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ON POLYMER EXPANSIONS FOR GENERALIZED GIBBS LATTICE SYSTEMS
OF OSCILLATORS WITH TERNARY INTERACTION

ITPO IMOJIIMEPHI PO3KJIAAN AJISA Y3ATAJIBHEHUX I'lBBCIBCBKHUX
TPATKOBUX CUCTEM OCIHUJISAATOPIB 3 TEPHAPHOIO B3AEMO/JIEIO

We propose a new short proof of the convergence of high-temperature polymer expansions for the thermodynamic limit
of canonical correlation functions of classical and quantum Gibbs lattice systems of oscillators interacting via pair and
ternary potentials and nonequilibrium stochastic systems of oscillators interacting via a pair potential with Gibbsian initial
correlation functions.

3anporoHOBaHO HOBE KOPOTKE IOBEJACHHS 30DKHOCTI BHCOKOTEMIIEPAaTypHHX MHOJIMEPHHX PO3KJIAIiB TEpMOIMHAMIUHOT
TpaHHI KaHOHIYHUX KOPEMiHHUX (YHKIH IPAaTKOBUX KIACHYHUX Ta KBAHTOBHUX TiOOCIBCBKUX CHCTEM OCHUIIATOPIB, IO
B3a€MOJIIIOTh 3aB/AKH IIADHOMY Ta TEPHAPHOMY NOTEHIIiaJIaM, a TAKO)K HEPIBHOBAXKHUX CTOXaCTHMYHUX CHCTEM OCLUIATOPIB,
SIKi B3a€MOZIIOTH 3aBJISKY ITaPHOMY IOTEHIliaTy 3 Ti00CIBCHKMMH ITOYAaTKOBIMH KOPEISIIHHIMY (yHKIISIMU.

We consider in the canonical ensemble generalized Gibbs systems on the lattice Z?, whose sites
index variables from the measure space (£2, P"), with the potential energy U,, which is a measurable
function, expressed through the one-particle (external) potential u(w) and the two-particle complex-
valued potential 1y (wy, wy)

Ue(wp) = Z u(wy) + Z Uy —y (Wi, wy),

TEA z,yEN

where A is a finite set with the cardinality |A|. P? is a positive o-finite measure (it is finite on
compact sets if {2 is a complete metric space) and P%(£2) = oo.
The Gibbs canonical correlation functions are given by

P wx) = ZXI /e_ﬁUc(“’A)PO(de\X), Zp = /e_BUC("JA)PO(de) >0, BeR'.

Here /3 is an inverse temperature, the integration is performed over QX1 QIAl respectively, and
POdwx) =] . P%(dw,).
reX . . :
In [1, 2] we showed that three different choices of the measure space {2 and the potentials
correspond to Gibbs classical, Gibbs quantum systems of lattice oscillators, interacting via the pair

u) (s ay) = Jo(|z — yl)uo(gz, ay)

and the factorized ternary

U@y,z(%, Qy7Qz) = J1(|$ - y|)<]1(|y - Z|)U1(q:1:7 Qy)ul(an QZ)

potentials such that J, € L'(Z?) and nonequilibrium gradient stochastic systems of lattice oscilla-
tors interacting via the pair potential 2u2_y (their initial states are Gibbsian with a pair potential).
The correlations functions of the latter systems are represented as correlation functions of a lattice
diffusion Gibbs path oscillator system with pair and ternary interaction.The potential energy of the
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stochastic oscillators, which is present in the Smoluchowski equation (the forward Kolmogorov equa-
tion), is a sum of two terms generated by an external and pair potentials. The considered potentials
are polynomials in oscillator variables ¢, € R. The external potentials are bounded from below
even polynomials u(q) and ug(q),q € R, of the 2n and 2n-the degrees for classical, quantum and
stochastic systems, respectively. Note that we used in [2] the following notations: u°(q) = 2uq(q)
and ©°(q,q') = 2uo(q, ).

The spaces 2 for these systems are represented as Q0 x 2, (w € Q: w = (W°, wy),w’ € Q0 w, €
€ Q") such that Q° = Q, = R for classical Gibbs systems and Q20 = R x C(R"), Q, = C(R")
for the remaining systems, where C'(R™) is the space of continuous functions on R™.The measure
PY is factorized on Q° x Q,, ie., P® = P® Py and P, is a probability measure. Besides the
following equalities are true: P(dq) = dq, Py(ds) = (v/2m)te="/2ds for Gibbs classical systems,
P(dw) = quf g(dw), P(dw) = dqP,(dw) for Gibbs quantum and stochastic systems, respectively,
where P;(dw) is the Wiener measure and PP (dw) is the conditional Wiener measure concentrated
on continuous paths starting and arriving into a point ¢ at a “time”  (see the Remark 1 in the end
of the paper).

The goal of this paper is to find the thermodynamic limit A — Z¢ of the correlation functions and
simplify the technique proposed for that in [1, 2] based on proving of a convergence of the polymer
high-temperature expansion for the correlation functions (see the Remark 2). The expansion is given
by

B > ulwz)

prx(ox) = e o5 ) = 37 a0 UY) [ Pldiy) P (),
YeA

where F,,, (wy) are the truncated Boltzmann functions satisfying the KS recursion relation with the
interaction potential energy, pa(X) = z1X1Z A\X Z, ! and
Pdwy) = W T P PO(dy), 7 = / ¢~ 81) PO ().
yey

To perform the thermodynamic limit one has to guarantee the absolute convergence of this expansion
uniformly in A. The important role in this is played by the superstability condition for he real part of
the pair potential
1
[Re tta—y (wa, )| < 5.7/ (J2 = y]) (0(wa) +0(wy)), / 1P PO(dw) < o0, (1)

where |z| is the Euclidean norm of z, J', v, ( > 0,y > 0, |[|J'||1 = Z Jl < oo (J' € Z%) and the

summation is performed over Z¢. To formulate our results we need the following notations:

B = ess suprx(w), D= /eﬁﬁ(“’)P(dw),
w T

by (w) = e BEE) =@ IV /) / B7(w) | (@92) _ 1| P(duwy)
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Theorem 1. Let (1) hold, J(|z|) > 0, ||V J||1 < oo and

lim B=0, lim BD =0.
£5—0 £—.0
Then for sufficiently small B there exists the thermodynamic limit p of pa, the polymer cluster expan-
sion for the correlation functions p™(wx) converges absolutely uniformly in A, their thermodynamic
limit is also represented by the polymer cluster expansion in which the summation is performed
over 72 and the thermodynamic limit of p is substituted instead of px. Moreover there exist positive
constants ¢, C such that ¢~ X! exp {—BZ . f)(wm)} IpMwx)| < C.
x
The proof of this theorem is standard [3, 4]: at first one proves the bound

B >0 o(ws)

> [ Pl Balon)| < eXleBye

Y:|Y|=m

and then shows that the polymer correlation functions ps, whose sequence satisfies the polymer KS
equation, are appropriately bounded. Note that due to the law of conservation of probability in the
stochastic systems pj coincides with the same expression for the Gibbs initial distribution generated
by a pair potential and an external field, that is, the existence of its thermodynamic limit follows
from the results of [3].

We have to choose such 0, .J that the condition of the Theorem 1 is satisfied. The following
lemma gives the first step in this direction.

Lemma 1. Let (1) hold, > 0,

Imuw—y(wmwy) = j(’x - y’)¢(wz7wy)7 HjHl < 00, (2)
and

Bw) = (01 (w) + B b(w))y, BR(w) = / bw,o)PP), 0<r<l ()

Let also D(~) coincide with D and J in the expression for B in the Theorem 1 be given by J = J'+J.
Then there exist positive constants ai, as such that

<
B < a18Y"/D(27) + a2 D(2y 4 271J)o).

The proof of the lemma will be given in the end of the paper.

Corollary. The conditions for B, D in the Theorem 1 are satisfied if D(7y) is bounded in 5 > 0
in a neighborhood of zero.

In the three considered cases the real part of the pair potential and the external field v depend
only on w”. This fact and the fact that the measure P is factorized on Q° x €, yield the result

—1
D= / P W) DL (WO P (dw?),  P(dw) = ( / eﬂu(w0>ﬁ(dw0)> e P4 P(dw?),

where

D () = / 5T ) P ().

ISSN 1027-3190. Yxp. mam. xcypnu., 2013, m. 65, Ne 5



692 W. 1. SKRYPNIK

Now we are going to prove that D is finite for the considered systems. In order to do this we have
to write down the explicit expressions of the potentials and characterize their properties.

For the classical Gibbs systems the real-valued part of the complex potential is given by (w =
= (¢,5) € R?)

Reuzfc*y(wxawy) = uzfy(%a Qy) = Jo(|z — y|)uo (g, Qy) - J12(|x - y|)u%(Qx7Qy)-

And in its turn for Gibbs quantum and stochastic systems (w = (q,w) € R x C(R")) it is given,
respectively, by

B
Re oy i) = 31 [ty () = (7)),
0

tp—1
Re uy—y(wy, wy) = Ug—y(‘]ﬂcv Qy) + ul,z—y(wx(tﬂil)v wy(tﬁil)) + / U2 5y (W (1) — wy(7))drT,
0

where ¢ is the time. For our purposes here the explicit expressions for the the pair potential us ; is
not needed (it is expressed in terms of the interaction pair potential ug ;) and we advise readers to
find them in the Section 3 in [2].

For the classical Gibbs systems J = .J; and the following equality is true:

1
¢(QCE7 Szy Qy, Sy) = E(Sx + Sy)ul(Qxa Qy)-

The potential ¢(w,wy) is expressed in terms of the stochastic integrals in w}, w; € C(R™)

t/ t
S wwyewy) =471 (3712) | [ dwd(ou (). (7)) + [ dugm)l (w0, wa(0)|
0 0
(3)
where v/ (q,¢') = ui(q,¢), k = 1, t' = B, J = Jy and v/ (q,q') = 20uo(q,q'), & = 0, =31,
J = Jy, for quantum and stochastic systems, respectively (u, u; are symmetric functions).
We impose as in [1, 2] the conditions
u0(0.4)] < £(00(@) + (@), [(0.4)] < L0/ (a) + /(). @
They are more general than their Kunz version considered in [1] (there is a product of the square
roots of the two functions instead of the half of their sums in [1]). Here vy(q), v'(q) are positive
polynomials in |g| of the 2mq-th, m;-th degrees, respectively, such that for classical and quantum
systems mg < n, 2m; < n . Note that the similar inequalities hold for duo(q,q’), 9*uo(q,q’) in
which the functions from the right-hand side which coincide with polynomials in |g| with the degrees
2mg — 1, 2mg — 2, respectively. This follows from the inequality a'b® < 28+ (aF+! 4 pF+1) 4, b > 0
since the potentials ug(q, ¢'), u1(q, ') are linear combinations of the elementary polynomials ¢'¢*,
l+k € Z%. As a result m; = 2mgy — 1 for the stochastic systems for which mq < n®. These
conditions allow one to prove the following theorem.
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Theorem 2. Let (4) hold. Let also the inequality 1 4+ ( < E, m = max (mg, 2my) hold for
m

2n0 — 1 n?
—_—— t < toB?
n0+m01m> of

hold for the stochastic systems, where t is the time and tq is a positive constant. Then D(7) is

the classical and quantum systems and the inequalities 1 4+ < min <

bounded in B in a neighborhood of zero for the classical systems if r = % The same is true for
the quantum and stochastic oscillator systems if r = % + %

Hence we proved the main result of our paper.

Theorem 3. Let (4), the conditions for (, r, t in the Theorem 2 and for J in the Theorem 1
and Lemma 1 hold. Then the conclusion of the Theorem 1 is true for pp and the correlation functions
oA (wx) of the classical, quantum and stochastic oscillator systems.

Proof of Theorem 2. For the classical and quantum systems (1) is valid with .J’ = Jo + J? and

v(q) = vo(q) +vi(q ) =p" / ))d, respectively. The second condition in (1) will be

satisfied if 1 4+ ( < —. For the classical systems we have
m

-1 12 ,
V(g,s) = (2v/2m) ! ( / e—ﬂu<q>dq’) / (s + ) (g, e T e P dg s,

where the integration is performed over R? and

2mq

b*(q,s) < (c3s® + 3 2(q) + B (c3s” + c3),

where c3, ¢4 does not depend on 5 and ¢y, ¢y are bounded functions in nonnegative finite 3. Here we
used the inequality (s + s’)2 < 2(s? + s'?) and rescaled the variables in the corresponding integrals
. . 1

in the numerators and denominators by 5~ 2~ . As a result

b(g,s) < (cals| +c3)v'(q) + B~ (ca]s| + co).

m . . . Lo .
Hence we can put r = ~L and D, (q) is easily estimated as a Gaussian integral. That is
n

D.(g) < 2exp {i 39850/ (@) + 2B eav'(g) + e)?] + 007} |

.. n
As a result the condition 1 + ¢ < — guarantees that
m

D— /67501+C(Q)D*(q)P’(dq)

is finite for nonnegative finite 5 after a rescaling of the variables in the corresponding integrals in
the numerator and denominator by 57ﬁ. This concludes the proof for the classical systems.

Now let’s consider the quantum and stochastic systems characterized, respectively, by the external
potentials u(q), 2ug(q). In an estimate of D, (w”) , based on the estimates from the Section 2 from
[3], we will use the inequalities

0 _ 0 _ _ B 3
- —a<up(q) <ne@® +a, - —u<u(q) <nig® +u, 7+ < 57

The proof is based on application of the following lemma.
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Lemma 2. Let b(w,w*) correspond to ¢ in (3'). Then

/evgrvb(w’w*)Po(dw*) < K [\/ITD + et J3 wn e

Ip= / P/ (dw)e2 ™™ I win(rydr

where 20 < n_,0 < 2n’n? for the quantum (x = 1) and stochastic systems (k. = 0), respectively,

n = 2n% — 1 for the stochastic systems, k. does not depend on w and is an entire function of

(BQr—Q%(l—n)t/—zwl—% ) 3

The proof repeats all the steps of the proof of Lemma 2.1 in [5] which coincides with the Lemma

2 for quantum systems. Note that m; corresponds to n; in [5]. For quantum and stochastic systems
. . . . . . m

the function k, is bounded in nonnegative finite 5 if 2r — 1 — s > 0 and therefore one can put
n

1
r= 3 + @. Note that for the stochastic systems 2m; < 2(n — 1) following from m; = 2mg — 1,
n
mo < nY.

Now in order to show that D is bounded for nonnegative finite 5 one has to establish the same
fact for Ip. It was done for quantum systems in [5] ( see the proof of the Lemma 2.2) with the
help of the Golden—Thompson and Jensen inequalities, applied for the numerator and denominator,

B
and a rescaling of the simple integrals in a variable from R. For them u(w) = 57! / u(w(r))dr,
0

where u(q), ¢ € R, is the external potential from the expression of the potential energy of quantum
systems. The analogous simplified technique will be applied for the stochastic systems. Instead of
the Golden-Thompson inequality the law of conservation of probability will be utilized by us and
a rescaling of continuous (Wiener) paths as in [2] will not be considered. For the stochastic systems
we have w = (¢, w) and

t/

u@w»—w@wmumw»+/QAMﬂmn

0

where

ur(q) = (2n0 — Duo(q) + u'(q), ua(q) = —0%uo(q) + B(Ouo(q))*, o > %

and u' is an even polynomial of the degree less than 2n°. The function v is given by (see the proof
of the Proposition 4.1 in [2])

t/

vl w) = wo(a) +vr(w(®) + [ ealw(r)dr, w2 = v+ o

0
where g, v1, v, v4(q) are positive polynomials with the degrees 2mg < 2n°, 2mg, 2(mg — 1),
2(n® 4+ mg — 1), respectively (n°, mg are denoted by n, m, respectively, in the Section 2 in [2]).
From elementary inequality (a3 + ... +ag)m < k™(a} + ... + a}g)% < k"(aj" +...+a"), where
n,m € Z*, n > m, a; > 0 and the Helder inequality it follows that
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t/
UHC(q,w) < 3{1+0) vé+<(q) + U%Jrc(w(t’)) + t/C/U§+C(w(T))dT ,
0

where (1 + () is the numerator integer in the fractional representation of 1 + ¢ and 1 + ¢ <
. on0 —1 n?
<min|( ————,—
nO +mog—1"myg

The following law of conservation of probability holds

/dq/ —Pulala) p(dw) = /e—ﬁ(ul((1)+2noauo(cz))dq7 (5)

where u(q, w|a) is equal to u(q, w) if one substitutes aug instead of ug into its expression. It follows

) . The last condition implies the second inequality in (1).

from the gradient character of the Smoluchowski equation. We remind that the function under the
sign of the integral in ¢ in the left-hand side of this equality coincides with the solution of the
Smoluchowski equation with the initial function which coincides with the function under the sign of
the integral in its right-hand side. Let = 27! and in addition 20 + n27]_2|r < 4n?n? then

BV (a) =B(u(a)—u(awl 1)) 28% [ W (D) < (CBY) ©6)

where

C(B,t) = BH'BICH + T (CL + B72Co) + C5 + Cut'), B <1,

tl
and C are constants. Here one has to use the fact that the coefficient before / w?™(7) dr in the
0

exponent in the left-hand side of (6) is negative, and apply the inequality ¢* < e¢* + 67ﬁ (see the
proof below) for ¢ > 0,k <[ and small € < 1. That is

t t/
_k

[uteyar < ge [wlyir+ 5o,

0 0
(3 is the contribution of terms depending on ¢, w(t'), Cy is the contribution of the terms in

/

/ t ug(w(7))dT containing the second derivative of g, since B_ﬁ < B7L. The integrals of v,
0 (mg—1)(1+9) n0

v5 contributed the constants C, Cy > 0, respectively, since 5 ”—/<m0 DO+ < B P — < B2,

The terms containing the first derivative of ug in the integral / t uz(w(7))dT contribute Cy. (6) is

valid since we choose € such that sum of all the terms in the exp(())nent in the left-hand side of (5) with

powers in ¢, w less than the senior powers in u(q,w) — u (q, w‘é) yield the negative coefficients

before the terms with the senior powers . Using these bounds, (6) and the law of conservation of
probability we see that (v/Ip < Ip)

-1
D < 26,eCG) / B @ +10u0(@) g ( / eﬁ(u1<q)+2nouo<q>>dq> _
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+¢
+<§27

2
Hence D is bounded in nonnegative finite 3 (recall that ¢ = t3~1) if ¢t < to3? since 1

where tg is independent of 3.
k 1
The inequality ¢* < eq™ + ¢ 7% is proved if one proves that for ¢ > ¢~ 7% the inequality
1 1
q" < eq™ holds. This inequality is true if (a + ¢ 7—#)* < e(a + ¢ »=%)" for a > 0. The last

k—1
inequality is checked comparing the coefficients near @' in its both sides. They equal C{Ce*ﬂ,

n—1 k—1
Clee " n=k = Cle™n=*, respectively. Hence all the terms in its left-hand side are smaller than the
corresponding terms in its right-hand side. This concludes the proof of the theorem.
Proof of Lemma 1. From

e — 1| = [e™a(eRee — 1) 4 (¢™2 — 1)| < |Reale + 2[Im al,
(1) and the superstability condition it follows that (note that w) = w?)

|e_5“””(w""””) -1 < B|Reum(w,ww)|emRe“”‘(”’w”)‘ + 268[Im uy (w, wy)| <

1 ! ~
< 8|57 (le]) (w(wd) + v(w®))e s DO L9 (2] ¢, w)

Let b0 and b. are the contributions to b, of the first and second terms in the square brackets. Let also
BY and B! be the corresponding parts from B. Then the Schwartz inequality gives

bglg(w) <283 /D(g,y)j(m)eﬂﬁllx/j\lfl J(\wl)b(w)b(w)efﬁ(wvlﬂ(w)*l\J’Ilv(w))llx/j\\flx/J(\xl)_
That is

B <2/D(2y)y 18V T kik||V |2, kp =supa”e
0

a>

_1 o\ 3
. BIVINT VT <IJ’M 1+<>
k= sup e B0V T Y\ T

a>0,x

, [Jlo = sup J(|z]).

D . . .. 1 142¢
Multiplying 50 by e78v" "¢ (@) =78 ¢ (w2) we obtain, using the equalities 1 — = ,

plying b; by g q 2010 2(1+0)
1 1 ¢

- _ = , the following inequality:
2 2(1+¢)  20+0) s

0« o—1 315 1ot / T eaTa] —1 g7
B <27 ey e [k (0)|[ S| + ror(1)[|J 20+ |[1]D(2y + 27| T |o),
where
n 1+¢ —1nC 1. _142¢ , _ ¢
K(n) =supa”exp < —a' T+ (v BV 1) T (27 T2ART o 4 [[T']]4| T2 [g)a g -
a>0

We have B = B + B! and the last bounds for BY, B! prove the lemma.
Remark 1. We assume that the generator of the semigroup, producing the Wiener measure,
coincides with 02, where 02 is the operator of the second derivative. This obliges us to assume that

. . 1 . .
the mass of the quantum particles is equal to —. The transition to the quantum systems with the mass

equal to 1, considered in [1], is produced by a simple rescaling of variables.
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Remark 2. Our main result (Theorem 3) permits us to obtain the conclusions of the Theorems
3-4.1 in [1], Theorem 2.1 in [2] easily. The conditions and the proof of the Theorem 3 are simpler
than those of the theorems in [1, 2] based on a rescaling of wiener paths. The proposed in this paper
technique is based on another choice of v, the bound for B in the Lemma 1, on the bound of the
Lemma 2, the Golden— Thompson inequality (for the quantum systems) and the law of conservation
of probability (for the stochastic systems). No rescaling of wiener paths is needed in this paper. The
grand canonical analog of the result of [2] can be found in [6].
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