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ON SOME MULTIDIMENSIONAL HILBERT-TYPE INEQUALITIES
IN A DISCRETE CASE*

IMPO AEAKI BATATOBUMIPHI HEPIBHOCTI I'lNIBBEPTOBOI'O TUITY
Y JUCKPETHOMY BUIIAIKY

Motivated by results of Huang, we derive a pair of discrete multidimensional Hilbert-type inequalities involving a
homogeneous kernel of negative degree. We also establish conditions under which the constant factors involved in the
established inequalities are the best possible. Finally, we consider some particular settings with homogeneous kernels and
weight functions. In such a way we obtain generalizations of some results known from the literature.

3 MeTo y3arajdbHEHHS pe3yibTaTiB XyaHTa OTPHMAaHO JBi AMCKPETHI OaraTOBHMipHI HEPIiBHOCTI T'iTEOEPTOBOTO THITY 3
OJIHOPITHUM SI/IPOM BiJl’€MHOTO cTelleHs1. TakoX BCTaHOBJIEHO YMOBH, 32 SIKUX CTaJli MHOXHUKH, 10 BXOJATB JI0 OTPHMaHUX
HEPIBHOCTEH, € HANKPAIMMH 3 MOXJIMUBHX. PO3INISHYTO JEsKi KOHKPETHI BHIIAJIKH OJHOPITHUX Sep Ta BArOBUX (ByHKIIil.
Lle nae 3Mory y3arajibHHUTH JI€sKi BiZIOMi PE3yJIbTaTH.

1. Introduction. Hilbert’s inequality is one of the most significant weighted inequalities in mathe-
matical analysis and its applications. Through the years, Hilbert-type inequalities were discussed by
numerous authors, who either reproved them using various techniques, or applied and generalized
them in many different ways. For more details about Hilbert’s inequality the reader is referred to [1]
or [3].

Although classical, Hilbert’s inequality is still of interest to numerous mathematicians. In this
paper we refer to the recent paper [2], where Q. Huang obtained multidimensional discrete Hilbert-
type inequality equipped with conjugate parameters. His result is contained in the following theorem.

n 1 n 1

Theorem 1.1. Suppose thatn € N\ {1}, p;,r; > 1,i=1,...,n, Zi:l - = Zi:l - =1,

1 1 1 1 . (i)
—=1—-— A>0,0<a<?2 8> —5 )\amax{Q_a,l} < minj<i<p{ri}, am; > 0,

dn Pn

m; € N, such that

0< i (m; + 5)pi(17m/”)71 (a(i))pi <oo, t=1,...,n.

m;
m;=1

Then the following two inequalities hold and are equivalent:

ii - L Aﬁaﬁf&<
mp=1 m1=1 [Zi_l(mi_‘_ﬂ)a} i1

n [e¢) 1/p:
al™" A L api(1=32) -1 @\
< T EF (n> T;l(mz +8) i (amz') )
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) Hn 1 a%)l
1 Z Z By <

qn I/Qn
> Aagn

> (mn+B) 7

mp=1 mp—1=1 m1=1 {Zz: (ml + ﬁ) ]
)\/rn n—1 oo pi(lf)‘—(_l)—l @ I 1/pi
) (Bmeort )

1-n

n A
The constant factor i.: o Hi:l T <r

7
In the previous theorem I" denotes the usual Gamma function. Besides, the best possible constant

factor means that it can not be replaced with a smaller constant, so that the appropriate inequality
still holds.

On the other hand Yang et al. [6], obtained the result which provides an unified treatment of
multidimensional Hilbert-type inequality in the setting with conjugate exponents. All the measures

) is the best possible.

are assumed to be o-finite on measure space 2.

Theorem 1.2. Let n > 2 be an integer and let p1, ..., py be conjugate parameters such that
pi>Li=1,...,n.Let K: Q" — Rand ¢; ;: d — R, i,j = 1,...,n, be nonnegative measurable
functions such that H gbw (xj) = 1. Then the following znequalltzes hold and are equivalent:

[ Ktar,ooa) [] )i (o) .. dunfn) <
=1

Qn
n 1/pi
<II| [ Pear @ietwdu(=) (1)
=1 Q
and
n—1 dn
/ () / Ko, ) [ fila)dm @) - dpn 1 (n1) | dpin(a) <
0 n—1 =
n—1 Qn/pi
<II| [ A e | . (1.2)
=1 Q
where

= / K(ml,...,xn)x
Qn—1

X H Qi () dpr (1) - - dpi—1(zio1)dpisa (Tiga) - dpg(zn),  i=1,...,n,
j=LjAi
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1 n—1 1
W) = ¢pdn(zp)Fl ™ (2,)  and — — =) —.
dn i—1 Pi

In the literature, the inequalities related to (1.1) are usually referred to as the Hilbert-type in-
equalities, while the inequalities related to (1.2) are usually called Hardy — Hilbert-type inequalities.
For more details about their equivalence, the reader is referred to [6].

The main purpose of this paper is to generalize Theorem 1.1 in the view of Theorem 1.2. More
precisely, in the sequel we derive the discrete forms of inequalities (1.1) and (1.2) containing the
homogeneous kernel. Besides, considerable attention is dedicated to the investigation of the best
possible constant factors in obtained inequalities, which can be achieved in some general settings. As
an application, we also consider some particular settings of our general results which reduce to some
recent results, known from the literature.

The techniques that will be used in the proofs are mainly based on classical real analysis. Further,
throughout the whole paper, without further explanation, all the series and integrals are assumed to
be convergent.

2. Main results. We start this section with the application of Theorem 1.2, which will give
the discrete forms of inequalities (1.1) and (1.2). By using the notations as in the above mentioned
theorem, we consider the case where €2 = N, the measures p;, i = 1,...,n, are counting measures,
and the kernel K is the nonnegative homogeneous function of degree —A, A > 0.

In order to obtain the constant factors involved in the inequalities, we define the function

k(ﬁh R 7/871—1) by

k(Bi,...,0Bn-1):= / K(l,tl...,tn_l)tfl ...tﬁz_ldtl...dtn_l, (2.1)

n—1

(0700)71—1

where we suppose that k (51, ..., n—1) < oo for f1,...,8p—1 > —1land S1+...+SBh—1+n < A+1.
Further, let A;;, 7,5 = 1,...,n, be the real numbers satisfying

n
> A;=0, j=12,...,n (2.2)
i=1
We also define
n
ai:ZAij, i:1,2,...,n. (23)
j=1

Besides, we consider the discrete weighted functions involving real differentiable functions. More
precisely, we have the following definition.

Definition 2.1. Letr € R. We denote by H (r) the set of all nonnegative differentiable functions
u: (0,00) — R satisfying the following conditions:

(1) w is strictly increasing on (0,00) and there exists xo € (0, 00) such that u(xg) = 1;

(2) limy o0 u(x) = 00, [u(z)]"v'(x) is decreasing on (0, 0).

Now, regarding the above notations and definitions, we are ready to state and prove our first
general result.
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Theorem 2.1. Let py,...,p, be conjugate parameters such that p; > 1,1 = 1,...,n, and
1 -11

let — = Zn L . Let K: (0,00)" — R be nonnegative homogeneous function of degree —\,
an =1 Di

A > 0, strictly decreasing in each variable, and let A;j, i,j = 1,...,n,and o;, 1 = 1,...,n, be

real parameters satisfying (2.2) and (2.3). Ifan?i >0, m; €N, and u; € H(p;Aij), 1,5 =1,...,n,
i # j, then we have the following equivalent inequalities:

Y K(u(ma), . un(ma)) [T afl) <
mnp=1 mi1=1 =1

n [ee] ] 1/pi
<L]] ( D [ui ()] AP [ (my ) (a%)i)pj : (2.4)

I
mp=1
o ~ S a1/ qn
X Z Z K(ui(my),...,up(my)) Ha%)i <
Mmp—1=1 m1=1 i=1

\ L/p
A (S )" e

where

L=k(prAia, ..., p1 A1) P k(N — n — pa(ag — Aga), padas, ..., padan) /P2 ...

.. k(pnAn27 v 7pnAn,n—17 A—n— pn(an - Ann))l/pnv (26)

andpiAij > —1,1 75 7 pl(A“ — ai) >n—A—1.
Proof. Rewrite the inequality (1.1) for the counting measure on N,

(65 0 uj)(my) = [us(m)[ 49 [u(m)] /™, i # 5,

(i 0 wi) (ma) = [ug(m)) 5 [t (my)] /7,

and the sequences (a%)i), 1 = 1,...,n. Obviously, these substitutions are well defined, since wu;,
i =1,...,n, are injective functions. Thus, in the above setting we have
n
> 3 K)o ma)) T <
mp=1 mi=1 =1

n 00 ) 1/pi
<1l (Z [us(ma) " [k ma) ] (F 0 :) (my) (a@i)pl) , @7
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where
[o.¢] o o o
(Fou)(m)= > ... > > Y K(u(m),. .. un(mn))x
mp=1 mit1=1m;_1=1m1=1
n
i Aij
)| Tl Gmp) Pt (my)
j=1j#
Our next task is to estimate the functions (F' o u;)(m;), i = 1,...,n. Since the kernel K is
strictly decreasing in each variable and u; € H(p;A;j), @ # j, we conclude that the functions F; o u;,
i =1,...,n, are strictly decreasing. Hence, we have

(Floul)(ml) < / K(ul(ml),ug(m),...,un(xn))x

(O,OO)n—l
X H ([uj(xj)]plA”u;(:vj))dxg oo dry, (2.8)
j=2

since the left-hand side of this inequality is obviously the lower Darboux sum for the integral on the
right-hand side of inequality. Further, by using the substitution t; = w;(x;), i = 2,...,n, from (2)
we get

(Frowug)(my) < / K(Ul(m1)at27---,tn)Ht?Aljdtm--dtm
(O,oo)"_l j72

wherefrom by using the homogeneity of the kernel K and the obvious change of variables, we have

(Floul)(ml) S / [ul(ml)]_)‘K(l,tg/ul(ml),...,tn/ul(ml))x

(0700)7171

n
< [Tty ...dtn =
j=2

= [Ul(ml)}n_l_le (al_Au)k(PlAl% ., p1A1n).

By using the same arguments as for the function F; o u;, we also get

(Fy 0 ug)(mg) < / K(t1,us(msa), ts, ... tn) H t§2A2jdt1dt3...dtn. (2.9)
(0700)71—1 j:l,j;ﬁZ

Now, let J denotes the right-hand side of the inequality (2.9). It is easy to see that the transformation

of variables .
Vs
t1 = ug(mg)—, ti = ug(ma)—, i=3,...,n,
() (%)
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yields
Ot1,ts, ... 1 ~
(1) 3 ) n) _ [Uz(ﬂ”@)]n lv;n’
8(112, V3, ... ,Un)
Ot1,ta, ...t . .
where (t1,t, - tn) denotes the Jacobian of the transformation.
6(’02,’03, e ,Un)

Now, by using the homogeneity of the kernel K and the above change of variables, we have

n
J = / tl_AK(l,UQ(mg)/tl,tg/tl...,tn/tl) H t?QAdetldtg...dtn =
(0700)n71 J=1,3#2

_ / (s (m2)] MK (1, v, - ., o) [un () P22~ 422)
(0,00)"71
X ;p2(a2 A22) 52‘423 . U£2A2" [u2(m2)]"_1v7”d02dv3 ..dv, =

n

- [UZ(m2)]n—1—>\+P2(a2—A22) )\ n—pz(az—Az2z) HU 2A2]dv dv, =
(0,00)n—1 Jj=3
= [ug(mo)]" AP AR B (N — i — po(@g — Azo), paAas, ..., padan).

Hence, inequality (2.9) and the above equality yield
(F3 0 up)(ma) < [ug(mg)]" 1A P2(027 4220k (X — 0 — py (g — A), padas, . .., p2Aan).
In a similar manner we obtain

(Fy 0 wi) (my) < [u(my)]m 1A Tpiloi— i

xk(piAiz, ..., pidii-1,8 —n— pi(ei — Aii), DiAisit1s - - -, Didin),

for i = 3,...,n. This completes the proof of inequality (2.4).

The proof of the inequality (2.5) follows from the inequality (1.2), by using the same estimates
as in the first part of the proof.

The next problem we are dealing with in this section is to determine the conditions under which
the constant factor L, defined by (2.6), is the best possible in inequalities (2.4) and (2.5). Considering
Theorem 1.1, we see that the appropriate constant factor does not include any exponent. Bearing in
mind that fact, we shall find the conditions under which the constant L reduces to the form without
any exponents.

In order to obtain the constant factor without exponents, it is natural to impose the following
conditions on the parameters A;;:

If the parameters A;; satisfy the set of conditions (2.10), then the constant L from Theorem 2.1
reduces to the form
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L* = k(A ..., Ay), (2.11)

where we use the abbreviations
Ai=piAu, 0,5 =1,2,....n, i#]. (2.12)

Regarding the set of conditions (2.10), it is easy to see that the parameters ﬁi satisfy the relation
n ~
Y Ai=x-n (2.13)
i=1

Furthermore, by using (2.2) and (2.12), we have the following relationship between the parameters
Aii and Ai, 1= 1,2,...,77,:

Ajj = —Ay — Ay — .= A1 — A1 — . — Ap =
- AVZ Az A’z[z Az sz o
D1 D2 Pi—1 Di+1 Pn

_i (1 _ 1). 2.14)
pi

Now, taking into account the relations (2.11), (2.12), and (2.14), the inequalities (2.4) and (2.5)
with the parameters A;;, 7,7 = 1,2, ..., n, satisfying the set of conditions (2.10), become

(e 9] o n

Z Z K(ul(ml),...,un(mn))na% <

3
3

[
_
3
S

[
s
<
A

n e ~ i 1/pi
ﬂ*H(Z[uim)J1piAi[u;<mi>]1Pi (o) ) , 2.15)

and

Z [ ()] (1) (= 1=Pndn) o

00 0o n—l Ve
| > Y Kuma), s un(ma)) T af) .
mpy—1=1 mi=1 =1

n—1 o) . s 1/pi
< L* H (Z [ ()]~ P ol (my )P <a%)) ) : (2.16)

i=1 \m;=1

where the constant factor L* is defined by (2.11).
Now we are ready to prove that the constant factor L* is the best possible in both inequalities
(2.15) and (2.16). That is the content of the following theorem.
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Theorem 2.2. If the parameters A;j, i,j = 1,...,n, satisfy the conditions (2.2) and (2.10),
then the constant factor L* is the best possible in both inequalities (2.15) and (2.16).

Proof. 1t is enough to show that the constant factor L* is the best possible in inequality (2.15),
since (2.15) and (2.16) are equivalent inequalities. N

For that sake, we consider the real sequences ‘dﬁ,il = [ui(m;)]4~5/Pul(m;), where ¢ > 0 is
sufficiently small number. Since u; € H (/L), i = 1,...,n, we may assume that wu; is strictly
increasing on (0, 0o) and that there exists o € (0, 00) such that u;(zo) = 1.

Therefore, by considering integral sums, we have

D = [l ) < 3 fustma)] ' uims) =
1

m;=1

= 3 bl PR ) (39)” <
mi=1

)+ e dfuy (x )]:792-(1)+1,
0 [t

where the function ; is defined by ¥;(z) = [u;(z)] 71 ¢ul(z). In other words, the following relation
is valid: -
S fns(ma) ] 7 g ) (ag,i?i)”i = é +0(1), i=1,...,n (2.17)
mi;=1

Now, let us suppose that there exists a positive constant M, smaller than L*, such that the inequality
(2.15) is still valid, if we replace L* with M. Hence, if we insert relations (2.17) in inequality (2.15),
with the constant M instead of L*, we get

—_

Ti=>" .Y K(u(m),... .un(my)) [ < =(M +o(1)). (2.18)

mp=1 mi1=1 =1

m

On the other hand, let us estimate the left-hand side of inequality (2.15). Namely, by inserting the

above defined sequences (ZL}%) in the left-hand side of inequality (2.15), we easily get the

m; EN
inequality
T> [ [un ()] /e K(ui(x1), ... un(wn)) X
/ [~
X H[ui(xi)]ﬁff/pfd[uz(xg)] o dlun(z0)] | dlur (21)]. (2.19)

I
I\

(2

Further, let J denotes the right-hand side of the inequality (2.19). By using the substitution t; =
_ uz(acz)

(5] (.%'1) ’

i =2,...,n, we find that
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(e o] [e.o]

J= /u1 z1)] / / K(1,tg,...,t Ht Aimelpigty . dt, | dlut(21)).
1

Vui(z1) 1/ ui(@1)

Now, considering the obtained expression for J, we easily get inequality

J > /ul 21)] / K(Lta, ... tn) [[t4Pidty ... dtn | dlus(21))—
1 (0,00)7—1 =2
/u1 x1)] —1= EZI] (uy)d[ui(x1)], (2.20)
1 i=2

where for j = 2,...,n, I;(u1) is defined by

i (up) /K (1,t2,. .. tn HtA—E/pzdtz dt,
1 .
andDj:{(tz,tg,...,tn); 0<tj§ , 0<tp <oo,k#j
ul(:pl)

Without losing generality, it is enough to estimate the integral I5(z). Obviously, since 1 —¢5 — 1
(to — 0T), there exists the constant C' > 0 such that 1 — t§ < C (t5 € (0,1]). Now, by using the
well-known Fubini’s theorem, it follows that

<e [ Jur(z1)] " o (ur)du (1)) =
<

1/u1(=1)
[ (1)) ° / / K(1,ta,.. Ht TPy L dty, | dfu (21)] =

(0,002 0

=&

1/t2

1
=c / /K (1,t,.. Ht ime/pi /tfl_sdtl dty .. .dt, =
0

(0,00)7—2 1

1
—¢ / /Kltg, Ht”/’h( 1—t2)>dt2...dtn§
0

(0,00)”‘2

1 n N
/ /K(l,tz,...,tn)Ht;‘“E/pidtg...dtn <
=2

(0,00)"2 0
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<C / K(l,tQ,...,tn)Ht;“i‘E/’”dtQ...dtn =
=2

(0700)77,71

20k<g2_5,...,gn_8> <.
P2 DPn

Further, regarding the above derived relation and inequality (2.20), we have that

7>t (ﬁg—g,...,ﬁn—5> —o(1). 2.21)
€ P2 Pn

Finally, by comparing the relations (2.18) and (2.21), we conclude that L* < M when ¢ — 0T,

which is an obvious contradiction. Hence, it follows that the constant factor L* is the best possible

in (2.15).

Clearly, the constant factor L* is also the best possible in the inequality (2.16) since the equiva-
lence keeps the best possible constant.

Theorem 2.2 is proved.

3. Some applications. This section is dedicated to the applications of our general results, i.c.,
Theorems 2.1 and 2.2, to some particular choices of homogeneous kernels K : (0,00)™ — R, differ-
entiable functions u;: (0,00) — R, i = 1,...,n, and real parameters Ai, 1 =1,...,n, defined in
the previous section.

Here, we shall be concerned with the homogeneous function

1
Kl(xl’”"w”):(1;1-1-_,,4-;5”)/\’ A> 0.

Note that the kernel K is symmetric, strictly decreasing in each variable, and

n—1

Bi—1
/ Hi:1 £

n—1 A

(0001 (1 +y tl->

n—1 n—1
o r (A B Zi:l ﬁi) Hi:l T(8:) 3.1
- oy , (.1)
where we used the integral formula derived in the paper [4]. Now, in the above described setting, as
an immediate consequence of Theorems 2.1 and 2.2, we get the following result.
Corollary 3.1. Suppose the parameters qp, p;, Aij, 1,5 = 1,...,n, and the functions u;:
(0,00) = R, i = 1,...,n, are defined as in statement of Theorem 2.1. If the parameters A;;,
1,7 =1,...,n, fulfill the set of conditions (2.10), then the inequalities

N |
m;:l - 'm§=:1 (Z:;l Ui(mi))

k(ﬂl_lw"aﬂnfl_l):

dty...dth—1 =

5 <

n 00 . i 1/pi
<h]] ( D fusma) | 77 g (ma) [ (af)) ) (32)
i=1

mizl
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and
3 [ty (1)] (1= 8) (S 1=PAn) o
mnp=1
n 1/ n
00 ] Hn aﬂ? ! !
oSy At <
mp—1=1 mi=1 (ZZZI ul(ml)>
n—1 00 _ s 1/pi
< Iy (Z o () 7P )| (a2 ) : (33)
=1 mi;=
Hn I’(ZZ + 1) ()
where L, = ’zlr()\) , hold for all nonnegative real sequences (amvﬁ)m-eN and are equiva-

lent. Moreover, the constant factor L1 is the best possible in both inequalities (3.2) and (3.3).

Remark 3.1. Note that inequalities (3.2) and (3.3) involve the parameters A}, 1=1,2,...,n,
since the parameters A;;, 7, j = 1,2, ..., n, satisfy the set of conditions (2.10).

The following remark describes the connection between our Corollary 3.1 and Theorem 1.1 in
detail.

Remark 3.2. 1t is obvious that our Corollary 3.1 is the generalization of Theorem 1.1 from the
Introduction (see also [2]). Namely if we substitute the power functions u;(x;) = (z; + 8)® and the

parameters ;lvz = ——1,7=1,...,n, in Corollary 3.1 we get the inequalities from Theorem 1.1
i
1-—n A
with the best possible constant factor (; o) H;l r <n> .

We conclude this paper with yet another consequence of Corollary 3.1, known from the literature.
Remark 3.3. Let

n—MN(p; —1 A—n o . .
Aiizw and Ay = , ,7=1,2,...,n, i#7, (3.4)
p; PiDj
where p;, i = 1,2,...,n, are conjugate exponents. These parameters are symmetric and

n

I D Vbl (B Sh B
i=1 j=1 i

D; =1 gt DiDj Di = Dy

Moreover, the above defined parameters satisfy the set of conditions (2.10), so the resulting relations
will include the best possible constant factors.

Now, for the above choice of parameters A;; defined by (3.4), and the functions u;(x;) = x;, the
inequalities (3.2) and (3.3) respectively read

SHESNISCE

1/pi
n—1-x (. (i)
PIEED (ZZ:lmz> <L2H<;lml < ) ) (3.5)
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ON SOME MULTIDIMENSIONAL HILBERT-TYPE INEQUALITIES IN A DISCRETE CASE 813

and
n 1/an
o o S ) i
R I oS
mnp=1 mp—1=1 mi1=1 (Z 1mi>
1=
n—1 00 s 1/pi
<L (D] mm (a;?i) : (3.6)
i=1 \m;=1

1 D
where Loy = m H:L_l r <pz+pn . Note that the condition A < minj<;<,{p;} must be sat-
- (2

isfied, so that the function w; belongs to the set H(p;A;j), i,j = 1,2,...,n (see the statement of
Theorem 2.1). Moreover, since we consider the Gamma function with positive argument, inequali-
ties (35) and (36) hold under condition n — minlgign{pi} < A < minlgign{pi}.

Finally, let us mention that our inequality (3.5) is a discrete variant of the appropriate integral
result from paper [4].
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