [a,a + o] U [b,b + «] is the set generated by the
b b—
polynomial Q(z) = 22 — (a + b+ a)z + ab + atba (2a)a
Spec (f) C a,a+ o] U [b,b+ «] if and only if for any 7 > 0 there exists a constant C; < oo such
that

b—a m
<o (550 +7) Iflucs
L(X)

with respect to r = . Hence,

b_ m
1" (D)l < & (P52 7)Mo

for all m € Z,. Consequently, for 0 < a < b, Spec(f) C [a,b] U [—b, —a] if and only if for any
7 > 0 there exists a constant C'; < oo such that

(-2 o

b2—a2 m
< (555 +7) Wflace
L(X)

for all m € Z,..

3. Paley—Wiener type theorem for integral operators. 3.1. Paley— Wiener type theorem
for any compact K. We define I, = (A — D)™, where A € C\iR. The integral operator P(I) is
obtained from P(x) by substituting = — I. We have the following result for P(I}).

Theorem 3.1. Let K be a compact set in R, f € L(X) and A € C\iR. Then Spec(f) C K if
and only if for any T > 0 there exists C. > 0 independent of f such that

IP(I\) fllox) < Cri SHI(D)|P(1/()\ — i) fllnex) (11)
rxeK(T

for all polynomials with complex coefficients P(x).

Proof. Necessity. Assume that Spec(f) C K. Now, we choose a function ¢ € C°°(R) such that
p(z) = (2n)" /2 if x € K™/* and ¢(x) = 0 if = ¢ K™/2. Since X € C\iR, there is a small enough
positive number 7 such that A\ — iz # 0 for all z € K(7), so, the following function is well defined:

® = F 1 (¢(x)P(1/(X —ix))) .

By using Lemma 2.2, we have f = qz x f, and then
(A= D) (@) ) = A ((1x6) + f) = D ((1nd) % f) =

ISSN 1027-3190. VYkp. mam. scypn., 2022, m. 74, Ne 6



738 H. H. BANG, V. N. HUY
=AM ((1nd) % 1) = (DIG) = (A= D)) ) % f = b f = f.
Hence, I f — (JME) « f. Similarly, It f = (If&) % f Yk € Z,. So,

P(IN)f = (P(1n)3) * f. (12)

From I¥¢ = F~' (¢(x)/(X —iz)F), we conclude P(I\)¢p = F~!(¢(z)P(1/(\—iz))) = ®.
Therefore, applying (12), we get P(I))f = ® x f. Hence, it follows from Lemma 2.1 that

[P flloey < N f e l®f 2 (13)

For each z € K™/, we consider v = {z € C: |z — 2| = 7/2} as a simple closed curve on K(7)
oriented counterclockwise. Because Q(z) := P(1/(\ —iz)) is a holomorphic function on K () and
by Cauchy’s integral formula for derivatives, we obtain

. [ Q2)d
DQ(I’):;TL/(Z_(ZZ%, n:0,1,2,....
Y

Consequently,
nlsup,c, |Q(2)|

IDMQ)| <

n=20,1,2,....
Therefore, since v C K (7).

nlsup, ¢ g [Q(2)]
sup |[D"Q(z)] < . )
veK7/2 (r/2)"

n=0,1,2,....

Then it follows from

V27 sup | (1+ x2) q)(x)‘ <

z€R
< / (ID? (¢(a) P(1/(A = ix)))| + [$(2) P(1/ (X —iw))|) da
T€EKT/2
that
sup |(1 + :U2) ®(z)| < C(1,K) sup |[P(1/(A—ix))|, (14)
z€R ceK (™)

where C(7, K) does not depend on P(z). Further, we have

@1 < 7C(7, K)sup | (1 + %) @(x)] . (15)
z€R

Combining (13)—(15), we obtain

IP(D) L) < 7C(T, K) sup [P/ = i)l i)
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Sufficiency. Assume the contrary that there exists o € Spec(f) and o ¢ K. Let t = sup,cx (0 —
— )%, we define the following polynomial:

Q(x) =t+ (z — X +io)>
Clearly,
sup |Q(A — iz)| = sup |t — (0 — 2)*| <t =|Q(\ —io)|.
zeK rzeK

Put

H = {z =a+bi:|a| < Re\, [b] <2(|o|+ sup ]w\)},
zeK
Re \
le{Z—cH—bz la| < — 5 \b\<]0|+sup|:1:|}

1

and R(z) = @ <) . Then it follows from A € C\iR that R(z) is a holomorphic function on
x

H and

[R(1/(A —i0))[ > sup [R(1/(A —iz))|. (16)

zeK

Because R(z) is a holomorphic function in the complex domain H, there exists a sequence of
polynomials {P,} such that P, converges uniformly to R(z) on H;. Combining this with (16), we
can choose an integer jo such that

|[Pjo (1/ (A —i))| > sup | Pjo (1/(A = i) (17)

For a small enough positive number 7 we have Pj,(1/(A —ix)) # 0 forall z € (60 — 7,0 + 7).
From the definition of Beurling spectrum, there exists ¢ € C’O (R), suppp C (0 — 7,0 + 7) such
that ¢ * f #£ 0. Put

om = F ' (p(x)/Pjy (1) (X — iz))) .
Then ¢, is well defined, @, € S(R) and P (Iy)em = . Clearly, o * (I5f) = (I§¢m) * f for
all £k € Z. That gives @, * (PJ?;’)‘(I)\)f) = (P]?Z)"‘(I,\)apm) * f, and then @, x PII(I\) f = ¢ = f.
So, by Lemma 2.1, we get

Consequently,

1/m 1/m

hmmf || P (I fH > 1/hmsup lomll7y - (18)

From

sup (1 + 22)pm(x)| <
r€R
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o+1

\/ﬂ/ (1D? (e(@)/ Pjy (1/ (X = ix))) | + [eo(2)/ Py (1/ (A = i))|) dew

we can deduce that

sup}(l—}—x ) om(x )‘ <Ciym*  sup
z€R z€(o—T,047T)

/P21 (A~ i) (19)

for some C; independent of m. Then it follows from ||¢p, |1 < Tsup,cr ‘ (14 2?) om(x)]| that

1/m

limsup [lomlli” < sup  [1/Pj(1/(A —ix))]. (20)
m—00 z€(o—1,04T)
Relations (18) and (20) imply
l/m . .
liminf || P51 (10) | =, Jimf | 1Pin(1/ (= @)l
Letting 7 — 0, we get
1 .
hrnlan (I fHL/&Z > |Pjy (1/(A —i0))|. (21)
Combining this with (17), we have
hmme (I fHL(X > suE]Pjo(l/()\—ix))].
e

This is contrary to (11).

Theorem 3.1 is proved.

3.2. Paley— Wiener type theorem for sets generated by polynomial type. Let P(x) be a poly-
nomial with complex coefficients, » > 0 and A € C\iR. We put

(P)rx:={zxeR:|P(1/(A—ix))| <r}

and (P),,y is called the set generated by the polynomial of type (P(x),r, A). Note that if | P(0)| > r,
then (P), » is compact, and if (P), ) is compact, then |P(0)| > r. However, |P(0)| = r does not
guarantee compactness of (P), or not. For example, we put P(z) = 1+ 2%, Pi(z) = 1 + 22 and
A =7 =1. Then (P);, is compact and (P;); is not compact. Indeed,

1 1 \*
Pl—\l=h

1+iz\? zt — 62241 i(4x—4m3)
=1+ 2 T 1
1+ (1+22) (1+22)

1 1 \?
Pl—)| =)
1(A—m>‘ |+(1—m>

1+ 2
1 -
+<1+$2>

1+

9

_‘ 2% —1 L 2ai
(1422)?  (1+a2)
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PALEY - WIENER TYPE THEOREM FOR FUNCTIONS WITH VALUES IN BANACH SPACES 741

1 4 2 1 1/2
P : > 14_% >1,
A —ix (1+ 22)

1 9222 — 3\ /2
Pl(A—z‘ar)‘_ <1 (1+x2)2> <!

for all x € (—o0, —6) U (6, 400).

Therefore, (P)q,1 is compact but (P;); 1 is not compact.

Moreover, if a,b € R, a < b, then [a, ] is a set generated by polynomial type. To see this we
putc = (a+b)/2,d=(b—a)/2, A = 1+ic and we choose two numbers «, r € [1,+00) satisfying
(26 — 1)/ (k* = r?) =1+ d?. Put P(z) = k — x. Clearly,

1
_‘K_1+i(c—:v) N

{e € R: [P(1/(A—ia))| < v} = {xeR: KQ_HQ’ZC—_;)Q <7~2} _

and then

1
A —iT

P(1/(\ = ia))] =

K —

| 1-dle—a)|
‘ 1+ (c—x)2|

Hence,

={reR: 1+ (c—2) <@ —1)/ (v —1*)} =
:{xER:1+(c—x)2§1+d2}.

Consequently, (P),\ = [a,b].

Theorem 3.2. Let f € L(X), r > 0, A € C\iR, P(z) be a polynomial and (P), » be compact.
Then Spec(f) C (P),x if and only if for any T > O there exists a constant C .y p < 00 independent
of f such that

[P () fll Ly < Craap flloeg(r+7)™ (22)

forallm e Z,.

Proof. Necessity is follows from Theorem 3.1.

Sufficiency. Assume the contrary that there exists ¢ € Spec(f) and o ¢ (P),\. Hence,
|P(1/(A—1i0))| > r. According to (22), we obtain

. 1
limsup ([P" (1) flpeo) ™ <7+ 7. (23)
m—r0o0
Applying the proof of inequality (21), we have

/m
timinf (| P10 fll ) > [P/~ o))

Combining this with (23), we deduce |P(1/(A—i0))| < r+7. Letting 7 — 0, we obtain |P(1/(\—
—i0))| < r. This is a contradiction. So, Spec(f) C (P),x
Theorem 3.2 is proved.
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