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ACUMIITOTUYHA MOBEJIHKA HEVTPAJIBHUX PISHUIIEBUX PIBHSIHB
BUILIOT'O NMOPAAKY 13 3ATAJIBHUMU APTYMEHTAMMU

We study the asymptotic behavior of solutions of the higher-order neutral difference equation
A™ [z(n) + cx(1(n))] + p(n)z(c(n)) =0, N>m>2, n>0,

where 7(n) is a general retarded argument, o(n) is a general deviated argument, ¢ € R, (p(n)), > is a sequence of real
numbers, A denotes the forward difference operator Az(n) = z(n+1) —z(n), and AJ denotes the jth forward difference
operator AY (z(n)) = A (A’~!(2(n))) for j = 2,3, ..., m. Examples illustrating the results are also given.

BuBuaeThCs acHMNITOTHYHA TTOBEIHKA PO3B’SA3KiB HEHTPAIHHOTO PI3HULIEBOTO PiBHSAHHS BUILOTO HOPSIKY
A™ [z(n) 4+ cz(t(n))] + p(n)z(c(n)) =0, No>m>2, n>0,

ne 7(n)— 3aranpHMM apryMeHT i3 3ami3HeHHsAM, o(n) — 3aralbHMM aprymeHT i3 BizxuneHnsMm, ¢ € R, (p(n)),.-, —
TIOCITiIOBHICT JificHuX uncen, A — omeparop npasoi pisaumi, Az(n) = z(n + 1) — z(n), Ta A7 — j-it omeparop npasoi
pisani, A7 (z(n)) = A (A" (2(n))) npu j = 2,3,...,m. HaBeneno Takox NPHKIAM, IO LTIOCTPYIOTh OTPHMAHi
pe3yibTaTy.

1. Introduction. Consider the m*"-order neutral difference equation of the form
A" [z(n) + cx(r(n))] + p(n)z(o(n)) =0,  Nom=2, n=0, (E)

where (p(n)),,~, is a sequence of real numbers, ¢ € R, (7(n)),~, is an increasing sequence of
integers which satisfies

T(n)<n—1 VYn>0 and lim 7(n) = +oo, (1.1)

n—o0

(0(n)),,>0 1s an increasing sequence of integers such that

on)<n—-1 Vn>0 and li_)m o(n) = +oo, (1.2a)
or
on)>n+1 VYn >0, (1.2b)

A denotes the forward difference operator Az(n) = z(n+1) —x(n), and A7 denotes the jth forward
difference operator A7 (z(n)) = A (A7~ (z(n))) for j =2,3,...,m.
Define

k=— m>118 {r(n),o(n)} if o(n) is aretarded argument.

(Clearly, k is a positive integer.)

© G. E. CHATZARAKIS, H. KHATIBZADEH, G. N. MILIARAS, 1. P. STAVROULAKIS, 2013
430 ISSN 1027-3190. Yxp. mam. scypu., 2013, m. 65, Ne 3



ASYMPTOTIC BEHAVIOR OF HIGHER-ORDER NEUTRAL DIFFERENCE EQUATIONS ... 431

By a solution of (E), we mean a sequence of real numbers (z(n)),>_j which satisfies (E)
for all » > 0. It is clear that, for each choice of real numbers c_j, c_g11,..., c_1, co, there
exists a unique solution (z(n)),>—_x of (E) which satisfies the initial conditions z(—k) = c_y,
(—k+1)=c_ky1,..., x(—1) = c_1, 2(0) = co.

If o(n) is an advanced argument, then:

By a solution of (E), we mean a sequence of real numbers (z(n)),>o which satisfies (E) for all
n > 0.

A solution (z(n))p>—x (or (z(n))n>0) of (E) is called oscillatory, if the terms xz(n) of the
sequence are neither eventually positive nor eventually negative. Otherwise, the solution is said to be
nonoscillatory.

In the last few decades, the asymptotic and oscillatory behavior of neutral difference equations has
been extensively studied. See, for example, [2-8, 10, 11, 13-24] and the references cited therein.
Most of these papers concern the special case where the delay (n — 7(n)),,~, is constant, while
a small number of these papers are dealing with the general case of Eq. (Ei in which the delay
(n —7(n)),,~0 is variable. For the general theory of difference equations the reader is referred to the
monographs_[l, 9, 12].

The objective in this paper is to study the asymptotic behavior of the solutions of Eq. (E). We
proceed to study the asymptotic behavior of the solutions of Eq. (E) by considering various cases on
the sign of the coefficients p(n). We examine two cases, according to whether the coefficients p(n)
are all non-negative (Case 1) or are all non-positive (Case 2). Examples illustrating the results are
also given.

2. Some preliminaries. Throughout this paper, we are going to use the following notation:

roT =72 roTor =72 andso on. (2.1

Let the domain of 7 be the set D(7) = N,,, = {n.,n. + 1,n. +2,...}, where n, is the smallest
natural number that 7 is defined with. Then for every n > n, there exists a natural number m(n)
such that

(7™M (n)) = z(r(n,))  and lim m(n) = +oo, (2.2)

n—o0

since (mm(n)) is increasing and unbounded function of n. Clearly, n, = 7" ~1(n).
The following lemmas provide us with some useful tools, for establishing the main results:
Lemma 2.1. Assume that (z(n)) is a sequence of real numbers and m € N. Then the following
statements hold:

W 1Ir
li_}m Az(n) > 0, (2.3)
then (z(n)) tends to +oo.
@) If
nlgrolo A™z(n) <0, (2.4)

then (z(n)) tends to —co.
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(iii) 17
nh—>Holo A™z(n) =0 and A" lz(n) >0 Vn (2.5a)
or
nh_{)go A™z(n)=0 and AT l2(n) <0 Vn, (2.5b)

then the sequence (z(n)) is monotone and therefore its limit exists.

Proof. (i) Suppose that m = 1. Then, if limy, o Az(n) > 0, clearly (z(n)) is eventually strictly
increasing, and therefore lim,,_,~ 2(n) = +oc.

Assume that m > 1 and (2.3) holds. Then (Am_lz(n)) is eventually strictly increasing. By
previous case (m = 1), we have lim,, oo A™ '2(n) = +o0.

Repeating this argument m — 1 times, we obtain lim,,_,~, 2(n) = +o00. The proof of part (i) of
the lemma is complete.

(if) An obvious consequence of part (i) by taking —z(n) instead of z(n).

(iii) Suppose that m = 1 and (2.5a) holds. Then (Az(n)) is nondecreasing, and consequently
Az(n) <0, since limy,—,c Az(n) = 0. Therefore (z(n)) is nonincreasing, which guarantees that its
limit exists.

Assume that m > 1 and (2.5a) holds. Then (A™z(n)) is nondecreasing, and consequently
A™z(n) <0, since limy, 00 A™z(n) = 0. Therefore (A™ !z(n)) is nonincreasing, which guaran-
tees that its limit exists.

If lim,, 00 A™ 12(n) # 0, by parts (i) and (ii) we have lim,, o, 2(n) = £00.

If limy, 00 A™ 12(n) = 0, then A™12(n) > 0 since (A™ '2(n)) is nonincreasing. Therefore
(Am_2z(n)) is nondecreasing, which guarantees that its limit exists.

Applying this procedure m — 2 times, we conclude that lim,_,o 2(n) = +oo or (z(n)) is
monotone and therefore its limit exists.

In the case where (2.5b) holds, the proof is similar. The proof of part (iii) of the lemma is
complete.

Lemma 2.1 is proved.

Lemma 2.2. Assume that (z(n)) is a sequence of real numbers and N > m > 2. Then the
following statements hold:

(1) If m is even and A" z(n ) <0, then (z(n)) tends to +oo or it is nondecreasing.

(ii) If m is even and A™z(n) > 0, then ( n)) tends to 00 or it is nonincreasing.

(iii) If' m is odd and A™z(n) < () then (z n)) tends to o0 or it is nonincreasing.

(iv) If m is odd and A™z ( ) > 0, then (z(n)) tends to +o00 or it is nondecreasing.

Proof. (i) First we will study the case where m = 2.

Z

Assume that A%z(n) < 0. Then (Az(n)) is nonincreasing, and consequently lim,, o, Az(n) =
= —o00 or limy,_,oc Az(n) = A € R.

If lim,, 0o Az(n) = —oo, then (2(n)) is eventually nonincreasing. By part (ii) of Lemma 2.1,
we have lim,,_, z(n) = —oc.

If lim,, 00 Az(n) = A < 0, then (z(n)) is eventually nonincreasing. By part (ii) of Lemma 2.1,
we have lim,,_, 2(n) = —o0.
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If lim;, o0 Az(n) = 0, then Az(n) > 0 since (Az(n)) is nonincreasing. Therefore (z(n)) is
nondecreasing.

If limy, 00 Az(n) = A > 0, then (z(n)) is eventually increasing. By part (i) of Lemma 2.1, we
have lim,, o, 2(n) = +00.

Now we will study the case where m is even and m > 2.

By parts (i) and (ii) of Lemma 2.1 we have that, if lim,, oo A™ !2(n) # 0, then lim,, o 2(n) =
= +o0.

Suppose that lim,, oo A™12(n) = 0. Since A™z(n) < 0, then A™~12(n) > 0. This guarantees
that (A™2?2(n)) is nondecreasing.

Iflim,, 00 A™22(n) # 0, then in view of parts (i) and (ii) of Lemma 2.1, we have lim,, o, 2(n) =
= Fo0.

If limy, 00 A™ 22(n) = 0, then A™ 2z(n) < 0 since (A™ 22(n)) is nondecreasing.

Applying this procedure mn -times, we conclude that lim,, o, 2(n) = 00 or A%z(n) < 0.

This means that (z(n)) tends to oo or it is nondecreasing. The proof of part (i) of the lemma is
complete.

(ii) An obvious consequence of part (i) by taking —z(n) instead of z(n).

(iii) First we will study the case where m = 3.

Assume that A%z(n) < 0. Then (A?z(n)) is nonincreasing, and consequently lim, oo A%z(n) =
= —00 or lim,, 0o A%2(n) = A € R.

If lim,, o0 A%2(n) =

If lim,, 00 A%2(n)

If limy, 00 A?2(n) = 0, then A?2(n) > 0 since (A?z(n)) is nonincreasing. By part (ii), we
conclude that (z(n)) tends to +oo or it is nonincreasing.

—00, then by part (ii) of Lemma 2.1 we have lim,,_, 2(n) = —oc.

= A < 0, then by part (ii) of Lemma 2.1 we have lim,,_,, 2(n) = —o0.

If lim,, o0 A%2(n) = A > 0, then by part (i) of Lemma 2.1 we have lim,, o, 2(n) = +00.

Now we will study the case where m is odd and m > 3.

By parts (i) and (ii) of Lemma 2.1 we have that, if lim,, ;oo A™ !2(n) # 0, then lim,, o 2(n) =
= *+o00.

Suppose that lim,, o, A™ !2(n) = 0. Since A™z(n) < 0, then A™12(n) > 0. This guarantees
that (A™~2z(n)) is nondecreasing.

If lim, 0o A™ 22(n) # 0, then in view of parts (i) and (ii) of Lemma 2.1 we have
lim,, o0 2(n) = +00.

If limy, 00 A™ 22(n) = 0, then A™ 2z(n) < 0 since (A™ 2z(n)) is nondecreasing.

Applying this procedure mn -times, we conlude that lim,, s, 2(n) = 400 or A3z(n) < 0.

This means that (z(n)) tends to +oo or it is nondecreasing. The proof of part (iii) of the lemma is
complete.

(iv) An obvious consequence of part (iii) by taking —z(n) instead of z(n).

Lemma 2.2 is proved.

Lemma 2.3. Assume that (z(n)) is a positive solution of (E). Set
z(n) := z(n) + cx(7(n)), (2.6)
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where (T(n)),~, is an increasing sequence of integers such that (1.1) holds and ¢ € R. Then the
following statements hold:

(1) Iflim, o0 2(n) = —o0 and in addition:

(ia) ¢ < —1, then (;U(n)) is unbounded,

(ib) ¢ > —1, then (E) has no positive solution.

(ii) Iflim, o0 2(n) = A € R_ and in addition:

A
(ila) ¢ < —1, then liminf x(n) > T

and if (a:(n)) has a real accumulation point greater
c

A
, it will have infinitely many real accumulation points including T ;

A
than
1 +c

c
(iib) ¢ > —1, then (E) has no positive solution.
(iii) If lim, o0 2(n) = 0 and in addition:
(ilia) ¢ < —1, then (m(n)) tends to zero or tends to infinity or (m(n)) has infenitely many

accumulation points and liminf x(n) = 0; furthermore, the condition z(n) > 0 guarantees that
(z(n)) tends to infinity;
(iiib) ¢ = —1, then (x(n)) and (x(7(n))) have the same set of accumulation points; furthermore,

if z(n) < 0 then (z(n)) is bounded and, if z(n) > 0 then liminf z(n) > 0;
(iiic) ¢ > —1, then (x(n)) tends to zero.
(iv) If lim, o0 2(n) = A € Ry and in addition:
(iva) ¢ < —1, then (z(n)) tends to infinity;

(ivb) —1 < ¢ <0, then limy,_, o x(n) =
(ive) ¢ >0, then (z(n)) is bounded.

(v) Iflim, o 2(n) = +00 and in addition:

(va) ¢ <0, then (x(n)) tends to infinity;

(vb) ¢ >0, then (z(n)) is unbounded.

Proof. (i) Assume that lim,_, 2(n) = —oo and ¢ < —1. By (2.6) we have

)

1+c

lim [z(n) + cx(1(n))] = —o0,

n—oo

which guarantees that (z(7(n))) tends to infinity, and therefore (z(n)) is unbounded.

Assume that lim,,_,o 2(n) = —oco and ¢ > —1.

If ¢ = —1, we have limy, . [z(n) — z(7(n))] = —oo, which guarantees that (z(n)) is un-
bounded. On the other hand z(n) — z(7(n)) < 0 eventually, or

z(n) < z(r(n)) < z(r?(n)) < ... < az(Tm("‘f)(n)) = z(1(ny)),

where, in view of (2.2), ny = 7™(")~1(n). This means that (z(n)) has an upper bound, which
contradicts (m(n)) is unbounded. Therefore, Eq. (E) has no positive solution.

If -1 < ¢ < 0, we have lim, o [#(n) + cz(7(n))] = —oo, which guarantees that (z(n)) is
unbounded. On the other hand z(n) + cx(7(n)) < 0 eventually, or

z(n) < —cz(r(n)) < (—)%x(r%(n) < ... < (=)™ ™)z (r(ng)) — 0 as n — oo,

where, in view of (2.2), n, = 7™(™)~1(n). Thus lim,, . 2(n) = 0 which contradicts (z(n)) is
unbounded. Therefore, Eq. (E) has no positive solution.
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If ¢ > 0, we have lim,_,o [z(n) + cx(7(n))] = —oo, which contradicts z(n) > x(n) > 0.
Therefore, Eq. (E) has no positive solution. The proof of part (i) of the lemma is complete.

(ii) Assume that lim,,_, 2(n) = A € R_ and ¢ < —1. Then for every € > 0 with 0 < € < —A,
there exists nq > n, such that z(n) < A+ € Vn > nq, or

z(n) < —cx(t(n)) + A+e<
< —c [—cx(TQ(n)) +A+e+A+e=

= (—c)’z(r?(n)) —c(A+e)+ A+e<...

< (=)™ (1 (ny)) — ate [(_C)m(m) - 1] -

1+¢c
_(_ m(n)\) _ A + € A + € >
(—c) x(1(ny)) o c} T+e Vn > ng
where, in view of (2.2), ny = 7™(™)~1(n). Since x(n) > 0, clearly z(7(n;)) > . + 6, or eventually
c
A+te
> .
oo () 2 5
On the other hand, since lim,,,~ 2(n) = A, we have z(n) > A — ¢, or
A+e A—(1+2c)e
- A— — A—e=—————.
z(n) > —cx(1(n)) + €> Cl+c+ € T
The last inequality guarantees that lim inf z(n) > n > 0.
c

It is clear that

A
could be an accumulation point of (z(n)). Let L > Toe be an accumula-
c c
tion point of (x(n)). Then there exists a subsequence (z(6(n))) of (z(n)) such that lim,,—,c 2(6(n)) =

= L. Taking into account that lim,,_,, 2(6(n)) = A, we obtain lim,,_,~ z(7(8(n))) = = +—.

—c
In view of this, we have
Tim_ [a(r(6(n)) + cx(+*(0(n)))] = A,
or
A A L
lim z(72(0(n))) = = + .
Ji a0 = L+ Z
Following the above procedure, we can construct a sequence (by,) n>1 of accumulation points with
b A + A + A +..+ A + L >1
n = — = =, N>
¢ (=0 (=¢) (=)" (=0
A

Notice that this sequence of accumulation points converges to e
c

Assume that lim,,_,, 2(n) = A € R_and ¢ > —1.
If ¢ = —1, we have lim,,_, [2(n) — x(7(n))] = A. Then for every ¢ > 0 with 0 < e < —A
there exists ng > n, such that x(n) — z(7(n)) < A+¢e Vn > ng, or

z(n) <z(t(n))+A+e<az(m®n)+2(A+e) < ...
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< az(m™m) (n)) + m(n,) (A +¢) =

= xz(1(ny)) + m(ny) (A+¢e) Vn > no,

where, in view of (2.2), n, = 7™"e)=1(n). This inequality, for sufficiently large n guarantees that
x(n) < 0 which contradicts x(n) > 0. Therefore, Eq. (E) has no positive solution.

If -1 < ¢ < 0, we have lim,_, [z(n) + cx(7(n))] = A < 0, which, for sufficiently large n,
means that x(n) + cx(7(n)) < 0, or

z(n) < —cx(r(n)) < (=e)*z(r3(n)) < ...

< (=)™ () (1)) = 0 as n — oo.

Thus lim,, o 2(n) = 0, and consequently lim,, o, z(n) = 0 which contradicts lim,,_,, 2(n) =
= A < 0. Therefore, Eq. (E) has no positive solution.

If ¢ > 0, clearly z(n) > 0 which contradicts lim,,_,~, 2(n) = A < 0. Therefore, Eq. (E) has no
positive solution. The proof of part (ii) of the lemma is complete.

(iii) Assume that lim,,_,~, z(n) = 0.

If ¢ < —1, we have lim,_, [x(n) + cz(7(n)] = 0, which means that lim,_,, x(n) = 0 or
lim;,_yoc #(n) = 400 or (x(n)) has infinitely many accumulation points. Indeed, in the case where
(z(n)) does not tend to zero or to infinity, let Ly > 0 an accumulation point of (z(n)). Then there

exists a subsequence (z(6(n))) of (x(n)) such that lim,,_,~ 2(6(n)) = Lo. Taking into account that
lim,, 00 2(0(n)) = 0, we obtain lim,, o z(7(8(n))) = =0
—C

In view of this, we have

or

Notice that this sequence of accumulation points converges to zero, and therefore lim inf 2(n) = 0.

Furthermore, the condition z(n) > 0 guarantees that (x(n)) tends to infinity. Indeed, z(n) +
+ cx(7(n)) > 0, or

z(n) > —cz(r(n)) > ... > (=)™ Mz(r(ny)) = +o0 as n — oo,
which means that (z(n)) tends to infinity.
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If ¢ = —1 then lim,, o [2(n) — (7(n))] = 0, which means that (z(n)) and (z(7(n))) have the
same set of accumulation points.
Furthermore, if z(n) < 0, then z(n) — z(7(n)) < 0, or
z(n) <z(t(n)) < ... < z(r(ng))
which means that (z(n)) is bounded.
If z(n) > 0, then x(n) — z(7(n)) > 0, or
z(n) > x(rt(n)) > ... > x(1(ny))
which means that lim inf 2:(n) > 0.
Suppose that ¢ > —1.

If -1 < ¢ < 0, then for every ¢ > 0 there exists ng > n, such that z(n) + cx(7(n)) < €
Vn > ng. Thus

z(n) < —cz(1(n)) + € < —c [—cx(r?(n)) + €] +e < ...
< (=)™ g (7 () f e —ce+ ... 4 (=)™ e wp > pg.

As n — oo, clearly m(ny;) — oo, and therefore

G
14

lim z(n) < lim [6 —ce+ ...+ (_C)m(w)—l 6}

n—o0 m(ng)—00

Since € is an arbitrarily small, real positive number and as in addition, z(n) > 0, the last inequality
guarantees that lim,,_, . x(n) = 0.

If ¢ > 0, clearly z(n) > 0. Taking into account that lim, ,,, z(n) = 0, it is obvious that
lim,, o0 (n) = 0. The proof of part (iii) of the lemma is complete.

(iv) Assume that lim,,_,o 2(n) = A € Ry.

If ¢ < —1, then lim, o [2(n) 4+ cz(7(n))] = A > 0, which means that eventually x(n) +
+ cz(7(n)) > 0. Thus

z(n) > —cz(r(n)) > (—e)? z(r%*(n)) ... > (—c)m(n“) x(7(ns)) = 400 as n — o0

which guarantees that (z(n)) tends to infinity.
If ¢ = —1, then lim,, o [2(n) — 2(7(n))] = A > 0. Thus, for every ¢ > 0 with 0 < ¢ < A,
there exists ng > n, such that x(n) — z(7(n)) > A — e ¥Yn > ny, or

z(n) > z(t(n))+ A—e>x(r?(n)) +2(A—¢) > ...
o> (™) () +m(ny) (A —e) =
= z(7(ng)) + m(n,) (A —¢) - 400 as n — oo,

which means that (x(n)) tends to infinity.

Suppose that ¢ > —1.

If —1 < ¢ < 0, then for every € > 0, there exists ns > n, such that [z(n) — A| < € Vn > ns.
Thus
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—cx(t(n) + A—e<z(n) < —cx(r(n))+ A+e¢
or
—c[—cx(r*(n)) + A—ce]+ A—e <z(n) < —c[—ca(r*(n)) + A+e] + A+e.

Based on the above procedure we get

A+e
_ym(ng) _ _ymne)
v(n) < (=" a(r(n) = T |(-0) 1]
and
£(n) > (=" a(r(ne)) — G [(~em) 1]
1+c
or
_ym(ny) _ A+e A+e
o) < (=0 a(rin) - 5|+ 4
and
A— A—
Therefore as n — oo (clearly m(n,) — oo) we obtain
A— A
c < liminfz(n) < limsupz(n) < + °
1+4+c¢ 1+4+¢
Since € is an arbitrary real positive number, the last inequality gives lim,, o z(n) = e
c

If ¢ = 0, then z(n) = z(n) and therefore lim,,_,o z(n) = A.

If ¢ > 0, then lim,, oo [2(n) + cx(7(n))] = A > 0, which guarantees that (x(n)) is bounded.
The proof of part (iv) of the lemma is complete.

(v) Assume that lim,,_,~ 2(n) = +o00.

If ¢ < 0, then limp, 0 [z(n) + cz(7(n))] = +o00, which guarantees that (z(n)) tends to infinity.

If ¢ > 0, then lim, o [#(n) + cz(7(n))] = +oo, which guarantees that (z(n)) is unbounded.
The proof of part (v) of the lemma is complete.

Lemma 2.3 is proved.

3. Main results. Throughout this section, we are going to use the following remarks:

Remark 3.1. Assume that the coefficients p(i) are always nonnegative or nonpositive,
ZZO p(i) = £oo and liminf z(n) > 0. Then Zzop(i)x(a(i)) = +o00, respectively.

Remark 3.2. Assume that the coefficients p(i) are always nonnegative or nonpositive,
ZZO p(i) = £oo and ZZO p(i)xz(c(i)) € R. Then liminf z(n) = 0.

The asymptotic behavior of the solutions of the neutral type difference equation (E) is described
in the following two cases:

Case 1. p(n) > 0.

Theorem 3.1. Assume that p(n) > 0 VYn > 0 and Zio p(i) = +oo. Then for Eq. (E) the
following statements hold:

(i) If ¢ < —1, then every nonoscillatory solution (x(n)):
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(ia) has no real non-zero limit, if m is even;

(ib) is unbounded, if m is odd.

(i) If c = —1, then:

(iia) every nonoscillatory solution (z(n)) is bounded and liminf z(n) = 0, if m is even;

(iib) every non-zero solution (x(n)) oscillates, if m is odd.

(ii1)) If —1 < ¢ < 0, then every nonoscillatory solution (:r(n)) tends to zero.

@iv) If ¢ = 0 then:

(iva) every non-zero solution (a:(n)) oscillates, if m is even;

(ivb) every nonoscillatory solution (x(n)) tends to zero, if m is odd.

(v) If 0 < ¢ < 1, then every nonoscillatory solution (m(n))

(va) is unbounded but lim inf x(n) = 0, if m is even;

(vb) tends to zero or it is unbounded but lim inf z(n) = 0, if m is odd.

(vi) If ¢ > 1, then every nonoscillatory solution (a:(n))

(via) cannot tend to zero but liminf x(n) = 0, if m is even;

(vib) tends to zero or liminf x(n) = 0, if m is odd.

Proof. Assume that a solution (z(n)),>_j of (E) is nonoscillatory. Then it is either eventually
positive or eventually negative. As (—z(n)),>_y is also a solution of (E), we may restrict ourselves
only to the case where x(n) > 0 for all large n. Let ng > —k be an integer such that x(n) > 0 for
all n > ng > n,. Then, there exists ny > ng such that z(7(n)) > 0, z(o(n)) > 0 Vn > n;.

In view of (2.6), Eq.(E) becomes A™z(n) + p(n)z(o(n)) =0, or

A™2(n) = —p(n)a(o(n)). (3.1)

Therefore, for sufficiently large n and since p(n) > 0, we have A™z(n) < 0.
Summing up (3.1) from n; to n, n > n; we obtain
n
ATz (n 4+ 1) = A" z(ng) = D pli)a(o(d)). (3.2)
1=n1

(i) c< —1.

Assume that mn is even. Since A™z(n) < 0, by part (i) of Lemma 2.2 we have that (z(n)) tends
to o0 or it is nondecreasing.

If lim,, ;0 2(n) = —oo0, then in view of part (ia) of Lemma 2.3 we have that (z(n)) is un-
bounded.

If lim;, o 2(n) = 00, then in view of part (va) of Lemma 2.3 we have that (z(n)) tends to
infinity. Then Zim p(i)z(o(i)) = +o00. By (3.2), (A™ '2(n+1)) tends to —oco, which, in view
of part (ii) of Lemma 2.1, guarantees that (z(n)) tends to —oo. This contradicts our assumption.
Therefore lim,,_, o, 2(n) = 400 is false.

If (2(n)) is nondecreasing, clearly its limit exists.

Suppose that lim,_,~ 2(n) = A < 0. Then in view of part (iia) of Lemma 2.3 we have that

A
liminf z(n) > 1o Therefore for every € > 0 with ¢ < T there exists ng such that
c

+c

z(n) > —& Vn > ns. (3.3)

1+c
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Thus, for every ng with o(n3) > ng, by (3.2) and (3.3) we obtain

n
A"z (n+1) < A™ 2 (ng) — <1 ;4_ i 5) Z p(i) - —o0 as n — oo,
1=n3
which guarantees that lim,, oo A™ 12(n + 1) = —co. As in previous case, we conclude that (z(n))
tends to —oo, which contradicts (z(n)) is nondecreasing. Therefore lim,, o, 2(n) = A < 0 is false.
Suppose that lim,,_,o, z(n) = 0. Then in view of part (iiia) of Lemma 2.3 we have that (a:(n))
either tends to zero or (x(n)) has infenitely many accumulation points and liminfz(n) = 0 or
(m(n)) tends to infinity. But, if lim,, o, 2(n) = 400, then as in previous case we have that
lim;,_,o0 2(n) = —oo which contradicts our assumption.
Suppose that lim,,_,~, 2(n) = A > 0. Since (z(n)) is nondecreasing, we have z(n) > 0 eventu-
ally. Therefore

z(n) > —ca(r(n)) > ... > (=)™ z(r(ny)) = 00 as n — oo, (3.4)

which guarantees that (z(n)) tends to infinity. As in previous case, we have limy oo A™ 'z(n +
+ 1) = —oo, which means that (z(n)) tends to —oo. This contradicts our assumption. Therefore
lim,, o 2(n) = A > 0 is false.

In other words, (x(n)) cannot have a non-zero real limit. Indeed, assume that lim,,_, ., x(n) =
= ¢ > 0. Then lim,_, 2(n) = (1 + ¢)¢ < 0, which contradicts "lim,_,» 2(n) = A < 0 is
false”.

Assume that m is odd. Since A™z(n) < 0, by part (iii) of Lemma 2.2 we have that (z(n)) tends
to o0 or it is nonincreasing.

If lim,, 0 2(n) = —oo0, then in view of part (ia) of Lemma 2.3 we have that (z(n)) is un-
bounded.

If lim;, o 2(n) = 00, then in view of part (va) of Lemma 2.3 we have that (z(n)) tends to
infinity. Then Zin p(i)z(o(i)) = +oo. By (3.2), (A™ '2(n+ 1)) tends to —oo, and therefore
(z(n)) tends to —oo, ‘which contradicts our assumption. Therefore lim,,_,o, z(n) = +oo is false.

If (2(n)) is nonincreasing, clearly its limit exists.

Suppose that lim,_,~ 2(n) = A < 0. As in previous case, this is false.

Suppose that lim,, .~ 2(n) = A > 0. Since (z(n)) is nonincreasing, we have z(n) > 0 even-
tually. Therefore (3.4) holds, and consequently (x(n)) tends to infinity. Thus, as in previous case,
we are led to a contradiction. Therefore lim,,_,~, z(n) = A > 0 is false. The proof of part (i) of the
theorem is complete.

(i) c = —1.

Assume that mn is even. Since A™z(n) < 0, by part (i) of Lemma 2.2 we have that (z(n)) tends
to +oo or it is nondecreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,,_,o, 2(n) = —oc0
and lim,,_,, z(n) = A < 0 are not valid.

Suppose that lim,,_,~, 2(n) = A > 0. Since (z(n)) is nondecreasing, we have z(n) > 0 eventu-
ally. Therefore

z(n) > z(1(n)) > ... > z(r(ny)), (3.5)
which guarantees that Zn p(i)x(o(i)) = +oo.

i=n1
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Hence, by (3.2) we have limy, oo A™ ' 2(n 4 1) = —oo, which as in part (i) gives (z(n)) tends
to —oo. This leads to a contradiction. Therefore lim,,_,~, z(n) = A > 0 is false.

If lim, o0 2(n) = 0, then z(n) < 0 since (z(n)) is nondecreasing. Then in view of part
(iiib) of Lemma 2.3 we have that (x(n)) is bounded. Furthermore, in view of Remark 3.2 we
have liminfz(n) = 0. Indeed, if liminfx(n) > 0 then, by Remark 3.1, we conclude that
Zj:m p(i)z(o(i)) = +oo. This guarantees that (z(n)) tends to —oo, which contradicts our as-
sumption.

If limy, 00 2(n) = +00, then in view of part (va) of Lemma 2.3 we have that (z(n)) tends to
infinity. This guarantees that lim, o A™ 1z(n + 1) = —oo, which as in part (i) gives that (z(n))
tends to —oo. This leads a contradiction. Therefore lim,,—,~, z(n) = 400 is false.

Assume that m is odd. Since A™z(n) < 0, by part (iii) of Lemma 2.2 we have that (z(n)) tends
to 00 or it is nonincreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,,_, 2(n) = —oc0
and lim,,_,, z(n) = A < 0 are not valid.

If lim, 00 2(n) = A > 0, then z(n) > 0 eventually since (z(n)) is nonincreasing. Thus
(3.5) holds and consequently lim,_,., z(n) = —oo. This contradicts our assumption. Therefore
lim,, o 2(n) = A > 0 is false.

If lim;, o0 2(n) = o0, then in view of part (va) of Lemma 2.3 we have that (z(n)) tends to
infinity. This guarantees that lim,,_,oc A™ 'z(n + 1) = —oo, which as in part (i) gives that (z(n))
tends to —oo. This leads to a contradiction. Therefore lim,,_,~, z(n) = +oo is false.

Consequently, (m(n)) oscillates. The proof of part (ii) of the theorem is complete.

(iii) —1 < c<O0.

Assume that m is even. Since A™z(n) < 0, by part (i) of Lemma 2.2 we have that (z(n)) tends
to +oo or it is nondecreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,,_,o, 2(n) = —0c0
and lim,,_,, z(n) = A < 0 are not valid.

Suppose that lim,,_,~ 2(n) = A > 0. By part (ivb) of Lemma 2.3 we have that lim,,_, z(n) =

= > (. This guarantees that Zn p(i)x(o(i)) = 4o0. Thus, as in previous parts, we are
1+¢ i=n1
led to a contradiction. Therefore lim,, o, z(n) = A > 0 is false.

If lim, o 2(n) = 0, then by part (iiic) we have that (z(n)) tends to zero.

If lim;, o0 2(n) = o0, then in view of part (va) of Lemma 2.3 we have that (2(n)) tends to
infinity. Thus, as in previous parts, we are led to a contradiction. Therefore lim,,_,o, 2(n) = 400 is
false.

Assume that m is odd. Since A™z(n) < 0, by part (iii) of Lemma 2.2 we have that (z(n)) tends
to +oo or it is nonincreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,,_,o 2(n) = —oc0
and lim,,_,, z(n) = A < 0 are not valid.

If lim;, o0 2(n) = 0, then by part (iiic) of Lemma 2.3 we have that (z(n)) tends to zero.

Suppose that lim,,_,~ 2(n) = A > 0. By part (ivb) of Lemma 2.3 we have that lim,,_, z(n) =

k] e > 0. As in case where m is even, we are led to a contradiction. Therefore lim,,,~ 2(n) =
= A > 0 is false.

If lim;, o0 2(n) = o0, then in view of part (va) of Lemma 2.3 we have that (2(n)) tends to
infinity. Thus, as in previous cases, we are led to a contradiction. Therefore lim,, ,oc 2(n) = 400 is

false. The proof of part (iii) of the theorem is complete.
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@iv) ¢c=0.

Assume that m is even. Since A™z(n) < 0, by part (i) of Lemma 2.2 we have that (z(n)) tends
to +oo or it is nondecreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,,_, o 2(n) =
and lim,,_,, z(n) = A < 0 are not valid.

—o0

Suppose that lim,,_,~ 2(n) = A > 0. By part (ivb) of Lemma 2.3 we have that lim,,_, z(n) =
= A > 0. This guarantees that Z:_m p(i)xz(co(i)) = +oo. Hence, as in previous cases, we are led
to a contradiction. Therefore lim,,_,, 2(n) = A > 0 is false.

If limy, 0 2(n) = 0, then (z(n)) < 0 since (z(n)) is nondecreasing. This contradicts z(n) =
= z(n) > 0. Therefore lim,,_, 2(n) = 0 is false.

If limy, o0 2(n) = 00, then in view of part (va) of Lemma 2.3 we have that (z(n)) tends to
infinity. This guarantees that Zj:m p(i)x(o(i)) = +oo. Hence, as in previous cases, we are led to
a contradiction. Therefore lim,,—, 2(n) = +oc is false. Consequently, (z(n)) oscillates.

Assume that m is odd. Since A™z(n) < 0, by part (iii) of Lemma 2.2 we have that (z(n)) tends
to +oo or it is nonincreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,,_,~ 2(n) =
and lim,, oo 2(n) = A < 0 are not valid.

—0o0

If lim;, 0 2(n) = 0, then by part (iiic) of Lemma 2.3 we have that (z(n)) tends to zero.

Suppose that lim,,_, 2(n) = A > 0. By part (ivb) of Lemma 2.3 we have that lim,,_, z(n) =
= A > 0. As in case where m is even, we are led to a contradiction. Therefore lim,, o, 2(n) = A >
> 0 is false.

If lim;, 0 2(n) = 00, then in view of part (va) of Lemma 2.3 we have that (z(n)) tends to
infinity. This guarantees that ZJF_OO p(i)x(o(i)) = +oo. Hence, as in previous cases, we are led
to a contradiction. Therefore 1im;;no; z(n) = 400 is false. The proof of part (iv) of the theorem is
complete.

v) 0<ex< .

Assume that m is even. Since A™z(n) < 0, by part (i) of Lemma 2.2 we have that (z(n)) tends
to +oo or it is nondecreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,,_,, 2(n) = —oc0
and lim,,_,, z(n) = A < 0 are not valid.

If limy, 0 2(n) = 0, then (z(n)) < 0 since (z(n)) is nondecreasing. This contradicts z(n) =
= z(n) + cz(r(n)) > 0. Therefore lim,,_,~ 2(n) = 0 is false.

Suppose that lim, . 2(n) = A > 0. By part (ivc) of Lemma 2.3 we have that (z(n))
is bounded. This guarantees that Zj_oz p(i)x(o(i)) < +oo. Indeed, if Z:F_OZ p()x(o(i)) =
= +00, then by (3.2) and part (ii) of ie;nma 2.1 we have that lim,,_, z(n) - 1—oo which con-
tradicts lim,,_,oc 2(n) = A > 0. By Remark 3.2 we have that liminf z(n) = 0. Then there ex-
ists a subsequence (z(6(n))) of (z(n)) such that lim,_, z(6(n)) = 0. Taking into account that

lim,, o 2(6(n)) = A, we obtain lim,,_,o, 2(7(0(n))) = =

In view of this, we have

lim [2(7(6(n))) + cz(7*(8(n)))] = A,

n—oo

or
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a4

lim z(7%(6(n))) = € <o,

n—o00 C

which is impossible. Therefore lim,, ,~ 2(n) = A > 0 is false.
If limy, o0 2(n) = 400, then in view of part (vb) of Lemma 2.3 we have that (z(n)) is un-
bounded. If Z::l p(i)z(o(i)) = +oo, then by (3.2) (A™ 'z(n+ 1)) tends to —oo. By part (ii)
of Lemma 2.1 we conclude that (z(n)) tends to —oo, which contradicts lim, . 2(n) = +oc.
Therefore Z;O; p(i)x(o(i)) < +o0. By Remark 3.2, we conclude that lim inf z:(n) = 0.
Assume that m is odd. Since A™z(n) < 0, by part (iii) of Lemma 2.2 we have that (z(n)) tends

to o0 or it is nonincreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,,_, 2(n)
and lim,,_, 2(n) = A < 0 are not valid.

—0o0

If lim, 0 2(n) = 0, then by part (iiic) we have that (z(n)) tends to zero.

Suppose that limy, o 2(n) = A > 0. By part (ivc) of Lemma 2.3 we have that (z(n)) is
bounded. Thus, as in case where m is even, we are led to a contradiction. Therefore lim,, o 2(n) =
= A > 0 is false.

If limy, o0 2(n) = +o00, then in view of part (vb) of Lemma 2.3 we have that (a:(n)) is un-
bounded. Thus, as in case where m is even, we have liminf x(n) = 0. The proof of part (v) of the
theorem is complete.

(vi) ¢ > 1.
Assume that mn is even. Since A™z(n) < 0, by part (i) of Lemma 2.2 we have that (z(n)) tends
to +oo or it is nondecreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,, o, 2(n) = —o0

and lim,,_,o, 2(n) = A < 0 are not valid.

If lim,, o0 2(n) = 0, then (z(n)) < 0 since (z(n)) is nondecreasing. This contradicts z(n) =
= z(n) 4+ cz(r(n)) > 0. Therefore lim,,_,~ 2(n) = 0 is false.

Suppose that lim, . z(n) = A > 0. By part (ivc) of Lemma 2.3 we have that (z(n)) is
bounded. Therefore, as in previous part, we have that Z:;O; p(i)x(o(i)) < 4+o00. By Remark 3.2
we have that lim inf z(n) = 0.

If limy, o0 2(n) = 400, then in view of part (vb) of Lemma 2.3 we have that (z(n)) is un-
bounded. If Z:;O; p(i)z(o(i)) = +oo, then by (3.2) (A" '2(n + 1)) tends to —co. By part (ii) of
Lemma 2.1 we conclude that (z(n)) tends to —oo, which contradicts lim,,,~ 2(n) = +oo. There-
fore Z:::l p(i)x(o(i)) < +oo. By Remark 3.2 we conclude that lim inf z(n) = 0. In other words,
(2(n)) cannot tend to zero but lim inf (n) = 0.

Assume that m is odd. Since A™z(n) < 0, by part (iii) of Lemma 2.2 we have that (z(n)) tends
to +oo or it is nonincreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,_,oc 2(n) = —oc0
and lim,,_,, z(n) = A < 0 are not valid.

If limy, o0 2(n) = 0, then by part (iiic) we have that (x(n)) tends to zero.
Suppose that lim,, o z(n) = A > 0. Then by part (ivc) of Lemma 2.3 we have that (z(n)) is
+
bounded. Thus we have Z = p(i)x(o(i)) < +oo. By Remark 3.2, liminf z(n) = 0.
i=n1
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If limy, 0 2(n) = +00, then in view of part (vb) of Lemma 2.3 we have that (z(n)) is un-
bounded. As in previous case, lim inf z(n) = 0. The proof of part (vi) of the theorem is complete.

Theorem 3.1 is proved.

Case 2. p(n) <O0.

Theorem 3.2. Assume that p(n) < 0 Vn > 0 and Zio p(i) = —oo. Then for Eq. (E) the
following statements hold:

(i) If ¢ < —1, then every nonoscillatory solution (x(n)):

(ia) is unbounded but liminf x(n) = 0 or tends to infinity, if m is even;

(ib) has no a non-zero real limit but liminf z(n) = 0, if m is odd.

(i) If ¢ = —1, then every nonoscillatory solution (x(n)):

(iia) tends to infinity, if m is even;

(iib) tends to infinity or it is bounded and liminf x(n) = 0, if m is odd.

(ii1) If —1 < ¢ < 0, then every nonoscillatory solution (a;(n)) tends to zero or tends to infinity.

(iv) If ¢ = 0, then every nonoscillatory solution (z(n)):

(iva) tends to zero or tends to infinity, if m is even,

(ivb) tends to infinity, if m is odd.

V) If 0 < ¢ < 1, then every nonoscillatory solution (:c(n))

(va) is unbounded or tends to zero, if m is even,

(vb) is unbounded, if m is odd.

(vi) If ¢ > 1, then every nonoscillatory solution (z(n)):

(via) is unbounded or is bounded and lim inf x(n) = 0 or tends to zero, if m is even;

(vib) cannot tend to zero and it is unbounded or it is bounded with lim inf x(n) = 0, if m is odd.

Proof. Assume that the solution (z(n)),>_ of (E) is nonoscillatory. Then it is either eventually
positive or eventually negative. As (—z(n)),>_y is also a solution of (E), we may restrict ourselves
only to the case where z:(n) > 0 for all large n. Let ng > —k be an integer such that z(n) > 0 for
all n > ng > n,. Then, there exists n; > ng such that z(7(n)) > 0, z(c(n)) > 0Vn > n;.

In view of (2.6), Eq.(E) becomes A" z(n)+p(n)z(c(n)) = 0, or (3.1). Therefore, for sufficiently
large n and since p(n) < 0, we have A™z(n) > 0.

Summing up (3.1) from n; to n, n > n; we obtain (3.2).

1) c< —1.

Assume that mn is even. Since A™z(n) > 0, by part (i) of Lemma 2.2 we have that (z(n)) tends
to o0 or it is nonincreasing.

If limy, 0 2(n) = —oo0, then in view of part (ia) of Lemma 2.3 we have that (z(n)) is un-

bounded. If Zn p(i)z(o(i)) = —oo, then by (3.2) (A™ 'z(n+ 1)) tends to +oco. By part (i)
1=n1

of Lemma 2.1 we conclude that (z(n)) tends to +oo, which contradicts lim, . 2(n) = —oc.

Therefore Zn p(i)x(o(i)) > —oo. By Remark 3.2, we conclude that lim inf z(n) = 0.
i=nqy

If lim;, 0 2(n) = —+o00, then in view of part (va) of Lemma 2.3 we have that (2(n)) tends to
infinity.

If (z(n)) is nonincreasing, clearly its limit exists.

Suppose that lim,_,~, 2(n) = A < 0. Then in view of part (iia) of Lemma 2.3 we have that

liminf z(n) > Toe Therefore for every € > 0 with € < 1 , there exists ng such that (3.3)
c

c
holds. Thus, for every ng with o(n3) > na, by (3.2) and (3.3) we obtain
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A n
m—1 m—1 :
A" z2(n+1) > A Z(n3)—<1+c—6> E iingp(z)—)—i—oo as n — oo,

which guarantees that lim,, oo A™ 12(n 4+ 1) = +o00. By part (i) of Lemma 2.1 we conclude that
(2(n)) tends to +o00, which contradicts our assumption. Therefore lim,, o, 2(n) = A < 0 is false.

Suppose that lim,, ,~ 2(n) = A > 0. Then since (z(n)) is nonincreasing, we have z(n) > 0
eventually. Therefore (3.4) holds, which guarantees that (x(n)) tends to infinity. Thus, as in previous
case, we have that lim, oo A" '2(n + 1) = oo which means that (z(n)) tends to +oco. This
contradicts lim,,_, z(n) = A > 0. Therefore lim,,_,~, 2(n) = A > 0 is false.

Assume that m is odd. Since A™z(n) > 0, by part (iv) of Lemma 2.2 we have that (z(n)) tends
to oo or it is nondecreasing.

If limy, 0 2(n) = —o0, then in view of part (ia) of Lemma 2.3 we have that (z(n)) is un-
bounded. Also, as in case where m is even, lim inf z(n) = 0 is satisfied.

If lim;, 0 2(n) = 00, then in view of part (va) of Lemma 2.3 we have that (2(n)) tends to
infinity.

If (2(n)) is nondecreasing, clearly its limit exists.

Suppose that lim,_,~ 2(n) = A < 0. As in previous case, this is false.

Suppose that limy, o 2(n) = 0. Then in view of part (iiia) of Lemma 2.3 we have that (z(n))
either tends to zero or (x(n)) has infenitely many accumulation points or (z(n)) tends to infin-
ity. But, if lim,,_,o, x(n) = 400, then as in previous case we have lim,,_,o, z(n) = +oo, which
contradicts our assumption.

Suppose that lim,, o z(n) = A > 0. Thus (3.4) holds, and as in previous case we are led to a
contradiction. Therefore lim,,_,~, z(n) = A > 0 is false.

In other words, (:U(n)) cannot have a non-zero real limit. Indeed, assume that lim,,_, o, x(n) =
= ¢ > 0. Then lim,,_,~ 2(n) = (1 + ¢)¢ < 0, which contradicts “lim,_,~ 2(n) = A < 0 is false”.
The proof of part (i) of the theorem is complete.

(i) ¢ = —1.

Assume that m is even. Since A™z(n) > 0, by part (i) of Lemma 2.2 we have that (z(n)) tends
to +oo or it is nonincreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,,_,o 2(n) = —o0
and lim,,_,, z(n) = A < 0 are not valid.

If limy, 00 2(n) = A > 0, then 2(n) > 0 eventually since (z(n)) is nonincreasing. Thus (3.5)
holds which means that (z(n)) has a lower bound, i.e., liminfz(n) > 0. By Remark 3.1 and
relation (3.2) we conclude that lim,, oo A" '2z(n) > 0. Therefore, by part (i) of Lemma 2.1 we
have that lim,,_,~ z(n) = 400, which contradicts our assumption. Therefore lim,, o 2(n) = A >0
is false.

If limp, 00 2(n) = +00, then in view of part (va) of Lemma 2.3 we have that (z(n)) tends to
infinity.

Assume that m is odd. Since A™z(n) > 0, by part (iv) of Lemma 2.2 we have that (z(n)) tends
to +oo or it is nondecreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,,_,o, 2(n) = —oc0
and lim,,_,, z(n) = A < 0 are not valid.

Suppose that lim,,_,~, 2(n) = A > 0. Since (z(n)) is nondecreasing, we have z(n) > 0 eventu-
ally. Therefore (3.5) holds, and therefore as in case m is even, we are led to a contradiction. Therefore
lim,, o 2(n) = A > 0 is false.
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If lim,, 00 2(n) = 0, then z(n) < 0 since (z(n)) is nondecreasing. Then in view of part (iiib)
of Lemma 2.3 we have that (m(n)) is bounded. Furthermore, in view of Remark 3.2 we have
liminf z(n) = 0.

If lim;, 0 2(n) = o0, then in view of part (va) of Lemma 2.3 we have that (2(n)) tends to
infinity. The proof of part (ii) of the theorem is complete.

(i) —1 < ¢ <O0.

Assume that m is even. Since A™z(n) > 0, by part (iii) of Lemma 2.2 we have that (z(n)) tends
to +oo or it is nonincreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,_,o 2(n) = —oc0
and lim,,_,, z(n) = A < 0 are not valid.

If lim, 0 2(n) = 0, then by part (iiic) we have that (z(n)) tends to zero.

Suppose that lim,,_,~ 2(n) = A > 0. By part (ivb) of Lemma 2.3 we have that lim,,_, z(n) =

= —— > 0. This guarantees that Zn p(i)x(o(i)) = —oo. Thus, as in previous case, we are led
1+¢ i=nq
to a contradiction. Therefore lim,, ,~ 2(n) = A > 0 is false.

If limy, 00 2(n) = +00, then in view of part (va) of Lemma 2.3 we have that (z(n)) tends to

infinity.
Assume that m is odd. Since A™z(n) > 0, by part (iv) of Lemma 2.2 we have that (z(n)) tends
to +oo or it is nondecreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,, o, 2(n) = —o0

and lim,,_,oo 2(n) = A < 0 are not valid.
Suppose that lim,,_,~ z(n) = A > 0. By part (ivb) of Lemma 2.3 we have that lim,, ,o z(n) =

= > 0. This guarantees that Zn p(i)x(o(i)) = —oo. Thus, as in case where m is even,
1+c i=ny
we are led to a contradiction. Therefore lim,,_,o, z(n) = A > 0 is false.

If lim, o0 2(n) = 0, then by part (iiic) we have that (x(n)) tends to zero.

If lim;, 0 2(n) = 00, then in view of part (va) of Lemma 2.3 we have that (z(n)) tends to
infinity. The proof of part (iii) of the theorem is complete.

@iv) ¢c=0.

Assume that m is even. Since A™z(n) > 0, by part (i) of Lemma 2.2 we have that (z(n)) tends
to +oo or it is nonincreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,,_,o 2(n) = —oc0
and lim,,_,, z(n) = A < 0 are not valid.

If lim, 0 2(n) = 0, then by part (iiic) of Lemma 2.3 we have that (2(n)) tends to zero.

Suppose that lim,,_, z(n) = A > 0. By part (ivb) of Lemma 2.3 we have that lim,,_, z(n) =
= A > 0. This guarantees that Zj_n p(i)xz(co(i)) = —oo. Hence, as in previous cases, we are led
to a contradiction. Therefore limn_m_O zl'(n) = A > 0 is false.

If lim;, o0 2(n) = o0, then in view of part (va) of Lemma 2.3 we have that (2(n)) tends to
infinity.

Assume that m is odd. Since A™z(n) > 0, by part (iv) of Lemma 2.2 we have that (z(n)) tends
to +oo or it is nondecreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,,_,o, 2(n) = —oc0
and lim,,_,, z(n) = A < 0 are not valid.

Suppose that lim,,_,~ 2(n) = A > 0. By part (ivb) of Lemma 2.3 we have that lim,,_, z(n) =
= A > 0. This guarantees that Z;m p(i)xz(co(i)) = +oo. Hence, as in previous cases, we are led

to a contradiction. Therefore lim,,,~ 2(n) = A > 0 is false.
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If limy, o 2(n) = 0, then (z(n)) < 0 since (z(n)) is nondecreasing. This contradicts z(n) =
= z(n) > 0. Therefore lim,,_,~ z(n) = 0 is false.

If lim;, 0 2(n) = o0, then in view of part (va) of Lemma 2.3 we have that (2(n)) tends to
infinity. The proof of part (iv) of the theorem is complete.

V) O0<e< 1.

Assume that m is even. Since A™z(n) > 0, by part (i) of Lemma 2.2 we have that (z(n)) tends
to +oo or it is nonincreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,,_,o 2(n) = —o0
and lim,,_,, z(n) = A < 0 are not valid.

If limy, o 2(n) = 0, then by part (iiic) of Lemma 2.3 we have that (x(n)) tends to zero.

If lim, o0 2(n) = A > 0, then Z:’:n p(i)x(o(i)) > —oo. By Remark 3.2 we have that
liminf 2(n) = 0. Then there exists a subsequence (z(6(n))) of (z(n)) such that lim,,_, - x(6(n)) =
= (. By a similar procedure as in part (v) of Theorem 3.1 we are led to a contradiction. Therefore
lim,, 00 2(n) = A > 0 is false.

If limy, 00 2(n) = +00, then in view of part (vb) of Lemma 2.3 we have that (z(n)) unbounded.

Assume that mn is odd. Since A™z(n) > 0, by part (iv) of Lemma 2.2 we have that (z(n)) tends
to oo or it is nondecreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,,_,o 2(n) = —o0
and lim,,_,, z(n) = A < 0 are not valid.

If lim,,_,o0 2(n) = 0, then z(n) < 0 since (z(n)) is nondecreasing. This contradicts z(n) =
= x(n) + cx(7(n)) > 0. Therefore lim,,_,~, z(n) = 0 is false.

Suppose that lim,_,~ 2(n) = A > 0. By part (ivc) of Lemma 2.3 we have that (a:(n)) is
bounded. This guarantees that Z:L:m p(i)xz(o(i)) > —oo. As in case where m is even, we are led

to a contradiction. Therefore lim,,_, z(n) = A > 0 is false.

If limy, o0 2(n) = 400, then in view of part (vb) of Lemma 2.3 we have that (z(n)) is un-
bounded. The proof of part (v) of the theorem is complete.

(vi) ¢>1.

Assume that m is even. Since A™z(n) > 0, by part (i) of Lemma 2.2 we have that (z(n)) tends
to +oo or it is nonincreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,_,oc 2(n) = —oc0
and lim,,_,, z(n) = A < 0 are not valid.

If limy, 0 2(n) = 0, then by part (iiic) we have that (z(n)) tends to zero.

Suppose that lim,_,~ 2(n) = A > 0. By part (ivc) of Lemma 2.3 we have that (a:(n)) is
bounded. This guarantees that Zj_m p(i)x(o(i)) > —oo. By Remark 3.2, lim inf z(n) = 0.

If limy, o0 2(n) = 400, then in view of part (vb) of Lemma 2.3 we have that (z(n)) is un-
bounded.

Assume that m is odd. Since A™z(n) > 0, by part (iv) of Lemma 2.2 we have that (z(n)) tends
to +oo or it is nondecreasing. By parts (ib) and (iib) of Lemma 2.3, the cases lim,,_,o, 2(n) = —oc0
and lim,,_,, z(n) = A < 0 are not valid.

If lim;, 0 2(n) = 0, then (z(n)) < 0 since (z(n)) is nondecreasing. This contradicts z(n) =
= z(n) + cz(r(n)) > 0. Therefore lim,,_,~ 2(n) = 0 is false.

Suppose that lim, ,- 2(n) = A > 0. By part (ivc) of Lemma 2.3 we have that (m(n))
is bounded. This guarantees that Zn p(i)x(o(i)) > —oo. By Remark 3.2 we have that

liminf z(n) = 0. -
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If limy, 0 2(n) = +00, then in view of part (vb) of Lemma 2.3 we have that (z(n)) is un-
bounded. The proof of part (vi) of the theorem is complete.

Theorem 3.2 is proved.

4. Examples. In this section we present some examples to illustrate the main results.

Example 4.1. Consider the difference equation

A%(z(n) — 22(n — 1)) +p(n)z(n®* +1) =0, n>2,

(2n +10) (n® + 1)
n(n+1)(n—1)(n+2)
o
Here m is even and Z ) p(i) = +oo. It is easy to see that all conditions of part (ia) of the
1=

where p(n) = > 0Vn > 2.

Theorem 3.1 are satisfied, and hence every nonoscillatory solution (z(n)) of the above equation has
no a real non-zero limit. In fact (z(n)) = < is one such solution, since it satisfies the above
n

equation for all n > 2 and lim,, o, x(n) = 0.
Example 4.2. Consider the difference equation

A3(z(n) —z(n —1)) +16x(n*+2) =0, n>1.

Here m is odd and Zil p(i) = +oo. All conditions of part (iib) of the Theorem 3.1 are
satisfied, and hence every non-zero solution (z(n)) oscillates. In fact (z(n)) = ((—1)") is one such
solution, since it satisfies the above equation for all n > 1 and oscillates.

Example 4.3. Consider the difference equation

A? (:E(n) - ix(n - 1)> +p(n)z(n—2)=0, n>41,

where
~ 5 n® —57n® + 722n — 2320

p(n)—2 nn—1)(n+1)(n+2) >0 Vn =4l

Clearly E @41 p(i) = +o0. All conditions of part (iii) of the Theorem 3.1 are satisfied, and
1=
10"
hence every nonoscillatory solution (x(n)) tends to zero. In fact (z(n)) = <'> is one such
n!
solution, since it satisfies the above equation for all n > 41 and lim,,_, (n) = 0.

Example 4.4. Consider the difference equation

AS(IE(TZ) +2(n—1)) +p(n)z(n+3) =0, n >4,
3n —11
n+3
Here m is odd and Z:;p(i) = —+oo. All conditions of part (vib) of the Theorem 3.1 are
satisfied, and hence every nonoscillatory solution (z(n)) tends to zero or liminfx(n) = 0. In

where p(n) = >0 Vn > 4.

fact (z(n)) = (%) is one such solution, since it satisfies the above equation for all n > 4 and
lim,, 00 (1) = 0.
Example 4.5. Consider the difference equation

A? (z(n) — 2z(n —2)) + (_116> z(n+3)=0, n>3.
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Here m is even and Zig p(i) = —oo. All conditions of part (ia) of the Theorem 3.2 are
satisfied, and hence every nonoscillatory solution (x(n)) is unbounded but lim inf z(n) = 0 or tends
to infinity. In fact (z(n)) = (2") is one such solution, since it satisfies the above equation for all
n > 3 and lim,,_, z(n) = +o0.

Example 4.6. Consider the difference equation

A?(z(n) — z(n —2)) + <—z> z(n+1)=0, n>2.

Here m is even and Zj; p(i) = —oo. All conditions of part (iia) of the Theorem 3.2 are
satisfied, and hence every nonoscillatory solution (x(n)) tends to infinity. In fact (z(n)) = (2") is
one such solution, since it satisfies the above equation for all n > 2 and lim,,_, o x(n) = +o0.

Example 4.7. Consider the difference equation

A3(z(n) — %x(n —-1))+ <—;7) x(n—4)=0, n>4

Clearly 224 p(i) = —oo. All conditions of part (iii) of the Theorem 3.2 are satisfied, and hence
every nonoscillatory solution (z(n)) tends to zero or tends to infinity. In fact (x(n)) = (37") is one
such solution, since satisfies the above equation for all n > 4 and lim,,_,~, x(n) = 0.

Example 4.8. Consider the difference equation

A%(z(n) + 2(n —1)) + p(n)z(n® +2) =0, n > 10,
where
w2 Y Iym

= n
In(n3+2)  "R/m+2"vn-—1
Here m is even and Zéoél p(i) = —oo. All conditions of part (via) of the Theorem 3.2 are satis-

1=

fied, and hence every nonoscillatory solution (z(n)) is unbounded or is bounded and lim inf x(n) = 0

p(n) <0 Vn>10.

nny . . o :
or tends to zero. In fact (x(n)) = | —— | is one such solution, since it satisfies the above equation
n

for all n > 10 and lim,,_, x(n) = 0.
Remark 4.1. Similarly, one can construct examples to illustrate the other parts of Theorems 3.1
and 3.2.
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