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FINITENESS PROPERTIES OF MINIMAX AND a-MINIMAX
GENERALIZED LOCAL COHOMOLOGY MODULES

BJIACTUBOCTI ®IHITHOCTI MIHIMAKCHUX TA a-MIHIMAKCHHUX
Y3ATAJIBHEHUX JIOKAJIBHUX KOT'OMOJIOT'TYHUX MO VYJIIB

Let R be a commutative Noetherian ring with nonzero identity, a be an ideal of R, and M and N be two (finitely generated)
R-modules. We prove that H; (M, N) is a minimax a-cofinite R-module for all ¢ < ¢, ¢ € Ny, if and only if H;(M, N),
is a minimax Rp-module for all ¢ < ¢t. We also show that, under some conditions, Homr (%, HY(M,N )) is minimax
(t € Np). Finally, we investigate a necessary condition for H:(M, N) to be a-minimax.

Hexait R — KOMyTaTUBHE HETEPOBE KiJbIle 3 HEHYJILOBOK OIMHUIICIO, 0 — ifean kimblsg R, a M ta N — nBa (CKiHUCH-
Homopomkennx) R-moxymi. osenewo, mo Hg (M, N) € miniMakcaum a-xodinitauM R-momynem mis Beix ¢ < ¢, t € N,
Toai i Tinbku Toai, konu Hy (M, N), e miniMakcHuM Rj,-MozyseM Juist Beix 4 < t. [Ioka3aHO Takoxk, IO 3a ASSKAX YMOB

Hompg (;, Hi(M, N)) € minimakcHuM (¢ € Np). JociimpkeHo Heobxixui ymoBu a-MminiMakcHocTi Hy (M, N).

1. Introduction. Let R be a commutative Noetherian ring with nonzero identity, a be an ideal
of R and M, N be two R-modules. The generalized local cohomology was first introduced in the
local case by Herzog [8] and in the general case by Bijan—Zadeh [4]. The ith generalized local
cohomology module Hi(M, N) is defined by

. . M
H(M,N) = TlliegNExt% <a”]\4’N)
for all ¢ € Ny, where we use Ny (resp. N) to denote the set of nonnegative (resp. positive) integers.
With M = R, one clearly obtains the ordinary local cohomology modules H:(NN) of N with respect
to a, which was introduced by Grothendieck, see, for example, [6].

It is well known that the generalized local cohomology modules have some similar properties as
ordinary local cohomology modules. We recall some properties of the generalized local cohomology
modules which will be needed in this paper.

) Let 0 — N — M — L — 0 be an exact sequence of R-modules. Then we have two
long exact sequences (K is an arbitrary R-module):

0 — HY(K,N) — HY(K,M) — H)(K,L) — H}(K,N) — ...
and
0 — HYL,K) — HY(M,K) — HY(N,K) — HNL,K) — ...

of generalized local cohomology modules.

IT) If N is an a-torsion R-module, then for all i € No, we have Hi(M, N) = Exty (M, N).

III) Let R’ be a second commutative Noetherian ring with identity and let f: R — R’ be a flat
ring homomorphism. Then there is an isomorphism (i € Np)
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Hy(M,N) @ R' = Hyp (M @ R',N ®p R').

The organization of the paper is an follows:
In Section 2, we study the minimax generalized local cohomology modules (Theorem 2.2 and

(]
Propositions 2.1 and 2.2). Also the minimaxness of Hompg <‘f, Ha(]\]g’N)> , t € Np, and
R HI(M,N)
Homn <a’ K
K is a submodule of H.(M,N) (Theorem 2.2 and Corollary 2.1) which generalize [9] (Theorem
2.2).

In Section 3, we study the a-minimax generalized local cohomology modules. In Theorem 2.1, we
show that whenever M, N are finitely generated and a-minimax R-modules such that Assp(N) C
C V(a) and pd(M) < oo, then HL(M, N) is a-minimax for all i > 0.

Throughout the paper R is a commutative Noetherian ring with nonzero identity.

2. Minimax generalized local cohomology modules. In this section we prove the minimaxness
of some generalized local cohomology modules.

Definition 2.1. Let N be an R-module. Then N is said to be a minimax module if there is a

) will be considered whenever M, N are finitely generated R-modules and

N
finitely generated submodule L of N such that T is Artinian.

The class of minimax modules includes all finite and all Artinian module. Moreover it is closed
under taking submodules, quotients and extensions, i.e., it is a serre subcategory of the category of
R-modules, cf. [12] and [13]. Of course this class is strictly larger than the class of all finite modules
and Artinian modules as well, cf. [3] (Theorem 12). Also we note that a minimax R-module has only
finitely many associated primes.

Lemma 2.1. Let N i) M L5 L be an exact sequence of R-modules such that N and L are
minimax. Then M is minimax.

Proof. The result follows from the fact that the class of minimax R-modules is a serre subcate-
gory of the category of R-modules, and the exact sequence

0 — f(N) = M L5 g(M) — 0.

Lemma 2.2. Let M, N be two R-modules such that M is projective. Then H.(M,N) =
& Hi(Hompg(M, N)) for all i € Ny.
Proof. For all ¢ € Ny

. M .
Hi(M, N) = ling Extfy (nN) > ling Ext}y (}i or M, N) o
nell an M nell a

> lim Extf, <§L Hom (M, N)) (by [11], exercise 9.21) = H!(Hom(M, N)).
neN

The next theorem generalize [1] (Theorem 2.8).
Theorem 2.1. Suppose thatt € Ng and M, N are two finitely generated R-modules such that
pd(M) < oo and Hi(N) is minimax for all i < t . Then the following are equivalent:

(i) HY(M,N) is minimax for all i < t,
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(i) H!(M,N) is minimax and a-cofinite for all i < t,
(i) HI(M,N), is minimax for all i <t and all p € Spec (R),
(iv) Hi(M, N)y is minimax for all i < t and all m € max (R).

Proof. (i) = (ii). By induction on n := pd(M). If n = 0, then the result follows from Lemma
2.3 and [2] (Theorem 2.8).
Next let n > 0. We have

. M ~ 1 R ~Y
HY(M,N) = lim Homp <anMN) > lim Homp <M Qr aﬂ,N) =
neN neN

= lim Homp <§L Hom(M, N)) >~ HY(Hom(M, N))
neN

and so the result follows. Now suppose ¢ > (. From the short exact sequence 0 — L —
— @?:1 R — M — 0 we get the exact sequence

H.(N)"—H!(L,N) — HY(M,N), i¢cN,

according to our assumption and Lemma 2.1 we deduce that H:(L, N) is minimax for all i < ¢ — 1.
By induction hypothesis H:(L, N) is a-cofinite for all i < ¢ — 1. But from the exact sequence

Hy (L, N) — Hy(M,N) — Hy(N)".

and [2] (Theorem 2.8) and [10] (Corollary 4.4) we get the result.
(i1) = (iii) and (iii) = (iv) is obvious.
(iv) = (i) The proof is similar to that for (i) = (ii).
The next result follows by an standard argument.
Proposition 2.1. Suppose that M, N are two R-modules such that N is finitely generated and

for each p of suppr(N), H! <M, f) be minimax. then H.(M, N) is minimax (t € Np).

Proposition 2.2. Let M, N, L be finitely generated R-modules such that pd(M) and dim(N)
is finite and supp (L) C suppg(N). Suppose Hi(M, N) is minimax for all i > r. Then H.(M, L)
is minimax for all © > r, r € Ng.

Proof. By [4] (Proposition 5.5) Hi(M,N) = 0 for all i > pd(M) + dim N. The proof is by
decrasing induction on i = r,r + 1,...,pd(M) + dim N + 1. If i = pd(M) + dim(NN) + 1 then
there is nothing to prove. So let r < i < pd(M) + dim(N). By Gruson’s theorem there exist a chain

L

0 — Lo C Ly C... C Ly = L such that the quotient 7 J_ a homomorphic image of a direct sum
j—1

of finitely many copies of N for all j = 1,2,...,¢. Consider the short exact sequences

L;

0O — Ljy —Lj —
Lj,1

—0, j=1,2,...,1

we may reduce to the case ¢ = 1. So let there exsits a short exact sequence 0 — K — N™ —»
— L — 0 in which m > 0 and K is a finitely generated R-module. This exact sequence induce
the long exact sequence
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oo — H{(M,N™) — H{(M,L) — H"'(M,K) — .... 2.1

Since suppp(K) C Suppg(N), by induction hypothesis Hit!(M, K) is minimax for all i =
=r,...,pd(M) + dim N. Moreover H:i(M,N™) = H}(M, N)™ is minimax. Thus from the exact
sequence (2.1) and Lemma 2.1 the result follows.

The next two results generalized [9] (Theorem 2.2 and Corollary 2.3).

Theorem 2.2. Let M, N be two finitely generated R-modules such that H.(M, N) and H:(N)

R
is minimax for all i < t,t € Ny, and pd(M) < co. Then Homp (, Hg(M,N)) are minimax and
a
so Ass HL (M, N) is finite.
Proof. 1ft = 0, then,

Ext% (f,HomR(M, N)> >~ Homp <§,HomR(M, N)>

which is finitely generated. Furthermore
R R R
Homp | —, Hp(M,N) | 2 Hompg | —, H; (Hom(M, N) | 2 Homg | —, Homg(M,N) | .
a a a

Next let ¢ > 0. The proof is by induction on n := pdr(M) > 0. If n = 0, then by Lemma 2.2
Hi(M,N) = Hi(Hom(M, N)) for all i, and

Homp (f,H;(M, N)) =~ Homp <Jj,H§(Hom(M, N))) .

R ,
So since Extl . Homp(M, N) | is finitely generated and H)(Hom(M, N)) is minimax for all

1 < t, the result will be deduced from [9] (Theorem 2.2).
Now suppose that n > 0. There is a short exact sequence

0 —K —R"—M-—0

from which we get the long exact sequcence

Homp <]:,H§_1(K, N)> — Homp (i,Hﬁ(M, N)> — Homp (f,Hﬁ(N)”) — ...
2.2)
Next, Hi(K, N) is minimax for all i < ¢ — 1, by the exact sequence
oo — HY(N)* — H{(K,N) — HY(M,N) — ...
the minimaxness of Hi(N) and H:(M,N) for all i < t — 1 and Lemma 2.1. Thus by induction
hypothesis Homp %, HI=Y(K,N) | is minimax. In addition Homp (f, Hg(N)) is minimax by

[9] (Theorem 2.2). Now we deduce the result from exact sequence (2.2) and Lemma 2.1.
Corollary 2.1. With the same assumptions as in (2.2), let K be an R-submodule of H.(M, N)
R R HY{M,N
such that Extllq (, K> is minimax. Then Homp (, C‘(K’)
a a

ticular Ass (H. (M, N)/K)) is finite.

> is a minimax module. In par-
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3. a-Minimax modules and generalized local cohomology modules. Recall that for an R-
module M, the Goldie dimension of M is defined as the cardinal of the set of indecompos-
able submodules of E(M), which appear in a decomposition of E(M) into direct sum of in-
decomposable submodules. The notation G. dim(AM/) is used for Goldie dimension of M. For a
prime ideal p of R u°(p, M) denotes the 0th Bass number of M with respect to p. It is known
that u°(p, M) > 0 if and only if p € Assg(M). Therefore by definition of Goldie dimension,
GdimM = Z 1P (p, M). Also for an ideal a of R and R-module M the a-relative Goldie

peAss(M)

dimension of M is defined as
Gdimg M = Z 1P (p, M).
peV(a)

The a-relative Goldie dimension of an R-module has been introduced and studied in [7].
Definition 3.1. Let a be an ideal of R. An R-module M is said to be minimax with respect to
a or a- minimax if the a-relative Goldie dimension of any quotient module of M is finite, i.e., for any

M
submodule N of M, G dim, (N) < o0.

The concept of a-minimax modules was introduced and studied in [2]. By [2] (Proposition 2.6)
if M is an a-minimax R-module such that Ass M C V (a), then H:(M) is a-minimax for all i > 0.

Now we intend to generalize the result to obtain another similar result for generalized local
cohomology modules.

Theorem 3.1. Let M and N be two R-modules such that M is finitely generated and N is
a-minimax with Assp(N) C V(a) and p(M) < co. Then H:(M, N)is a-minimax for all i > 0.

Proof. By induction on n := pdM. If n = 0, then Hi(M, N) = H:(Hom(M, N)) by Lemma
2.2 and Homp (M, N) is a-minimax by [2] ( Corollary 2.5). Also Ass (Hompg(M, N)) = Assr(N)N
N Suppr(M) C V(a), by [5] (Ch. 4, §2.1, Proposition 10) the result follows from [2] (Proposition
2.6). Next, let n > 0 and suppose that the result is true for n — 1. From the short exact sequence
0 — L — R¥ — M — 0 (in which L is a finitely generated R-module) we get the following
long exact sequence:

...— H YL,N) — H!(M,N) — H{(N)* — .... (3.1)

By induction hypothesis H:~!(L, N) is a-minimax for all i > 1. Moreover H:(N)¥ is a-minimax
by [2] (Proposition 2.6 and Corollary 2.4). Next we deduce from (3.1) and [2] (Proposition 2.3) that
Hi(M, N) is a- minimax for all i > 1. For i = 0, we have H)(M, N) = H?(Hompg(M, N)) which
is a-minimax by [2] (Corollary 2.5 and Proposition 2.3).

Proposition 3.1. Let M be a finitely generated R-module and N an arbitrary R-module such
that Homp(M, N) is a-minimax and suppp(M) C V(a). Furthermore let t € Ny and for each
i #t, H{(M, N) be a-minimax. Then H.(M, N) is a-minimax.

Proof. By induction on t > 0. If t = 0, then H)(M,N) = HY(Homg(M,N)), and
Hompg(M, N) is a-minimax by our assumption and

Assp(Homp(M, N)) = Assr(N) N Suppr(M) C V(a),

the result follows from [2] (Proposition 2.6).
E
Next let ¢ > 0 and assume that the result holds for ¢t — 1. Set £ := E(N), L := N and consider

the short exact sequence 0 — N — E — L — 0. Since H:(M,E) = 0 for all i > 0, we
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deduce that

Hi(M,L)= H:Y(M,N).

Thus it follows from the hypothesis that for all i # ¢t —1 H{(M, L) is a-minimax. Hence by induction
hypothesis H.~!(M, L) is a-minimax and consequently by (2.1) H.(M, N) is a-minimax as well.
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