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PO 3AJIAYY BIJJOKPEMJIEHHS JJIs1 CIM’I BOPEJIBCBhKUX
TA BEPIBCBKUX G-CTEIIEHIB MIP 3CYBY HA R

The separation problem for a family of Borel and Baire G-powers of shift measures on R is studied for an arbitrary
infinite additive group GG using the technique developed in [Kuipers L., Niederreiter H. Uniform distribution of sequences.
— New York etc.: John Wiley & Sons, 1974], [Shiryaev A. N. Probability (in Russian). — Moscow: Nauka, 1980] and
[Pantsulaia G. R. Invariant and quasiinvariant measures in infinite-dimensional topological vector spaces. — New York:
Nova Sci. Publ., Inc., 2007]. It is proved that 7, : R™ — R, n € N, defined by

Tu(wsse.osan) = —F (0" #({ar, .. 20} 0 (—0050])
for (z1,...,2,) € R™ is a consistent estimator of a useful signal 6 in the one-dimensional linear stochastic model
& =0+ Ak, kcN,

where #(-) is a counting measure, Ay, k € N, is a sequence of independent identically distributed random variables on R
with a strictly increasing continuous distribution function F', and the expectation of A; does not exist.

BuBuaetbcst 3agaua BitoKpeMIIeHHS UIsd ciM’1 GoperiBchbKuX Ta OepiBchkux (G-cTemneHiB Mip 3cyBy Ha R st moBinbHOT
HECKIHYeHHOI aAuTUBHOI rpynu (G i3 BUKOPHCTAHHSAM IiJXOAy, pO3BHHEHOro B poGotax [Kuipers L., Niederreiter H.
Uniform distribution of sequences. — New York etc.: John Wiley & Sons, 1974], [[lupsiee A. H. BepostHOCTb. — M.:
Hayxa, 1980] ta [Pantsulaia G. R. Invariant and quasiinvariant measures in infinite-dimensional topological vector spaces.
— New York: Nova Sci. Publ., Inc., 2007]. {oseneno, mo 7, : R” — R, n € N, o3naueHuii popmysioro

—1, -1
To(z1,. - yzn) =—F " (n" #{z1,...,za} N (—00;0]))
opd (z1,...,Tn) € R™, € KOHCHCTEHTHOIO OI[IHKOK KOPHCHOTO CUTHAITY § B OJHOBHMIpHIi JiHiNHINi cTOXacTHUHINH Momerni
&e=0+A,, keN,

ne #(+) — 3mivenna mipa, Ay, k € N, — ocmigoBHICTs He3aIeKHUX OJHAKOBO PO3IMOALICHHUX BHIIAJKOBHX BEIHUIHMH Ha R
i3 CTPOTO 3pOCTAIOUOI0 HellepepBHOIO (yHKLIE0 po3noniny F, a cnomiBaHHs BeanynHH Aq HE iCHYE.

1. Introduction. In the general theory of statistical decisions there often arises a problem of transition
from a weakly separated family of probability measures to the corresponding strongly separated
family. In 1981, A. Skorokhod [1] proved that if the Continuum Hypothesis is true, then an arbitrary
weakly separated family of probability measures, whose cardinality is not greater than the cardinality
of the continuum, is strongly separable. The validity of the inverse relation was established in [3] (see
also [4]). In particular, it was shown there that if an arbitrary weakly separated family of probability
measures whose cardinality is less than or equal to the cardinality of the continuum is strongly
separated, then the Continuum Hypothesis is true. Applying Martin’s axiom, in 1984 Z. Zerakidze [7]
proved that an arbitrary weakly separated family of Borel probability measures defined in a separable
completely metrizable space (i.e., Polish space) is strongly separated if its cardinality is not greater
than the cardinality of the continuum. In [3], this result is extended to all complete metric spaces
whose topological weights are not measurable in a wider sense.
Below we give some definitions from the theory of stochastic processes.
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ON THE SEPARATION PROBLEM FOR A FAMILY OF BOREL AND BAIRE G-POWERS ... 471

Definition 1.1. Let (0, F,p) be a probability space and G be an infinite additive group. A
stochastic process X = (Xg)geq: 1 — R is called a G-process on (Q, F,p) if a joint probability
distribution

X
F((g1,)...,gn)(x1’ v tp) = p{w: Xy, (w) < zq,..., Xy, (w) < zp})
with (g1,...,9n) € G™ and (x1,...,x,) € R", does not change when shifted in a group, i.e., the
following equality
(X) _ (X
(gl,...,gn)(zl’ ceyTp) = F(gl+h,...,gn+h) (X1, ,2n)
holds for an arbitrary h € G.

Remark 1.1. For G = R", n > 1, a G-process coincides with a homogenous field. If G = R,
then a G-process coincides with a stationary process.

Definition 1.2. Let p be a Borel probability measure on R and 0 € R. Then a probability
measure py defined by

(VX)(X € B(R) —= pg(X) = p(X +0))

is called a 0-shift measure of p.
Definition 1.3. Let p be a Borel probability measure on R and G be an infinite additive group.
Suppose that p, = p for g € G. Then the product measure H e P is called the Baire G-power
g

of p and is denoted by p©. If p admits a Borel extension, then that extension is called the Borel
G-power of p.

Remark 1.2. Note that the notions of Baire G-power and Borel G-power of p coincide when
the group G is countable.

Example 1.1. Let p be a Borel probability measure on R and G be an infinite additive group.
Then the family of all coordinate projections (Pry)4cc defined on a probability space (RG, Ba(RY),
p?) is a G-process for every 6 € R, where pg is the G-power of a shift measure pg on R.

The main aim of the present paper is to consider the separation problem for a family of G-powers
of shift measures on R, where (G is an arbitrary additive group. Note that such measures generate
G-processes on RE.

The attention is focused on two essentially different examples of strongly separated families of
Borel and Baire G-powers of shift measures in R for an arbitrary infinite additive group G.

Our tools of investigation are the techniques developed in [2, 5, 6].

The paper is organized as follows. Some auxiliary notions and facts from the theory of uniformly
distributed sequences and the probability theory are considered in Section 2. Section 3 contains
the formulations and proofs of the obtained results. In Section 4, the existence of some consistent
estimators of a useful signal in the one-dimensional linear stochastic model is proved and some
examples of the corresponding simulations with numerical computations are considered.

2. Some auxiliary notions and facts. We start this section with some standard notions and
definitions from the probability theory.

Let I be an arbitrary nonempty set of parameters. Denote by (R’, 7) the vector space of all real-
valued functions on I equipped with the Tychonoff topology 7. We denote by B(R’) a o-algebra of
all Borel subsets of the space R’ generated by the Tychonoff topology 7.
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Let (Pr;);er be the family of all coordinate projections defined by
(Vi) (V(xj)jen)(i € T & (2)jer € R — Pri((x))jer) = =)
A minimal o-algebra of subsets of R! generated by the class of subsets
{(Pr;Y(X):icI& X € B(R)}

is denoted by Ba(R!) and is called a Baire c-algebra of subsets of R?.
Remark 2.1. Note that Ba(R!) = B(R!) for card(I) < Rg, where X, denotes the cardinality
of the set of all natural numbers. If card(l) > X, then

Ba(R') ¢ B(R!) & B(R')\ Ba(R!) # @.

As usual, a measure defined on B(R?) is called a Borel measure. Analogously, a measure defined
on Ba(R!) is called a Baire measure.

Definition 2.1. Let j11 be a Baire measure defined on R1. A Borel measure po defined on R!
is called a Borel extension of 1 if

(VX)(X € Ba(R') = ps(X) = 1 (X)).

Example 2.1. Let I be an arbitrary nonempty parametric set and p; be a Borel probability
measure on R; := R for all 7 € I. If card(]) > N, then the probability product-measure H_eI p; is
7
defined on the o-algebra

[[B®:) = Ba(R").

i€l
Accordingly, this measure is an example of a Baire probability measure which is not defined on
B(RY).

Lemma 2.1 ([5, p. 67], Lemma 4.4). Let (E1,71) and (E2, ) be two topological spaces. De-
note by B(E1) and B(E») (respectively, by B(E1 x Es)) the class of all Borel subsets generated by
the topologies T and To (respectively, by 11 x 12). If at least one of these topological spaces has a
countable base, then the equality

B(El) X B(EQ) = B(El X EQ)

holds.

Lemma 2.2 ([5, p. 70], Remark 4.5). Let (p;)ics be a family of Borel probability measures on R
with strictly increasing continuous distribution functions. Then there exists only one Borel extension
‘Pr of the Baire product-measure Hie[ Di-

Corollary 2.1 ([5, p. 75], Corollary 4.2). The product of an arbitrary family (p;)icr of nontriv-
ial Gaussian Borel probability measures defined on R has only one Borel extension.

Corollary 2.2 ([5, p. 75], Corollary 4.3). In the case of the space R, for Card(I) > N,
Lemma 2.2 is a generalization of Anderson well-known theorem which gives only the construction of
a Baire product-measure.
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Definition 2.2 [2]. A sequence s, $2, 83, ... of real numbers from the interval (a,b) is said to
be equidistributed or uniformly distributed on the interval (a,b) if for any subinterval [c,d] of (a,b)
we have
lim #({s1,52,83,...,8,} N[e,d]) _ d— c’
n—00 n b—a

where # is a counter measure.

Now let X be a compact Polish space and p be a probability Borel measure on X. Let R(X) be
a space of all bounded continuous functions on X.

Definition 2.3. A4 sequence s1, 53,3, ... of elements of X is said to be p-equidistributed or
p-uniformly distributed on X if for every f € R(X) we have

N
Jm Do) = ! fd.

Lemma 2.3 [2, p. 199-201]. Let f € R(X), poo := u>° and S be a set of all u-equidistributed
sequences in X*°. Then

@) poo(S) =1

(i) S is a set of the first category;

(ii1) S is everywhere dense in the Tychonoff topology.

Corollary 2.3. Let {1 be a Lebesgue measure on (0,1). Let D be a set of all {1-equidistributed
sequences in (0,1)°°. Then

() (D) = 1

(i) D is a set of the first category;

(iii) D is everywhere dense in the Tychonoff topology.

Definition 2.4. Let i1 be a probability Borel measure on R such that its distribution function
F' is continuous. A sequence s1,S2,S3, ... of elements of R is said to be p-equidistributed or -
uniformly distributed on R if for every interval [a,b] (—oo < a < b < 400) we have

lim #([a,b] N {x1, ..

n—00 n

) )~ Fla).

Lemma 24. Let (x;)ken be an (i-equidistributed sequence in (0,1) and F be a strictly
increasing continuous distribution function on R. Let p be a Borel probability measure on R defined
by F. Then (F~Y(xy))ren is a p-equidistributed sequence on R.

Proof. We have

- N{F (1), . F (aa)}) _

Corollary 2.4. Let I be a strictly increasing continuous distribution function on R and p be
a Borel probability measure on R defined by F. Then for a set of all p-equidistributed sequences
Dr C R*® we have

(i) Dr = {(F~Y(x1)ken: (zr)ren € D}, where D is from Corollary 2.3;

ISSN 1027-3190. Yxp. mam. xcyph., 2013, m. 65, Ne 4



474 Z. ZERAKIDZE, G. PANTSULAIA, G. SAATASHVILI

(i) p>(Dp) =1;

(ii1)) Dp is a set of the first category;

(iv) Dp is everywhere dense in the Tychonoff topology.

Let (19)gco be a sequence of probability measures defined on a measurable space (F, S). For
6 € ©, we denote by iy the completion of the measure py and by dom(fiy) the o-algebra of all
Tig-measurable subsets of .

Definition 2.5. We say that the family (ug)oco is strongly separated if there exists a family
(Zp)gco of elements of the o-algebra Ngcodom(fiy) such that

(1) 1g(Zg) =1 for 6 € O;

(1) Zy, N Zy, = @ for all different parameters 01 and 0 from O;

(iil) UpeoZy = E.

Definition 2.6. Let (up)gco be a family of pairwise singular probability measures on a mea-
surable space (E,S), where © is equipped with a o-algebra L(©) that contains all singletons of ©

and Sy := Ngcodom(fiy). We say that a measurable mapping 0: E — © is a consistent estimator
of the parameter 0 if

(V6) (9 €0 y({z: 0(z) = 0}) = 1) :

Lemma 2.5. Let (ug)oco be a family of pairwise singular probability measures on a measur-
able space (E, S), where © is equipped with o-algebra L(©) that contains all singletons of © and
S1 := Ngeedom(fiy). Then the following sentences are equivalent:

(a) there is a consistent estimator 6: E— 0 of the parameter 0;
(b) the family of measures (pg)oco is strongly separated.

Proof. Let us show the validity of the implication (a) — (b). The existence of a consistent
estimator f: ' — © of the parameter # implies that

(V0) (6 €0 - fy({z: 6(z) = 0}) = 1) .

Setting Zy = {x: O(x) = 0} for 0 € O, we get:

() 7ig(Zo) = Frg({w: O(x) = 0}) = 1 for 6 € ©;
(1) Zy, N Zy, = @ for all different parameters ¢1 and 6 from © because

{z:0(x) =61} N {z: O(z) = 6} = @;

(iii) UgeoZp = {z: 0(x) € ©} = E.
Let us show the validity of the implication (b) — (a).

Since the family (ug)oco is strongly separated there exists a family (Zp)pco of elements of
o-algebra S := Ngecodom(fiy) such that:

(1) 11g(Zy) =1 for 6 € O;
(1) Zy, N Zy, = @ for all different parameters ¢ and 6> from O;
(i) UgcoZy = E.

ISSN 1027-3190. Ykp. mam. sxcypn., 2013, m. 65, Ne 4
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For z € E, we put 0(z) = 6, where 0 is a unique parameter from the set © for which = € Zj.
The existence of such a unique parameter 6 can be proved by using conditions (ii), (iii).

Now let Y € L(©). Then {z: 6(z) € Y} = Ugecy Zy. We have to show that {z: 0(z) €
€ Y} € dom(fiy,) for each 6y € ©.

If 8y € Y, then

0() €Y= U Zyg=Zp,U U Z.

{: 6() } ocy P pevra, ?
On the one hand, from the validity of the condition (b) it follows that
Z S1 = N dom(fy) € dom(fay, ).
6o € 911 -6 om(fy) € dom (7, )

On the other hand, the validity of the condition

U Zyp C(E\ Z
9eY \bo 0 S (B Zoo)

implies that
g, (Usey\0,Z0) = 0.
The latter equality yields that

U Zy € dom(Fig, ).
s, 20 € dom(Figy)

Since dom(Jig, ) is a o-algebra, we deduce that
{z:0(z) €Y} = Zp, U aelL/J\eo Zy € dom(fig, ).
If 6y ¢ Y, then
{1 8() €YY = U 2 € (B\ Zy,)
and we claim that fzg ({z: f(z) € Y}) = 0. The latter relation implies that
{z:0(x)eY} € dom(fzg, ).
Thus we have shown the validity of the condition
{w: () € Y} € dom (g,
for an arbitrary 6y € ©. Hence
{z:0(x) Y} e HOLGJG dom(fzg,) = S1.

Since L(©) contains all singletons of O, we claim that

(v0) (8 € © = Fig({: B(x) = 1) = ig(Z0) = 1).

Lemma 2.5 is proved.
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Remark 2.2. Let E be a Polish space and (u9)gco be a family of Borel probability measures on
E. Then the o-algebra S; = Npcodom(Jiy) contains a class of all universally measurable! subsets.
Note that each universally measurable consistent estimator 0: E — © (if such an estimator exists)
will be measurable also in the sense of Definition 2.6.

Definition 2.7. Let i be a Borel measure on R and 6 € R. Let I be a non-empty parameter set.
A measure ,ué defined by ,ué = Hiel A with A\ = pg for i € I, where g denotes a 0-shift measure
of u(ie, pop(X) = w(X 4+ 0) for X € B(R)), is called a Baire I-power of the 0-shift measure 19
on R.

Definition 2.8. Let i be a Borel measure on R, 8 € R and I be a non-empty parameter set.
Assume that Py is a Borel extension of the Baire I-power of a 0-shifi measure in RY. Then P; is
called a Borel I-power of the 0-shift measure 119 on R.

Lemma 2.6. Let F be a strictly increasing continuous distribution function on R and let p be
a Borel probability measure on R defined by F. Then the family of Baire (equivalently, Borel) N-
powers (p} )ger of shift measures (pg)oer, where N denotes a set of all natural numbers, is strongly
separated.

Proof. For 6 € R, we denote by Dy the set of all py-equidistributed sequences in RY. Let us
show that Dy, N Dy, = @ for —oco < 01 < 03 < 400. For (z)ken € Dy, , we have

lim #((—o00,0l N {x1,...,x0})

n—o00 n

= Fy,(0) = F(6y).

Analogously, for all (zx)ren € Dg,, we have

lim #((—00,0]N{z1,...,21})

n—o00 n

= Fy,(0) = F(02).

Since F is a strictly increasing continuous distribution function on R, we deduce that F'(6,) < F(62).
The latter relation implies that Dy, N Dy, = <.

For § € R, let Yy be a F,-subset of Xy such that p}Y (Yp) = 1.

For § € R\ {0}, we set Zy = Yy and

%=wou (¥, %)

Let us show that Zy € S for 6 € R. It is clear that Zy € B(RY) C S for € R\ {0}.
We have

Zo=YyU (RN \ QGR%{O} Zg).

On the one hand, Yy € B(RY) C S since Yj is F,-set. On the other hand, we have

RN U ZyCRN\Z
\06R\{0} 6C \ o

"Let (u:)icr be a class of all Borel probability measures defined on a Polish space E. A o-algebra U(E) defined by
U(E) = Nijerdom(z;), where i; denotes a usual completion of u; for i € I, is called a class of all universally measurable
subsets of E.
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for each 8 € R. Hence

RN U Zye dom(z
\HeR\{O} p € dom(fig)

for # € R. Finally, we get
RY\ U Zye n dom(ig) =S.
\HGR\{O} o € 0, dom(fp)

Since S is a g-algebra we claim that
Zo=YyU <RN\ U Zg) €s,
(SN

because Yy € S and (RN \ Uger Zp) € S.
Now it is not difficult to verify that
0 P)(Zo) = 1;
(1) Zy, N Zy, = O;
(iii) Uper Xy = RY,
Lemma 2.6 is proved.
Lemma 2.7 (The strong law of large numbers). Let (2, F,p) be a probability space and X,

Xo,... be an infinite sequence of independent and identically distributed random variables on
(Q, F, P) with finite expectation value m € R, where m = E(X1) = E(X2) = ... . Then
n
3 x)
D wweN& lim —=——=m =1.
n—o0 n

Lemma 2.8. Let F be a distribution function defined on the real axis R, such that the integral
/ xdF (x) is finite. Suppose that p is a Borel probability measure on R defined by F. Then the family
R

of Baire (equivalently, Borel) N-powers (p) )ocr of shift measures (pp)ocr is strongly separable.
Proof. For 0 € R, we define Dy with

n

xy,
Dy = (zi)ien: (zi)ien ERN & lim ==L — =9+ m 3 =1,

n—o0 n

where the k-th projection Pry, is defined by Pry((2;)ien) = xx for (x;);eny € RN,

By Lemma 2.7 we conclude that p3°(Dy) = 1 for 6 € R.

It is obvious that Dy, N Dy, = & for different 01,60, € R.

The application of the argument used in the proof of Lemma 2.6 ends the proof of Lemma 2.8.

Lemma 2.9. Let G be an infinite additive group. Let (py)ren be a sequence of probability
Borel measures defined on R and let (o )ren be a sequence of positive real numbers such that
ZkeN ar = 1. Let ka be a Borel (or a Baire) G-power of the measure py for k € N and u =

= ZkeN akpg. Then the family of all coordinate projections X = (Pry)qcq defined on a probabil-
ity space (RE, B(R%), p1) (or (R®, Ba(R%), 1)) is a G-process.
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Proof. Forn €N, (g1,...,9,) € G", (21,...,2,) € R" and h € G, we have

X
F((gl,)...,gn)(3517 Cey X)) =

=M <{(W9)96G : (wg)ge € RY & (wgy, - .- wg,) € H(—oo,xk]}> =

k=1

= (Z akka> ({(wg)gegz (wg)gea € RE & (Wgis -+ Wg,) € H(—oo,xk]}> =

keN

= Zakpk ({ (wg)gea: (Wg)gea € RY & (Wgys -+ Wg,) € H(—oo,a:ﬂ}) =

keN

S o (

n
wg geG* wg geG € R & (wg1+h7’ . 7wgn+h) € H(_OO7$k]}
keN

(Z akpk><{ (wg)gea: (wq)gea € RE & (Wgr4hs - -+ Wopth) € H(—oo,wk]

keN

O o (T1 ).

Lemma 2.9 is proved.

3. Formulations and proofs of the main results.

Theorem 3.1. Let F be a strictly increasing continuous distribution function on R and p be a
Borel probability measure on R defined by F. Let G be an infinite additive group. Then the family
of Borel G-powers (pg)eeR of Borel shift measures (pg)ocr is strongly separated and the family
of all coordinate projections X = (Pry)gecc defined on a probability space (RE, B(RG),pg) is a
G-process for every 0 € R.

Proof. By Lemma 2.2, there is a unique Borel extension of the Baire measure pg;. We preserve
the notation p(,G for its Borel extension. Let G be a subset of G with card(Gy) = Rg. By Lemma 2.1
we can establish that pg = Py Go pG\GO By Lemma 2.6, (pgo)geR is strongly separated, which
implies that there exists a family (Zp)gcr of elements of the o-algebra ﬂgERdom(peGo) such that:

@) p (Zg)—lforGE]R

(i) Zy, N Zy, = @ for all different parameters ¢; and 6, from R;

(ili) UperZy = RE0.

Now setting Dg = Zy x RG\Go_ we get that (Dg)oer is a family of elements of the o-algebra
S = ﬂgeRdom(ﬁ) such that the following three conditions are fulfilled:

(i*) p§(Dy) =1 for 6 € R;

(11*) Dy, N Dy, = @ for all different parameters 61 and 65 from R;

(iii*) UperDg = RE.

Theorem 3.1 is proved.
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Remark 3.1. Letus equip © = R with a usual metric. Under the conditions of Theorem 3.1, by
Lemmas 2.5 and 2.6 we deduce that the mapping 6: RS — O defined by é(x) =60 forx e Dyisa
consistent estimator of the parameter 6.

Theorem 3.2. Let F' be a distribution function on R such that the integral / xdF(x) is finite.

Suppose that p is a Borel probability measure on R defined by F. Let G be a% infinite additive
group. Then the family of Baire G-powers (p§')ocr of Borel shift measures (pg)ger on R is strongly
separated and the family of all coordinate projections X = (Prg)gcq defined on a probability space
(RY, Ba(RY), p§) is a G-process for every 0 € R.

Remark 3.2. The proof of Theorem 3.2 can be obtained by using Lemmas 2.1 and 2.8. Let us
equip ©® = R with a usual metric. Under the conditions of Theorem 3.2, by Lemma 2.5 we claim
that there exists a consistent estimator of the parameter 6.

Example 3.1. Let p be a Gaussian Borel measure on R. Then by Theorem 3.1 (or by Theo-
rem 3.2) we deduce that the family of Borel (or Baire) G-powers (p§ )per of shift measures (pp)ocr
on R is strong separated for an arbitrary additive group G, and that the family of all coordinate
projections X = (Pry),ec defined on a probability space (RY, B(RY), p§) (or (RY, Ba(RY), p§))
is a G--process for every 6 € R.

Example 3.2. Let p be a Poisson Borel probability measure on R. Then by Theorem 3.2 we
deduce that the family of Baire G-powers (pg)geR of shift measures (pg)per on R is strongly
separated for an arbitrary additive group G, and that the family of all coordinate projections X =
= (Pry)gec defined on a probability space (RY, Ba(R%),p§) is a G-process for every 6 € R.
We cannot apply Theorem 3.1 in order to establish the validity of this fact since the family of shift
measures (pg)ger does not satisfy the conditions of this theorem.

Example 3.3. Let p be a Cauchy Borel probability measure on R. Then by Theorem 3.1,
we deduce that for an arbitrary additive group G, the family of Borel G-powers (pg;)geR of shift
measures (pg)ger on R is strongly separated and the family of all coordinate projections X =
= (Pry)g4ec defined on a probability space (RY, B(RY), p§) is a G-process for every 6 € R. We

cannot apply Theorem 3.2 in order to establish the validity of this fact since the integral / xdF(x)
R

does not converge.

Theorem 3.3. Let (©;);cr be a partition of the real axis R, such that card(©;) < No, where
N is the cardinality of the set of all natural numbers. Let (aéi))geei be a sequence of positive real
numbers such that Zaeei a((;) =1 fori € 1. Let uy be a 0-shift of the Borel probability measure
w on R with a strictly increasing continuous distribution function. Let G be an infinite additive
group. For i € I, we define a Borel probability measure \; on RS by \; = Zeeei aéi),ug". Then
(Mi)ier is strongly separated and the family of all coordinate projections X = (Pry)geq defined on
a probability space (RS, B(R%), \;) is a G-process for every i € 1.

Proof. By Lemma 2.2, the Baire measure ,ug admits a unique Borel extension for § € R for
(@) G

which we preserve the same notation. Note that \; = Z ay’pg will be a Borel probability

0O,
measure on R fori € I.

By Lemma 2.9, the family of all coordinate projections X = (Prg)qec defined on a probability
space (RY, B(R%), \;) is a G-process for every i € I.
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By Theorem 3.1, the family of Borel probability measures (N?)%R is strongly separated, i.e.,
there exists a family (Dp)gecr of elements of the o-algebra ﬂgeRdom(E) such that:

(i) n§(Dg) =1for 6 € R;

(i1) Dg, N Dy, = @ for all different parameters ¢; and ¢ from R;

(ili) UperDyg = R,

We set E; = Upeo, Dy for i € I. Now it is clear that (E;);cr is a pairwise disjoint family of
elements of the o-algebra M;cydom()\;) such that \;(E;) = 1 fori € I.

Theorem 3.3 is proved.

Remark 3.3. Let us equip a set I with a discrete metric. Under the conditions of Theorem 3.3,
by Lemma 2.5 we claim that a mapping 6: RE — I, defined by é(:c) = for x € F;, is a consistent
estimator of the parameter .

The following theorem is a simple consequence of Theorem 3.2.

Theorem 3.4. Let (©;);cr be a partition of the real axis R such that card(©;) < Vo, where
Nq is the cardinality of the set of all natural numbers. Let (aéi))geei be a sequence of positive real

numbers such that Zee@ aéi) =1 fori € 1. Let py be a 0-shift of the Borel probability measure

w on R such that the integral / xdF(x) is finite, where F' is the distribution function defined by
R

. Let G be an infinite additive group. For i € I, we define a Baire probability measure on RS by
Ai = Zoee_ a((,i),ug. Then (\;)ier is strongly separated and the family of all coordinate projections
X = (Prg)gég defined on a probability space (R®, Ba(R%), ;) is a G-process for every i € I.

Remark 3.4. Let us equip the set I with a discrete metric. Under the conditions of Theorem 3.4,
by Lemma 2.5 we deduce that there exists a consistent estimator of the parameter .

4. On consistent estimators of a useful signal in the linear one-dimensional stochastic model
when the expectation of the transformed signal is not defined. Suppose that © is a vector subspace
of the infinite-dimensional topological vector space of all real-valued sequences RY equipped with
the product topology.

In the information transmission theory we consider the linear one-dimensional stochastic system

(&k)ren = (Or)ken + (Ak)ren, 4.1)

where (0;)ken € O is a sequence of useful signals, (Ag)ren is sequence of independent identically
distributed random variables (the so-called generalized “white noise” ) defined on the some probabil-
ity space (2, F, P) and (&x)ken is a sequence of transformed signals. Let 1 be a Borel probability
measure on R defined by a random variable A;. Then the N-power of the measure ; denoted by u
coincides with the Borel probability measure on R defined by the generalized “white noise”, i.e.,

(VX)(X € BRY) = pN(X) = P{w: w € Q & (Ar(w))ren € X})),

where B(RY) is the Borel o-algebra of subsets of RY.
In the information transmission theory, the general decision is that the Borel probability measure

A, defined by the sequence of transformed signals (£ )ren coincides with (MN ) X for some 6y € ©

0
provided that

(300)(60 € © = (VX)(X € BR") = A(X) = (4"), (X)),
where (“N)QO(X) = N (X — 6p) for X € B(RY).
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Here we consider a particular case of the above model when a vector space of useful signals ©
has the form

©={0,0,...): 0 €R}.

For 6 € R, a measure ,ugl, defined by

py = pg X pio X ...,

where iy is a 0-shift of p (ie., pup(X) = (X — 6) for X € B(R)), is called the N-power of the
#-shift of 11 on R. It is obvious that ,ug = (MN)(G',&..-)'

Following Lemma 2.7, the sample mean is a consistent estimator of a parameter § € R (in the
sense of almost everywhere convergence) for the family ( /ﬁ(}])geﬂg if the first order absolute moment of
1 1s finite. We have a different picture when the first order absolute moment of 1 is not defined. In that
case, Lemma 2.7 cannot be used. Unfortunately, we could not find in the literature any method that
would allow us to estimate a useful signal for model (4.1) when the expectation of the transformed
signal is not defined. In the remaining part of the paper we resolve this problem.

Definition 4.1. A Borel measurable function T,,: R® — R, n € N, is called a consistent
estimator of a parameter 0 (in the sense of everywhere convergence) for the family (,ugl)geR if the
condition

Mlg({(xk)keN3 (xk)keN ceRVN & nh_)Iréo Tn(xl, .. .,xn) = 9}) =1

holds for each 6 € R.

Definition 4.2. A Borel measurable function T,,: R® — R, n € N, is called a consistent
estimator of a parameter 0 (in the sense of convergence in probability) for the family (,ulgl)geR if the
condition

Jim 1 <{($k)keNi (zk)ken € RY & | Ty (21, ... 20) — 0] > 6}) =0

holds for every e > 0 and 0 € R.

Definition 4.3. A Borel measurable function T,,: R" — R, n € N, is called a consistent
estimator of a parameter 0 (in the sense of convergence in distribution) for the family (/fgI )ocr if the
condition

lim f(Tn(, ... 7$n))dﬂg(($k)keN) = f(0)
RN
holds for every continuous bounded real-valued function f on R.

Remark 4.1. Based on [6, p. 272] (see Theorem 2), for the family (MSI)QGR we make the
following conclusions:

(a) the existence of a consistent estimator of a parameter 6 in the sense of everywhere conver-
gence implies the existence of a consistent estimator of a parameter 6 in the sense of convergence in
probability;

(b) the existence of a consistent estimator of a parameter § in the sense of convergence in
probability implies the existence of a consistent estimator of a parameter 6 in the sense of convergence
in distribution.
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Theorem 4.1. Let F' be a strictly increasing continuous distribution function on R and p be
a Borel probability measure on R defined by F. For 0 € R, we set Fy(x) = F(z — 0), z € R,

and denote by g the Borel probability measure on R defined by Fy (obviously, this is an equivalent
definition of the 0-shift of i). Then a function T, : R™ — R, defined by

To(z1,...,xy) = —F_l(n_l#({xl, ey T} N (—o0; 0])) 4.2)

for (x1,...,2,) € R", n € N, is a consistent estimator of a parameter 0 for the family (1} )ger in
the sense of almost everywhere convergence.
Proof. 1t is clear that T, is a Borel measurable function for n € N. For 8 € R, we set

Ay = {(mk)keN: (zx)ken 1S pg-uniformly distributed on R}.

By Corollary 2.4, we obtain uéV(Ag) =1 for 6 € R.
For 8 € R, we have

1o ({(ffk)keNi (zr)ken € RY & Tim Ty(@1,...,20) = 9}) —

= py ({(xk)k:eNi (z1)keny € RN & lim FH(n ' ({21, ..., 20} N (—00;0])) = —0}) —

n—o0

= i ({(wnens (@nen € RV & tim n= ({01 (=003 0)) = F(=0)}) =

= i ({@hens (@ken € RN & Tim 0™ # (o1, o} 0 (—0030)) = Fy(0)}) =

> g (Ag) = 1.

Theorem 4.1 is proved.

The following corollaries are simple consequences of Theorem 4.1 and Remark 4.1.

Corollary 4.1. An estimator T, defined by (4.2) is a consistent estimator of a parameter 0 for
the family (ulgI )ocr in the sense of convergence in probability.

Corollary 4.2. An estimator T), defined by (4.2) is a consistent estimator of a parameter 0 for
the family (/L@N)geR in the sense of convergence in distribution.

Remark 4.2. Combining Lemma 2.7 and Theorem 4.1,we get the validity of the condition

ng({(xk)kel\ﬂ (vk)ken € RY & — nlggo F " #({zr, ..., 20} N (=005 0])) =

n
— 1 -1 — —
= ) o —9}) -1

for € R when p is equivalent to the linear standard Gaussian measure on R, the first order absolute
moment of y is finite and the first order moment of 1 is equal to zero.

Definition 4.4. Following [1], the family (,U,SI)QGR is called strongly separated in the usual
sense if there exists a family (Zy)per of Borel subsets of RY such that
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(i) 1) (Zg) =1 for 6 € R;

(il) Zg, N Zy, = @ for all different parameters 01 and 0 from R;

(iii) UperZs = RN,

Definition 4.5. Following [1], a Borel measurable function T: RN — R is called an infinite
sample consistent estimator of a parameter 0 for the family (,ueN )ocr if the following condition:

(V) <9 ER— pp <{($k)keNi (zr)ken € RY & T((xh)ren) = 9}) = 1>

ia fulfilled.

Remark 4.3. The existence of an infinite sample consistent estimator of a parameter 6 for the
family (u} )ger implies that the family (u}))per is strongly separated in a usual sense. Indeed, if
we set Zg = {(z)ren: (@r)ken € RN & T((wg)ren) = 0} for § € R, then all the conditions of
Definition 2.5 will be satisfied.

Theorem 4.2. Let F be a strictly increasing continuous distribution function on R and p
be the Borel probability measure on R defined by F. For 6 € R, we set Fy(x) = F(x — 0),
z € R, and denote by 1o the Borel probabzlzly measure on R defined by Fy. Then the estimators
lim Tn ;= inf, SUPyy>n T and lim Tn = sup,, 1nfm>n T are infinite sample consistent estimators
of a parameter 0 for the family (:“9 Jocr, where T RN — R is defined by

(Varhren) ((@rren € RY = Ty((zren) = =F 7 (0" # (. @ 0 (o0 0)). - (43)

Proof. Following [6, p. 189], the functions HT; and himT; are Borel measurable. By Corol-
lary 2.4, we have ) (A4g) = 1 for 6 € R, which implies

1y ({(%)keNi (1) ren € RY & Tim T, (21 ken = 9}) >

>ty <{(wk)keN: (zr)ren € RY & Tim T, (2 ken = lim T, (24 ke = 9}) >

> i (Ag) =
where
Ay = {(xk)keN: (zg)ren is pg-uniformly distributed on R}

for 0 € R.

From the last relation it follows that RT; is the infinite sample consistent estimator of a
parameter 6 for the family (ugl)g@g.

Using the above scheme, we can established the validity of an analogous fact for the estimator
lim T5,.

Theorem 4.2 is proved.

Remark 4.4. By Remark 4.3 and Theorem 4.2, we deduce that the family (ug)geR is strongly
separated in the usual sense. Since each Borel subset of R is an element of the o-algebra S :=
:= Ngerdom(fiy), we claim that Theorem 4.2 extends the result of Lemma 2.6.
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Example 4.1. Let 19y be a linear Gaussian measure on R with parameters (0,1). Let []
denote the integer part of a real number. Since a sequence of real numbers (7 X k — [ X k])pen is
uniformly distributed on (0, 1) (see [2, p. 17], Example 2.1), by Lemma 2.4 we claim that a sequence
(zk)gen defined by

oy =F Y mxk—[rxk])+6

is a fi(9,1)-equidistributed sequence on R, where F' denotes a linear standard Gaussian distribution
function on R with parameters (6, 1).

It is obvious that (zj)ken is a certain realization of model (4.1), where (Ag)ken is a sequence of
independent Gaussian random variables on R.

In the sequel we use the notation introduced above:

(1) n is a number of trials;

(i) T, is the estimator defined by formula (4.2);

(iii) X, is the sample average;

(iv) @ is a “useful signal”.

We have considered the construction of the one-dimensional linear stochastic model (4.1) for
0 = 1. Below we present the numerical results obtained by Microsoft Excel.

Table 4.1

n T, X, n T, X,

50 0.994457883 1.146952654 550 1.04034032 1.034899747
100 1.036433389 1.010190601 600 1.036433389 1.043940988
150 1.022241387 1.064790041 650 1.03313984 1.036321771
200 1.036433389 1.037987511 700 1.030325691 1.037905202
250 1.027893346 1.045296447 750 1.033578332 1.03728633
300 1.036433389 1.044049728 800 1.03108705 1.032630945
350 1.030325691 1.034339407 850 1.033913784 1.037321098
400 1.036433389 1.045181911 900 1.031679632 1.026202323
450 1.031679632 1.023083495 950 1.034178696 1.036669278
500 1.036433389 1.044635371 1000 1.036433389 1.031131694

Note that the results of computations presented in Table 4.1 do not contradict Remark 4.2, which
asserts that under the conditions of Theorem 4.1, the estimators 7}, and X,, coincide and both are
consistent estimators of the “useful signal” 6.

We have also considered similar model constructions when F' is a Cauchy distribution function
on R. The results of relevant numerical computations are given in the next table.
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Table 4.2
n T, X, n T, X, 0
50 1.20879235 2.555449288 550 1.017284476 41.08688757 1
100 0.939062506 1.331789564 600 1.042790358 41.30221291 1
150 1.06489184 71.87525566 650 1.014605804 38.1800532 1
200 1.00000000 54.09578271 700 1.027297114 38.03399768 1
250 1.06489184 64.59240343 750 1.012645994 35.57956117 1
300 1.021166379 54.03265563 800 1.015832638 35.25149408 1
350 1.027297114 56.39846672 850 1.018652839 33.28723503 1
400 1.031919949 49.58316089 900 1.0070058 31.4036155 1
450 1.0070058 44.00842613 950 1.023420701 31.27321466 1
500 1.038428014 45.14322051 1000 1.012645994 29.73405416 1

We see that the results of numerical computations in Table 4.2 do not contradict Theorem 4.2,

which asserts that 7;, is a consistent estimator of the parameter § = 1. These results also show

that our attempt to estimate a useful signal by the sample average in our model is not successful.

These computational results seem natural because the mean and the variance do not exist for Cauchy

random variables.
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