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a-SASAKIAN 3-METRIC AS A RICCI SOLITON*
a-CACAKIE€BA 3-METPUKA SAK COJIITOH PIYYI

We prove that if the metric of a 3-dimensional c-Sasakian manifold is a Ricci soliton, then it is either of constant curvature
or of constant scalar curvature. We also establish some properties of the potential vector field U of the Ricci soliton. Finally,
we give an example of an a-Sasakian 3-metric as a nontrivial Ricci soliton.

JloBezieHO, IO SIKIIO METPHKA TPUBHMIPHOTO (x-CaCaKi€BOrO MHOTOBHJIY € CONITOHOM Piudi, To BiH Mae ab0 CTay KpUBHUHY,
abo crany CKaJsIpHy KpHUBHHY. BcTaHOBIIEHO AesKki BIACTHBOCTI HMOTEHLIaJbHOTO BeKTopHOro mois U comiToHa Piuui.
HaBeneno npukinan a-cacakieBoi 3-METPHKH SIK HETPUBIAJIBHOTO CONiTOHA Piudi.

1. Introduction. Over the last few years, Ricci solitons have been the place of concern for many
geometers and physicists. The whim of Ricci soliton structure was innovated by R. S. Hamilton (for
details we refer to [4]) and there he had excogitated it as a generalisation of an Einstein metric and
specified on a Riemannian manifold (M", g) together with a vector field U and a constant \ that
satisfies

L,9+25+2\g =0, (1.1)

where £ stands for the Lie-derivative operators along the complete vector field U and .S as the Ricci
tensor of the manifold. In case, if A is positive (respectively zero, respectively negative) then the
Ricci soliton is said to be expanding(respectively steady, shrinking). Actually Ricci soliton can be

considered as a fixed point of Hamilton’s Ricci flow: e 9ij = —28,;; viewed as a dynamical system,
on the space of Riemannian metrics modulo diffeomorphisms and scalings. In particular if U = V f,
for some smooth scalar valued function f, then the soliton is said to be a gradient Ricci soliton. In
particular, if U is Killing or U = 0 the soliton is said to be a trivial Ricci soliton (for details refer to
[3, 6]). Also for several classes of these manifolds the existence of nontrivial Ricci solitons is proved.
Recently, Sharma and Ghosh [9], proved that if the metric of a 3-dimensional Sasakian manifold is
a Ricci soliton then it is homothetic to a standard Heisenberg group nil®. Since a-Sasakian is a
generalization of Sasakian manifold, we are interested to study 3-dimensional a-Sasakian manifold
when its metric is a Ricci soliton. We also deduce some properties of the potential vector field U of
the Ricci soliton together with an example of an «-Sasakian 3-metric as a nontrivial Ricci soliton.

2. Preliminaries. An odd-dimensional differentiable manifold (M™, g) is said to admit an almost
contact metric structure (¢,&,n,g) consisting of a Reeb vector field &, (1,1)-tensor field ¢ and a
Riemannian metric g satisfying

¢ =—T+n&  nE)=1, 2.0
9(0X,9Y) = g(X,Y) =n(X)n(Y) VX,Y € x(M), (2:2)

where y (M) represents the collection of all smooth vector fields on M.

* This research was supported by University Grants Commission (India).

© S. KUNDU, 2013
850 ISSN 1027-3190. Yxp. mam. srcypn., 2013, m. 65, Ne 6



a-SASAKIAN 3-METRIC AS A RICCI SOLITON 851

Moreover, if the relation
dn(X,Y) = g(¢X,Y),

holds for arbitrary smooth vector fields X and Y, then we call such a structure a contact metric
structure and the manifold with that structure is said to be contact metric manifold. As a consequence
of this, the following relations hold:

¢¢=0, no¢p=0, dn(§X)=0 VX ex(M). (23)

For details we refer to Blair [1].
An almost contact structure on M 1is said to be an «-Sasakian manifold, where « is a non-zero
constant, if
(V@)Y =a(g(X,Y)E—n(Y)X) VXY € x(M) (2.4)

holds. As a consequence, it follows that:
Vxé=—apX, (2.5)
(Vi)Y = —ag(¢X,Y) VXY € x(M). (2.6)

If o = 1, then the a-Sasakian structure reduces to Sasakian manifold, thus a-Sasakian structure may
be considered as a generalization of Sasakian one. In other words, Sasakian manifold is a particular
case of a-Sasakian manifold. Also in a 3-dimensional «-Sasakian manifold the following relations
are true:

R(X,Y)¢ = a*{n(Y)X —n(X)Y}, (2.7)
S(X,€) = 20°n(X), (2.8)
Q¢ =2a%¢ VXY € x(M), (2.9)

where R is the Riemannian curvature tensor and () is the Ricci operator associated with the (0, 2)
Ricci tensor S. For details we refer to [5].

Definition 2.1 [1]. In an almost contact Riemannian manifold, if an infinitesimal transformation
U satisfies

(£Lym(X) = on(X), (2.10)

for a scalar function o, then we call it an infinitesimal contact transformation. If o vanishes identi-
cally, then it is called an infinitesimal strict transformation.

3. a-Sasakian 3-metric as a Ricci soliton. Before proceeding towards the main results we state
the following lemma.

Lemma 3.1. [n an a-Sasakian 3-metric, the Ricci tensor S' is given by

r

S:(g—a2>g+(3a2—§)n®n. G.1)

Proof. We recall that the Riemannian curvature tensor in a 3-dimensional Riemannian manifold
is given by
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R(X,Y)Z = g(Y,2)QX — g(X, Z)QY + 8(Y,Z)X — S(X, Z)Y — g{g(K 2)X — g(X, 2)Y},
(3.2)

where 7 is the Ricci scalar curvature and X, Y, Z € x(M).
Replacing Z with £ in (3.2) and recalling (2.8),

n(Y)QX —n(X)QY + (o = £ ) (n(¥)X = n(X)Y} =0.

Again, replacing Y with £ and thereby using (2.9), we get the desired result.

Theorem 3.1. [f the metric of a 3-dimensional a-Sasakian manifold is a nontrivial Ricci soli-
ton, then it is of constant scalar curvature —20 and the soliton is expanding.

Proof. Combining (1.1) and (3.1) yields,

(£,9)(X,Y) = (207 =22 = 7) g(X,Y) + (r = 60%) n(X)n(Y). (3.3)

The identity
(Vx£,9)(Y, 2) = g((£,V)(X,Y), Z) + g((£,V)(X, 2),Y), (3.4)

can be deduced from the formula [10],
(£4V49~ VxLyg =V o0)(V.2) = —g((£,V)(X.Y), Z) - g((£,V)(X,2),Y). (3.5
Differentiating covariantly (1.1) with respect to the vector field Z, we obtain
(Vz£,9)(X,Y)+2(VzS)(X,Y) =0. (3.6)

Again, differentiating (3.1) covariantly with respect to Z and using (2.6), we have

(V2S)(X,Y) = Ldr(Z){g(X, )~ n(X)n(¥)} -

—a (32 = 5) {962, X)n(¥) + 9(6Z, Y )n(X)}. 3.7
Combining (3.6) with (3.7), one obtains
(Vz£y,9)(X,Y) +dr(Z){g(X,Y) = n(X)n(Y)}—

~2a (302 = D) {9(0Z, X)n(Y) + 9(6Z, Y )n(X)} = 0. (3.8)

Using (3.4) in (3.8) one obtains
9((£,V)(2, X),Y) + 9((£,V)(Z,Y), X) + dr(Z){g(X,Y) = n(X)n(Y)} -

20 (307 = 2) {9(6Z. X)n(Y) + 9(6Z, Y Jn(X)} = 0. (3.9)

Permuting X, Y, Z and then by combinatorial combination we find,
2(£, V)Y, Z)+{dr(Y)(Z = n(Z)€) + dr(Z)(Y —n(Y)§)—
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~Dr(9(Y,Z) —=n(Y)n(Z))} —

~2a (3a2 - g) ((Z)oY +n(Y)$Z)} =0, (3.10)
for all vector field X and D is the gradient operator of g. Now from [10], we have the following

identity:
(LuR)(X,Y)Z = (Vx£uV)(Y, Z) = (Vy £LuV)(X, 2). (3.11)

Now the use of (2.5) and (3.10) in the identity (3.11), we obtain on taking Z = ¢

(LUR)(X.Y)E = 5 [dr(Y)oX — dr(X)eY] +20%(6a” = r){n(X)Y —n(Y)X }+

+ag(@X,Y)Dr + 2 [dr(@Y)(X —n(X)€) - dr(6X)(Y — n(¥)¢)]. (3.12)
Taking the Lie-derivative of (2.7) along the direction of U and using (3.3), one obtains
(LUR)(X,Y)¢ = —R(X,Y) £u& + 207 (A + 20°){n(X)Y —n(Y) X }+
+a{g(Y, £u€) X — g(X, £u€)Y ). (3.13)
Equating (3.12) and (3.13), it follows that
202{g(Y, £0€)X — g(X, £0€)Y} = 2R(X,Y) £y — 4a®(4a® = A = r){n(X)Y —n(Y) X }+
+2ag9(¢X,Y)Dr + af[dr(Y)¢X — dr(X)eY |+
+a[dr(¢Y)(X = n(X)€) — dr(¢X)(Y —n(Y)E)].
Contracting the above equation over Y and thereby using (3.1), we find
2adr(¢X) = (r — 60°)[g(£u&, X) — n(£u&)n(X)] + 8a*(r — 4a® + N)n(X). (3.14)

Substituting X = &, yields
r=4a®— )\, since o #0. (3.15)

Now, the integrability condition of the Ricci soliton (for details refer to [2, 8]) is given by
£,r = —div.Dr + 2\r + 2|5/

By using (3.15) and (3.1), one obtains from above

r? —4a*r —120* =0, which implies 7 = 60> or r = —2a2.
Theorem 3.1 is proved.
For r = 6a% we see that the manifold is Einstein and being of dimension 3 it becomes a space
of constant curvature . Hence we have the following corollary.
Corollary 3.1. If the metric of an a-Sasakian manifold is Ricci soliton then it is either a space

of constant curvature o or of constant scalar curvature.
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We now deduce some properties of the potential vector field U related to the underlying contact
structure of the a-Sasakian 3-metric as a Ricci soliton: Putting 7 = —2a2 and A = 602 in (3.1) and
using the result in (1.1), one obtains

L,g=-8(g+n®n),

which implies U is homothetic on the distribution D = ker(n). Replacing X, Y with £, one obtains
from (3.10)
(£,V)(&,€) =0, since ¢ is killing. (3.16)

Substituting X =Y = £ in (3.5) provides,
(LuV)(X,Y)=VxVyU - Vy yU + R(U, X)Y. (3.17)
Thereby using (3.16) in (3.17) together with X =Y = £, we have
VeVeU + R(UL€)E = 0. (3.18)

Hence from (3.18), it is quite evident that U is a Jacobi along geodesics of £. Again, using (3.7) in
(3.14), we find

(r —60%){£,& —n(£,£)E = 0.

If ¢ is a nontrivial Ricci soliton, the above equation yields
£,€=0&, where o=n(£,§).
Then the use of (1.1), (3.1) and the above equation, one obtains
£yn = (0 —16a%)n,

which proves that U is an infinitesimal contact transformation. Setting X =Y = £ in (1.1) and in
view of (2.8), £,£ = 0§, we get

o= 8a2,

from which we see that
o —16a% = —8a*(# 0).

This implies the infinitesimal contact transformation is nonstrict. Summing up all these results we
can state as follows:

Theorem 3.2. If an a-Sasakian 3-metric admits a nontrivial Ricci soliton together with the
potential vector field U, then the following statements hold:

(1) U is homothetic on the distribution D = ker(n).

(2) U is a Jacobi vector field along geodesics of €.

(3) U is an infinitesimal contact transformation.

Thus the ¢-sectional curvature of a-Sasakian manifold (of 3-dimension) admitting nontrivial
Ricci soliton is given by a?. Hence, we can state as follows:

Theorem 3.3. For a 3-dimensional a-Sasakian manifold the ¢-sectional curvature (sectional
curvature with respect to a plane orthogonal to €) is constant and equals to o.
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4. Example of an -Sasakian 3-metric as a Ricci soliton. Let us consider the 3-dimensional
Riemannian manifold M = R3 with a rectangular cartesian coordinate system (x,).
Let us choose the vector fields {E,, E,, E, } as

0 0 0 0
- E, = -2 E, =1, t1,-2>
YOz, 2 048%, 3 = 2 oz, + T ox,’

E « being a nonzero constant.

Thus, {E,, E,, E,} forms a basis of x(M) = x(R?).
Let g be the Riemannian metric on x(R?) defined by

g(E,, E)) = g(Eszz) = g(EsaEs) =1,
g(E17E2) = 9(E17E3) = Q(E2JE3) =0.

Let £ = E, be the vector field associated with the 1-form 7. The (1,1)-tensor field ¢ be defined by,

o(E,) =0, o(E,) = —Ey, o(E,) = E,.
Since, {E,, E,, E, } is a basis, any vector fields X and Y in M can be uniquely expressed as
X=X'E +X°E,+X*E, and Y =Y'E +Y?E,+Y?E,,

where X?, Y, i = 1,2, 3, are smooth functions over M.
Now using the linearity of ¢ and ¢, and taking £ = E, we have

nE) =1, X =-X+nX),,  g(6X,8Y)=g(X,Y)—nX)nY)

for any vector fields X and Y in M. Thus (¢,£,n,g) defines an almost contact metric structure
on M.
Let V be the Levi—Civita connection with respect to the Riemannian metric g. Then we obtain

[E,, E,] = —2aeq, [E,,E,] =0, [E,, E,] =0.
By using Koszul’s formulae (see [7]), we have

Ve, E,=—aE, Vg E,=aB, VgE =0,

1

Vg E, = —aF

2 17

Ve, B, =aB, Vg B,=0,

2
Vi E, = —ak,, Vi E, =ak,, Vi E; =0.
Also, the Riemannian curvature tensor R is given by,
R(X,Y)Z=V NV, Z-N NV Z -V 72
Then

R(E,,E,)E, = o*F,, R(E,,E,)E, = o’ R(E,,E,)E, = o’E,),

1 29

R(E,,E,)E, = -30*E,, R(E,,E,)E, =o*FE,, R(E,,E,)E, = —3d*E,,

ISSN 1027-3190. Yxp. mam. xcyph., 2013, m. 65, Ne 6



856 S. KUNDU
R(E,,E,)E, =0, R(E,,E,)E, =0, R(E,,E )E, =0.
Then, the Ricci tensor S is given by
S(E,,E,)=2a*  S(E,,E,) =-2a*  S(E,,E,) = —2a%
S(E,,E,) =0, S(E,,E,) =0, S(E,,E,)=0.
Thus the scalar curvature 7 = —2a? is constant. The conditions (2.4) to (2.9) hold for any smooth

vector fields X and Y in M. Taking the potential vector field

U= flEl + f2E2 —I—f3E3,

where f1, fo and f3 are smooth functions on M, it can be easily shown that it satisfies the soliton
equation and the soliton is expanding in nature.
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