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PROJECTIVE METHOD FOR EQUATION OF RISK THEORY
IN THE ARITHMETIC CASE

MNPOEKTUBHUI METO/I AJ151 PIBHAHHS TEOPIi PUSUKY
B APUCPMETUYHOMY BUITAKY

We consider a discrete model of operation of an insurance company whose initial capital can take any integer value. In
this statement, the problem of nonruin probability is naturally solved by the Wiener — Hopf method. Passing to generating
functions and reducing the fundamental equation of risk theory to a Riemann boundary-value problem on the unit circle,
we establish that this equation is a special one-sided discrete Wiener—Hopf equation whose symbol has a unique zero,
and, furthermore, this zero is simple. On the basis of the constructed solvability theory for this equation, we justify the
applicability of the projective method to the approximation of ruin probabilities in the spaces 1] and c{f . Conditions for the
distributions of waiting times and claims under which the method converges are established. The delayed renewal process
and stationary renewal process are considered, and approximations for the ruin probabilities in these processes are obtained.

PosmsmaeTbest uCKpeTHa MoAeNb (GyHKIIIOHYBaHHS CTPaxXoBOI KOMITaHii, TOYaTKOBHI KalliTall sIKOi MOXKe HaOyBaTH JOBIIb-
HOTO LJIOTO 3HAUCHHA. Y Takiii mocTaHOBLI MpobieMa 0OUUCIeHHS HMOBIPHOCTI CTIMIKOCTI KOMIIaHii MPHUPOAHO PO3B’A3Y-
€TbCst MeTorioM Binepa — Xonda. [Tpu nepexozi 1o TBipHUX QYHKIIH i 3BeIeHHI (yHIaMEHTAIBHOTO PIBHSHHS TEOPIil PUBUKY
1o TpaHW4HOI 3a7a4i PiMaHa Ha OZMHIMYHOMY KOJIi 3’SCOBaHO, IO PO3MISAYBAaHE PIBHSIHHS € OCOOJMBHM OJHOCTOPOHHIM
JIMCKPETHUM DIBHSHHAIM Binepa — Xomnga, cuMBOI SIKOTO Mae €JUHHN HyJb i 1eil Hynb € npoctuM. Ha 6a3i moOynoBaHoi
Teopii po3B’SI3HOCTI IIBOTO PIBHSAHHS OOIPYHTOBAHO 3aCTOCYBAaHHS NMPOEKTHBHOTO METOAY IO alpoKCHMalii HMOBipHO-
cTeil OAaHKPYTCTBa y MPOCTOpax lj' i cg' . OTprMaHO yMOBHM Ha PO3MOALIM YaciB OUIKyBaHHS BHUMOT 1 PO3MIPIB BHILIAT
Jutst 30DKHOCTI MeToxy. Po3misHyTO mpornec BiJJHOBJIEHHS i3 3ali3HEHHSIM 1 CTAI[lOHApHHUH IIPOIEC BiHOBICHHS, a TaKOX
HaONMMKeHHA [T HMOBIpHOCTEl OaHKPYTCTBA y IIUX HpoLEcax.

1. Introduction. Consider the discrete ordinary renewal model for functioning of an insurance
company in the arithmetic' case:

Assumptions. The renewal model is given by following conditions:

(a) the claim sizes {Zy,}nen are positive integer-valued independent identically distributed (iid)
random variables (rvs), having common generating function gz(z) = Z:;l qn 2" and finite mean®
= EZ;

(b) the inter-arrival times {T), }ncn are positive integer-valued iid rvs having common generating
Sfunction gr(z) = Zzozlpnz" and finite mean ET) = 1/«;

(c) the gross premium rate ¢ > au, ¢ € N;

(d) the sequences {Zy,} nen and {T), }nen are independent of each other.

Let Fz(v) and Fr(v) be the distributions of the random variables Z; and 77, respectively. It is
known that probability of solvency of the insurance company, ¢(u), with initial capital « > 0 in
ordinary renewal process, in general case, satisfies the fundamental equation of risk theory [2, 6, 14]:

00 u+cv
o(u) — /dFT(v) / o(u+cv—w)dFz(w) =0, uecR". (1)
0 0

'In the literature it is also used the term “periodic” [1].
2We denote by N the set of positive integers.
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566 V. A. CHERNECKY

At the derivation of this equation, nothing interferes us to consider u to be also negative. Really,
the insurance company can start its activity having a debt, v < 0, i.e., being in the state of ruin.
At the favorable concurrence of circumstances, the company can leave this state for the moment of
arrival of first claim and more in it can return not. It happens, for example, when the random variable
u+ ¢ — Z1 accepts a nonnegative value and hereinafter the company will not be ruined. Therefore,
it is reasonable to state the more general problem on the calculation of the nonruin probability for the
company with initial capital u € R, being in the state of nonruin later on, that is, we are interested
by the probability ¢(u) of the following event:

n
u+> (Th—Zx) >0 VneN, ueR
k=1

In such setting it is naturally to apply the Wiener— Hopf method [8, 16] for the solution of this
problem.

For the nonruin probability ¢(u), u € R, introduce in consideration the probabilities ¢ (u) by
the formulas

p+(u) = H(fu)p(u), ¢(u) = o (u) + o (u),
where H (u) is the Heaviside function.
Following Feller, [2, 6, 13, 14], derive the equation for ¢_(u),

o] u+cv

o (u) —/dFT(v) / or(u+cv—w)dFz(w)=0, uweR". )
0 0

Here we take into account that ¢ (u) = 0 for u < 0, and therefore integration in internal integral,
as a matter of fact, is over a set on which v + cv — w > 0.

Joining the equations (1) and (2), the equation for ¢4 (u), u € R, can be written in the form of
one equation,

(o] u-+cv

ot (u) +o_(u) — | dFp(v) or(u+cv—w)dFz(w)=0, ueR. 3)
[ ]

We are interested by the solution o (u) satisfying the conditions
o+(u) A1 when u— 4oo, and ¢_(u) (0 when u— —oc. 4)

Denote by Z the set of integers, Z* = {0,1,2,...}, Z~ ={-1,-2,... }.
Consider the linear space of all two-sided sequences of complex numbers & = {&, },cz. Denote
by 1; the Banach space of all sequences of complex numbers § = {&, } ,ez with the finite norm

o

€, = > el < o0

n=—oo

and by c the space of all convergent sequences ¢ which after introduction of the norm
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PROJECTIVE METHOD FOR EQUATION OF RISK THEORY IN THE ARITHMETIC CASE 567

1€]le = sup |&n| < oo
n

also becomes the Banach space. Let cg C c be the subspace of all sequences convergent to zero.

Let E be either 1; or cg and let m be some real number. Denote by F,,, the space of all numerical
sequences of the form f = {(1 + [n|7™&,)},,cz , Where £ € E. Introduction of the norm | f| = ||¢]|g
converts F,, in the Banach space isometric and isomorphic to £ [16]. In the case when m is a
positive integer, the sequence f = {f,}nez belongs to E,, if and only if A,y = {n*fulnez € E,
k=0,1,...,m.

Each of the spaces F,, has two distinguished subspaces: E|, is the subspace of sequences T =
= {&F b ent (or {&n}ner+) characterized by the condition & = 0 for n € Z~, and E,, is the
subspace of sequences £~ = {¢,, }nez (or {&n}nez-) for which &, =0, n € Z7.

Let T = {t € C: |t| = 1} denote the complex unit circle, Bt = {z: |z| < 1} the complex unit
disk and B~ = {z: |z| > 1} the complementary disk to B* U T.

For the space E,, of sequences £ = {, },ez denote by E’m the space of generating functions
(called also Laurent or Fourier transforms) of the form

o
Et)= Y &t", teT, (5)
n=-—oo
being generalized functions on T (Schwartz distributions) [9].

Denote by W the Wiener algebra of all functions of the form (5) on T, expanding in absolutely
convergent Fourier series. Let W,,,, 0 < m < oo, be the algebra of all functions of the form (5) for
which {&, }nez € lim, Wo = W. As it is known, for m € N, the algebra W,,, contains any m times
differentiable function =(t¢) the derivatives of which belong to W [16]. In what follows, it will be
useful for us the fact that if the point ¢y € T is zero of the order m for Z(¢) € W,,, then Z(t) is
representable in the form Z(¢) = (¢ — to)™b(t) with b(t) € W [16].

Denote by E:,CL the subspace of Em, consisting, generally speaking, of the Schwartz distributions
of the form = (¢) = ZZO_O &nt", t € T, which are the boundary values of analytic functions in BT,
expandable into a Taylor series about z,

[1]

t(2) = Zgnz”, z € BY,
n=0

and let E;L be the subspace of Em, consisting, generally speaking, of the Schwartz distributions
-1

=E(t) = Z &nt", t € T, being the boundary values of analytic functions in B~, expandable
n=-—oo

into a Taylor series about 1/z,

-1
E(2)= Y &2, z€B.
n=—00
We say that Z(t) = 21 (t) + 2~ (t) € {E, E;} if EY(t) € Ef and 2~ (t) € B, t € T.
Consider the sequence of nonruin probabilities ¢ = {¢;, }nez € c. Following Feller, [2, 6, 13, 14],
going over to the sums in the repeated Stieltjes integral in (3), the problem (3), (4) in the arithmetic
case can be rewritten in the discrete form
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568 V. A. CHERNECKY

[e’¢) u-+cv
Ap=of +05 =Y @ Y PkPiyer =0, uEL, (6)
v=1 k=1
o A1 when u— 4oo, and ¢, \,0 when u— —oo. @)

Here we take into account that ¢, = 0 for u € Z~, and therefore summation in internal sum, as a
matter of fact, is proceeded on a set on which u+cv—w € Z*. As we will see, the second condition
in (7) is a direct consequence of the first one. We will say that the vector ¢ = T + o~ belongs to
the class {ct,cy }, if o* € ¢t and ¢~ € ¢;. Thus, we shall seek the solution of the problem (6),
(7) in the space ¢ € {c*, ¢y }.

That problem, called compound binomial model, was earlier considered in the monograph of
A. Mel’nikov [15] only for stationary process and only in the case when ¢ = 1. This model can be
interpreted as a model with inter-arrival times 7, having the shifted geometrical distribution with
generating function

qz
1—(1-¢q)2’

A. Mel’nikov reduces the solution of such problem to the solution of infinite system of linear algebraic

gr(z) = 0<g=a<l. ®)

equations with a Toeplitz matrix of coefficients using some recurrence relations. The solution of the
problem is received in the terms of a generating function only for u € Z*.

In the present paper, going over to generating functions and reducing the equation (6) to a Rie-
mann boundary-value problem on the unit circle T, we will see that this equation turns out to be
nonnormal® one-sided discrete Wiener—Hopf equation. Nonnormality of the equation (6) imposes
some difficulties on the construction of its solvability theory and additional restrictions on the distri-
butions of 7;, and Z,, for the convergence of the projective method for the approximate solution of
the problem. Using the Wiener — Hopf method, the solvability theory for this equation is constructed,
on the base of which the applicability of the projective method is justified, and the conditions on
distributions of the waiting times and claims are obtained for the convergence of the method in the
spaces 1] and car. llustrative example is given.

The paper is organized as follows. In Section 2, we investigate solvability of the problem (6), (7)
reducing the equation (6) to a Riemann boundary-value problem which is solved by the factorization
method, and obtain exact solution of the problem (6), (7) in terms of the generating functions.
In Section 3, the formulas for nonruin probabilities in accompanying delayed renewal (stationary)
process are also given in terms of generating functions. Solvability theory of the problem for delayed
ordinary renewal process in arithmetic case slightly differs of that in the nonarithmetic case. It
concerns the value ¢°(0) = 1 — i the nonarithmetic case, which, in arithmetic case for ¢ = 1,
is accepted for the value v = —1, and, in the general case, when ¢ € N the values ¢, u =
= —1,—2,..., —c, are expressed in the terms of cth roots of unity. The formulas for the solution
of the problem (6), (7) in the stationary case are also given. Earlier some results on given problem
was announced by the author in [3]. Section 4 presents the results from [16] on the convergence of
projective method for degenerated discrete Wiener — Hopf equation, and in Section 5, relying on these

3In functional analysis, the terms ‘non-Noetherian’, ‘singular’, ‘nonelliptic’, or ‘degenerated’ are also used.
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PROJECTIVE METHOD FOR EQUATION OF RISK THEORY IN THE ARITHMETIC CASE 569

results, we obtain sufficient conditions on the distributions of random variables T,, and Z,, for the
convergence of the projective method in the spaces lf and cf{. Approximation for ruin probabilities
in delayed process is also given. Illustrative example is considered.

2. Solvability of the fundamental equation. Consider the sequence of nonruin probabilities
© = {ontnez € {cT,cy}, and define the generating functions ®(¢) € {c*,¢,}, ¢t € T, for the
sequence by the formula

+oo
Z outt, teT,

U=—00

considered as a generalized function on T. In reality, we are interested by the convergent series
+00 —1
= nguz“, z€BT, @ (2) = Z w2, z€eBT.
u=0 U=—00
Theorem 1. If the conditions of Assumptions is fulfilled, then the symbol A(t) of the operator
A in (6) is given by the formula
A(t) =1- gT(t_c) gz(t) eWy,, teT. )

Proof. Going over to generating functions, reduce the equation (6) to a Riemann boundary-value
problem. We have

u+-cv
dH(t) + ( Z (Z%pruﬂv k)t“—o teT.

u=—00 \v=1

Interchanging order of summation in the sum term, we obtain

u-+cv
3 (zz ) SV SD S I
v=1

u=—00 \v=1 u=k—cv

— qut cv Zpktk Z Qou_ bov) tu (k—cv) —

u=k—cv

= qut v Zpk;tk Zsﬁtn =gr(t™) gz(t) @ (t), teT.
Thus, the equation (6) is reduced to the Riemann boundary-value problem [7, 8, 16],

(1— gr(t™)gz() @F(t) = —® (1), teT. (10)

According to [7, 8, 16], the symbol A(t) is the coefficient at (¢).

Note that we seek a solution to (10) at additional conditions: &~ (c0) = 0 and ®*(¢) has simple
pole with the residue +1 at tg = 1, since ¢, — 1 when n — co.

The belonging A(t) € W follows from the existence of finite means for the random variables
T, and Z,,. Thus, A(t) is differentiable function on T.

Theorem 1 is proved.
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570 V. A. CHERNECKY

It is interesting to observe that g7(t~) gz () is the generating function for the random variable
U= Z1 - CTl.
In this way, the equation (6) can be considered as one-sided Wiener — Hopf type discrete equation

(e.)
Y ar_jof =0, keZt, (11)
§=0

the coefficient matrix of which, {ar_;} jez+, is determined by the decomposition of the symbol
A(t) into Fourier series

At)y= > at/, teT.

j=—00

Observe that at solution of the Wiener—Hopf equation, the introduction in consideration of the
function @~ (z), z € B~ UT, is a successful artificial method [8, 10, 17]. As in our case, the function
®~(2), z € B, bears, in addition, the completely definite probabilistic sense load as the component
of generating function ®(¢), t € T.

Let [arg A(t)]T be the increment of the argument of A(¢) when ¢ passes T in positive direction
(counter-clockwise) and

indr A(t) = %[arg A(D))r.

It should be noted the following properties of the symbol A(t).
Theorem 2. If conditions of Assumptions is fulfilled, then:
1) the point ty = 1 is the unique zero of the symbol A(t) on T, and this zero is simple;
2)1-A)| <1 teT,
3) for the function B(t) = A(t)/(1 —t) € W, we have B(t) # 0,t € T, and

indy B(t) = —1; (12)
4) for the symbol A(t), the following factorization exists:
Lot
A(t) = AT(1) ——A"(1), teT. (13)

with

AE(2) 40, 2eBEUT, A*X(t)eW?*, teT, AT1)=1, A (1)=-+pu

o
5) the unique solution of the problem (6), (7) is generated by the functions
1 _ A~ (2) _
Pr(2)= — BTUT, @ =— B~ UT. 14
(2) i—oaey B VT (2) - 2€BTU (14)
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Proof. 1. Uniqueness of zero of A(t), t € T, follows from the fact that the steps of the random
variables T,, and Z,, are assumed to be equal 1 [6]. The first order of the root {5 = 1 follows from
the L’Hospital rule and the condition ¢ > au:

At

tim 20— iy (g7(59)) 02(8) + 0 (47 () = — <+ p£0,

So, we have to do with the Riemann problem (10) in exceptional case and the corresponding
equation (6) is of nonnormal type [7, 8, 16].

2. The inequality |1 — A(t)| < 1, t € T, follows from the corresponding property of generating
functions. Geometrical sense of this inequality is that the plot " of the symbol ( = A(t), t € T, is
situated in the unite disk with the center in the point (; = 1 and this plot is tangent to the axis of
ordinates at the point (; = O in the plane of the complex variable (.

3. Since the point tg = 1 € T is the simple root of A(t) € W7, it follows that A(t) is representable
in the form A(t) = (t — 1) B(t) with B(t) € W [16].

Next, the following equality holds:

indy A(t) = —%. (15)

Really,

(A(E) |rmo = i(c/a — ), 7€ (—m,7],

what means that the tangent vector to I" at (y = 0 is directed along the positive direction on the axis
of ordinates when 7 € (—m, 7| bypasses from — to 7, i.e., in negative direction (clockwise) with
respect to the domain bounded by the curve I'. This implies (15), since the A(t) at typ = 1 has the
simple root, A(t) has not other roots on T, and the plot I of the symbol A(¢) is smooth.

On the other hand we have

1
indy A(t) = indy (1 — t) + indy B(t) = B + indy B(t),

whence, in view of (15), we have (12).

4. Introduce into consideration the function C'(t) = A(t) %—t which has the following properties:
C(t) #0,t €T, indy C(t) = 0, C(t) is smooth on T \ {1} and continuous* on T.

Since the point ¢y = 1 is a simple root of the function A(t) € W7 on T, the function C'(¢) belongs
to the space W, [16], Section 5.1.3, Corollary 1.4, and can be factored in the form

Cty=Ct@t)-C~(t), teT,

where CF(t) € W and, consequently, are continuous, C*(z) # 0, z € BT UT. As it is known,
C*(t) are defined up to constant factors.

On the other hand, since C(t) is smooth on T \ {1}, the factors C*(t) can be expressed in terms
of the Cauchy type integral on ¢t € T \ {1} [7]

*Smoothness is, generally speaking, violated at to = 1, and C(¢) can be nothing but continuous at o = 1.
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1 1 In[C(7)]
04 — - 7 i S
C=(t) =exp 21n[C(t)]j: 57 V.p./ — dr|, teT\{1}.
T
Whether these formulas work for the point tg = 1 remains the open problem, but since C*(t) are

continuous on T, the values C*(1) can be determined by continuity.

Setting
0]

At(@t) = A~t)y=C~(t)C*T(1), teT

(t) o) (t) ®cT(1), teT,
we obtain the existence of the unique factorization of the form (13) with AT(1) = 1. The value
A~ (1) = S p follows from the condition A™(1) = 1 by the L’Hospital rule applied to the

«
1-t¢

representation A(t) = A™(t) — A~ (t) at the point ¢y = 1.
5. Note that in [7], the Riemann problem (10) is written in classical form as

+(4) — o
T (t) = —mq) (t), teT,

and we seek the solution of the problem in exceptional case with coefficient (—1/A(t)) having a
simple pole at ¢y = 1, and on the solution of the problem additional conditions are imposed: ®(¢)
has a simple pole at tg = 1, &~ (¢t) € W~ on T and &~ (oc0) = 0. Using the results of the Gakhov
monograph [7] on exceptional case of the Riemann problem, observing that in our case (in notation
of [7]) kK = 1, p = 1, we obtain that the Riemann problem (10) has one linear independent solution
of the form

1
+ - - + — — _ —
q)l (Z)— (1—Z)C+(Z), z€B 9 (I)l (Z) P ) z€B )

which generate one linear independent solution of the equation (6), belonging to the space {c*, c; }.
Then the solution

1
z€BT, & (2)=— , z€B,

o7 (z) = (1—2)At(2)’ z

generates unique solution of the problem (6), (7). Let us prove this.
Consider the series

1 - 1 dt
A“l‘(z) nzoanz ) ZG ) a/n 27T7,/A+<t)tn+1’ 7”L€ J
- T

0

) . 1 [ A()dt )

A (z):nzooanz”’ z€B UT, an:Qm‘/t”H’ n € Z~ U{0}.
T T

Note that from the equality AT (1) = 1 we have

1 o
AT (D) :Zan: 1.
n=0
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Expansion for ®*(z) is of the following form:

1 o n
+ _ _ n +
CD(Z)_(l—Z)A"—(Z)_Z ai | 2, z e BT.
n=0 \k=0
Assuming’
n
®n = Z ag, n e Z+a
k=0
we obtain

lim = lim Za =
n—>+oog0n n—-+o0o k

Expansion for &~ (z) is of the form

Assume
Pn = —Ap-1, N E v/
The series for A~ (t), t € T, converges at ty = 1, since

0
_ c
A (1) = g an:—&—i—u.

n=—oo

This implies that

lim ¢, =0.

n——oo

Theorem 2 is proved.

573

Especially simply the Wiener — Hopf method works when the random variables 7}, and Z,, have
the rational generating functions. This happens to be the case for such distributions as uniform

discrete, binomial, geometrical, negative binomial with entire exponent (all shifted in right in a

reasonable way). In these cases, the symbol A(¢) is a rational function which can be factored in

explicit form.

It may be noted that the equation (6) and the Riemann problem is not equivalent each other. For

example, the solution of the Riemann problem (10)

SThe formulas for the Taylor coefficients of analytic function in B+, having simple pole on T, can be considered as a
Cauchy type integral. If the function 1/A™(¢) is, in addition, supposed Holder-continuous at the point to = 1, then the

coefficients ¢,, can be computed by the following formulas:

1 1 V/$ ne
T Toar)  2m PV ) AY@) (A -ty
T
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{A:(t) - (1-— tiA‘ (t) }

does not generate a solution of the equation (6) since for the function

(1-2)A"(2)

&y () = —

the condition ®; (co) = 0 is not valid. Thus, the homogeneous equation (6) has not any more solu-
tions in arbitrary other space except the solution (14). It opens the way to the search of approximate
solution of the problem (6), (7) reducing the equation (6) in the interval [0,00) to an equivalent
nonhomogeneous equation in the space car.

Example. Assume ¢ = 2, and let T,, be shifted negative binomial random variable having

generating function

49 t 7 49¢2

o gr(t) = ®2 1)

gr(t) = ama a=g

and Z,, be shifted negative binomial random variable with generating function

(t) — g# — §
2 =61 a2 M w
Then
Alt) = (t — 1)(64% — 448t + 560> + 2472 — 8t — 16)
N (812 — 1)2(t — 4)2 -
1—t
where
AT (1) = (t — 2.168948920)(t — 5.160935390)

5404356589 (¢ — 4)2 ’

£2 + 5550511502t + .09918770222)(t — .2251668399)
(82 — 1)2 :

t
A~ (t) = —34.58788218 (

and

(» —4)
(2 — 2.168948920)(z — 5.160935390)(1 — z)’

®F(2) = 5404356589 z€ BY,

(22 + 5550511502z + .09918770222)(z — .2251668399)

d(z) = 34.58788218 &2 1) :

z€B.

+1

Expanding the functions ®*(z) into series about z*!, respectively, we obtain the solution of the

problem (6), (7). Corresponding probabilities are adduced in the Table at the end of the paper.
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3. Delayed renewal processes. In addition to the sequence {T,,}, n € N, introduce a positive
oo
integer-valued random variable Sy with some generating function gg,(z) = g . rpz" and consider
n=
the variables

Spn=So+T1+To+...+7T,

called the renewal epochs [6]. The renewal process {S,} is called pure if Sy = 0 and delayed
otherwise. The expected number of renewal epochs on [0, 1] equals

n):ZP{Sk Sn}7 n€Z+7

and has the generating function

gy (z) = 9502 <1+ZQT > = 950(2) 2 e B (16)

1—2 (1—=2)(1—gr(2))’
It is known, [6], that
lim [V(n+1) —V(n)] = a.

n—oo

It follows from this that V' (n) ~ an as n — oo. It is natural to ask whether gg,(z) can be chosen as
to get the identity V(n) = an, n € Z*, meaning a constant renewal rate.
Noticing that the generating function for the sequence {an}, n € Z*, is given by the formula

I{any (2 —a§:nz V’ z € BT,

and equating gy (2) = g{an}(2), we obtain

g5, (2) = O‘Z(ll_gj(z)), 2€BtUT, (17)

which is the generating function of a proper probability distribution® and so the answer is affirmative:

With the initial random variable Sy having generating function (17) the renewal rate is constant,
V(n)=an,neZt.

The following statement takes place:

The ordinary renewal process in arithmetic case is stationary if and only if the inter-arrival times
T, have the shifted geometrical distribution with the generating function (8).

This shifted geometrical distributions is analog of exponential distribution for the nonarithmetic
case.

For the problem (6), (7), we consider the accompanying delayed stationary renewal process
{Sn }nez+ with generating function (17) for Sp. Then the generating function for the nonruin proba-
bilities in such process is built as follows:

at (1= gr(t=")) g2() 2*()

cI)s(t) = 3gs, (tic) gZ(t) (I)Jr(t) = 1 — ¢—c -

SUsing the L’Hospital rule, we can prove that gs, (z) is extendable on T with gs, (1) = 1.
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_a(l—gr(t7°)) gz(t) 27 (1)
o1 )

teT, (18)

similarly as it is done in the nonarithmetic case.
Using (10), we can exclude g7 (t~¢) from the last expression,
_a(l—gz(t)2(t) + a®™ ()

D, (t) = " , teT. (19)

Let

Oy(t)= > @it teT.

U=—00

Our immediate task is obtaining formulas for ®F(z), z € B*. For this end we must solve the jump
problem for the function ®4(t) [7]

O5(t) = (t) + @, (t) e {e". ¢y}, teT,

where @ (¢) has simple poles at the cth roots of unity, ®; (t) € W, t € T, and @ (00) = 0.
Rewrite the formula (19) in the equivalent form

_all =gz (W) +per(t) | a® (1) — pes(t)

D (t teT 20
S( ) tc—1 e —1 ’ c L, ( )
where p._1(t) is a specially chosen polynomial

Pe—1(t) = pe—1t 4 pe—at® + ...+ po
with the coefficients pg, £ = 0,1,...,c — 1, satisfying the system of linear equations with the
Vandermonde matrix,

pe—1(er) =a® (er), k=0,1,...,¢c—1, 21)
where ¢y, are the cth roots of unity.

Then from (20) we obtain
1—gz(t) Dt (¢ —1(t)
ot (1) = L9z )i tEHpC 10 cet ter, (22)
O (t) — pe—1(t)
oo (1) =2 (1) ;ZC 1()Ec0, teT. (23)
Representing @ () in the form
- aé_(t) 1 pcfl(t) 1
O () =— T+ T, teT, (24)
e 1-1 e 1- 1L

we see that p._1(t) is representable in the form

Pe—1(t) = @5t 4 Pt L,
with the coefficients ¢* | = p._x, k = 1,2,...,c, which are the first ¢ coefficients of the expansion

of @ (z) into series about 1/z, z € B™.
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In the simplest case ¢ = 1, from the system (21), we obtain the relation
s _ c
©? =a® (1)=a(**u) =l-ap
that is the analog of the known equality

p(0)=1-——

for the nonruin probability ¢(u) in the nonarithmetic case at ¢ = 1 [2, 13, 14].

577

Since the function ®; (¢) is continuous on T, the Taylor-series expansion for it is not the problem.

The function ®}(z) has the simple poles at the cth roots of unity. Therefore the expansion for

1 (z) is constructed in two steps. Since the numerator of (22),
AT () = a(l = gz(t) @7 () + pe-1(1)

is continuous on T, we construct the expansion for it
o
Af(t) = Zaflz", z€BTUT,
n=0

and then the expansion for ®(2) is constructed by the expansion of the ratio’

ASJF(Z) o ZZOZO a’flzn _ i s . n
1 — z¢ 1—2¢ PnZ
n=0

Example (continued). The system (21) for ¢® ; and ¢_o in our case has the form
Pl iy = a®™ (1),
=21+ @2y = ad (-1),
the solution of which is ¢® | = .5348541581, ¢®, = .1688495471. Then

b () — (L= 92(2)PF(2) + SHSHIFS1= + 1683495471
- 1— 22 ’

o5 (2)

_ 08000291975z + .01274595223 45485123832 — .1089541931

22 +.7071067812z + .125 * 22 — 7071067812z + .125

Corresponding probabilities are adduced in Table at the end of the paper.

"If the function A7 (¢) is supposed Holder-continuous at the c th roots of unity on T, then the coefficients %, can be computed

by the formulas

n+1 .
2, 27

o YizoAler) 1 V/ AT (t)dt
Sek=0_F 2 7 v | Gy

_ +
#n = 1—t)tn+l’ neL.
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4. Nonruin probabilities for stationary process. Assume now that the inter-arrival times 7,
have the shifted geometrical distribution with the generating function (8), i.e., the renewal process is
stationary and hence ®,(t) = ®(t). Then from (22) and (23) we obtain the equations for ®F(z):

= @l =92(2)) 27 (2) +pei(2)

+ +
7(2) I . z€B, (25)
O (2) — pe_
oo (z) = 2% (2) De 18) g (26)
1-=2
whence
s c—1 s c—2 s
— + 2 + ...+
OF(z) = To1E T2t P L eBT, 27)
1—z¢—a(l—gz(2)
_ @ 1267 4 82T L, _
O (2) = — , z€B. (28)
If we put z = 0 in (27), we obtain the formula® for ©5s
S
§s=2f(0) = —=.
Y0 s( ) 1— o
In the simplest case when ¢ = 1, we obtain’
1—au
df(z) = €EBTUT 29
O R , (29)
and
o = 1—ap
T 1—a

This formula was derived by A. Mel’nikov in [15] by other method.

5. The projective method. Since to construct explicitly the factorization of the symbol frequently
is rather difficultly, the approximate methods have particular importance. For approximate solution
of fundamental equation of risk theory in arithmetic case we propose to use the projective method
(called in the literature also finite section method or natural reduction method) [16].

Consider discrete Wiener — Hopf equation in general case,

oo
S ar&=mni, keZt. (30)
j=0

Here it is assumed that

(e.o]
D> lal<oo,
)yt = {nf}jezﬂu is given and such that the equation (30) is solvable,

3) &7 = {¢},ez+ is the unknown vector in the space ET, where E™ is any of the spaces 1}

+
or ¢, .

¥Remind that o = ¢ < 1 and gz(0) = 0.
°In [15] this formula is written in some cumbersome form.
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For discrete Wiener—Hopf equation (30) the projective method consists in following [10-12,
16, 17]:
The equation (30) is replaced by the system of n + 1 equations with n + 1 unknown

n
D& = k=01....n, (31)
j=0

and solution of this curtained (reduced) system,

&M = (&, &1, G,

is considered as the approximation to the solution of initial equation (30).
If the condition of normality on the symbol,

oo

At)= > ajt! £0, teT,
j=—o0
is not fulfilled (as in our case), the projective process (31) in the space 1, generally, already does
not converge any more for all that n* € 1 for which the equation (30) is solvable [16]. We are
interested by the conditions at which the projective method works for the problem (6), (7).
Let to = 1 be unique zero of the symbol A(¢) on T and this zero is simple. Put

Ct)y=A®)(t7'=1)"", teT

The following theorem is the simple consequence of the Theorem 0.4 proved in [16].

Theorem 3 (convergence in 1), Let C(t) € W1.

(@) If C(t) # 0 and ind C(t) = 0, then the projective method (31) converges in the space 1] for
alln* € lfl.

(b) In addition, if C(t) € Wi,s and nt € lf1+5, 0 > 0, then it is valid the estimate

e — €M = O(n™®), - oo,

The following theorem is the simple consequence of Theorem 4.1 and Theorem 4.2, Ch. 11 [16].
Theorem 4 (convergence in ¢ ). Let C(t) € W, C(t) # 0.

(a) If indpC(t) = 0, then the projective method for the system (30) converges in the space car .
(b) In addition, if C(t) € Wiys, and n € C;ré’ 0 > 0, then it is valid the estimate

e = €M = 0™, n— +oo.

6. Convergence of the projective method for the fundamental equation. Here it is convenient
to introduce the ruin probability

v =1—-¢t, uwezt.

Then the problem (6), (7) (only for u € Z™) can be rewritten in the form of inhomogeneous equation
for 4}
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u+-cv u+-cv

Z%Zm%mkl—Z%Zm,MT‘ (32)
v=1 v=1

It follows from results of S.Prossdorf [16] that the problem (32), (33) has an unique solution
in the spaces cg and 1] . Using Theorems 3 and 4, we can receive the conditions on the random
variables 7T}, and Z,,, and consequently, on the symbol A(¢) and on the right part ™ = {n;" },cz+ of
the equation (32) with

u+cv

ﬂ—Z%Zm,%T’ (34)
v=1

for the convergence of projective process (31) for the problem (32), (33) in the spaces lf and car.

For this end we must clarify the probabilistic nature of the right part ™ and its properties.

Theorem 5. The right part n* of the equation (32) is the right tail of the random variable
U=27—cl.

Proof is obvious.

Corollary 1. If A(t) € Wy, thenn™ € lfk_l.

Proceeding from Theorem 5, Theorem 3 in the case of the problem (32), (33) can be formulated
in the following form:

Theorem 6 (convergence in lf'). Let the conditions of Assumptions be fulfilled.

(a) In addition, if the random variables T, and Z, have finite variances then the projective
process (31) for the problem (32), (33) converges in the space lf.

(b) If the random variables T,, and Z,, have finite (2 + 0)th moments, § > 0, then it is valid the
estimate

I = @l = O(n™%), n— +oo.

Proof. The existence of finite variances for 7,, and Z,, implies A(t) € Wa, C(t) € Wy, and si-
multaneously n* € l1 1, t € T[16] (Ch. 5, Theorem 1.7). Besides we have C(t) # 0, indr C(t) = 0.
By Theorem 4 this implies the statement (a).

It follows from the existence of the finite (2 + §)th moments for the random variables 7}, and Z,
that A(t) € Ways, C(t) € Wiqs and nt € lil +s- By Theorem 4 this implies the statement (b).

Theorem 6 is proved.

Theorem 4 for the problem (32), (33) can be formulated as follows:

Theorem 7 (convergence in ¢ ). Let the conditions of Assumptions be fulfilled.

(a) The projective method (31) for the problem (32), (33) converges in the space ca'.

(b) In addition, if the random variables T,, and Z,, have finite (2 + 0)th moments, 6 > 0, then it
is valid the estimate

= o = O™, n— +oo.
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Proof. (a) From existence of finite means for the random variables 7,, and Z,, it is follows that
A(t) € Wy, and, consequently, C'(t) =€ W [16]. By Theorem 4 this implies the statement (a).

The statement (b) is proved in a way analogous to that used for the proof of the statement (b) of
Theorem 6.

Theorem 7 is proved.

Note that the projective method converges in the space car without superposition of somehow
additional conditions on the random variables 7}, and Z,, except the conditions of Assumptions. Such
quality of projective method removes the problem of “large” claims [5].

Exact and approximate nonruin probabilities from Example

u Pu Pu ©u P
~10 | .1233318169e-3 | .1232544182¢-3 | .1121618097e-3 | .1121656751¢-3
9 5508161983e-3 | .5507966082¢-3 | .5029119846e-3 | .5029293048¢-3
-8 8270422905¢-3 | .8265289772¢-3 | .7554169265¢-3 | .7554429513¢-3
7 3568781788e-2 | .3568646637¢-2 | .3278631163e-2 | .3278744079¢-2
-6 5339440364¢-2 | .5336180872¢-2 | .4908314995e-2 | .4908484016¢-2
-5 2184827192¢-1 2184736324¢-1 | .2027173160e-1 | .2027242975¢-1
-4 3250033924e-1 3248103939%¢-1 | .3018635667e-1 | .3018739538e-1
3 1211703164 1211644271 1145153112 1145192552
2 1782812446 1781810546 1688495471 1688553493
-1 5404356589 5403995867 5348541581 5348725793
0 7724782018 7725048388 7696659284 7696924

1 8920702933 8921010541 8907273961 89075812

2 9496515748 9496843208 19490234591 949056191

3 9766729524 9767066317 9763816202 976415293
4 19892229558 9892570645 19890882995 19891224045
5 9950269424 9950612554 9949647935 19949991059
6 9977063305 9977407385 9976776636 9977120670
7 19989423371 9989767060 9989291175 19989635043
8 19995123308 9995470499 19995062351 19995409313
9 19997751528 9998084191 19997723421 19998057237
10 19998963325 19999325190 19998950366 19999315536
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Example (continued). Since ®(t) € {c*,c;}, t € T, the approximation CT)?;) (t) € ¢t for
Pt (t) is selected in the form

~ B n ~(n) tn+1
@@)(t)_’;o@wk )tk+1—_t, teT.

Then the generating function &D(;l) (t) for the vector @(m is constructed by the formula'”

B, (t) = <—A(t)?f>(+n)(t)) , teT,

and the approximate generating function for the approximate probabilities ©° in delayed renewal
process is constructed using the formulas of Section 3, in which the exact solution ®*(¢) should be
replaced by the approximate solution &)(tl) (t).

The comparison of exact and approximate values of nonruin probabilities in the Table shows
sufficiently accuracy of the method.
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"By (-)~ we mean a projection on the subspace of the boundary values ® (), t € T, of the functions analytical in
B~, & (c0) = 0.
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