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ON RESTRICTED PROJECTIVE DIMENSION OF COMPLEXES *
PO OBMEKEHY INTPOEKTUBHY PO3MIPHICTHh KOMIIVIEKCIB

We study the restricted projective dimension of complexes. We give some new characterizations of the restricted projective
dimension. In particular, we show that the restricted projective dimension can be computed in terms of the so-called
restricted projective resolutions. As applications, we get some results on the behavior of the restricted projective dimension
under change of rings.

BuBuaeThcs oOMexeHa IPOCKTUBHA PO3MIPHICTh KOMIUIEKCIB. HaBeieHO Nesiki HOBI BIaCTHBOCTI OOMEKEHOIT MPOSKTUBHOT
po3MipHOCTi. 30KpeMa, MOKa3aHo, 10 0OMEKEeHY MPOEKTUBHY PO3MIPHICTh MOKHA OOUMCIIUTH Yepe3 Tak 3BaHI OOMEXeHi
MIPOEKTHBHI PE30JIbBEHTH. SIK 3aCTOCYBAaHHSI OTPUMAHO JEsIKi pe3yIbTaTH NPO MOBEAIHKY 0OMEkKeHOI IPOSKTHBHOI PO3Mip-
HOCTI IIpU 3MiHi KiJIeIb.

Introduction. As is well known, the classical homological dimensions — projective, flat and injective
dimensions are defined in terms of resolutions, but they can also be computed in terms of vanishing
of appropriate derived functors. For example, the flat dimension of R-module M can be computed
as follows:

fdr(M) = sup {i € Ny | Torf (T, M) # 0 for some module T}.

The restricted flat dimension was defined solely in terms of the vanishing of the derived functor Tor
over some classes of test modules that are restricted to assure automatic finiteness over commutative
Noetherian rings of finite Krull dimension (see [3]). Accurately, the restricted flat dimension, denoted
Rfdgr M, of an R-module M is defined as

Rfdr(M) = sup {i € Ny | Tor?(T, M) # 0 for some module 7' with fdz(T) < 0o}

Christensen, Foxby and Frankild [3] further studied the restricted flat dimension of complexes,
and they gave a number of interesting properties. For example, they showed the restricted flat dimen-
sion is finite for any homologically bounded complex over commutative Noetherian rings of finite
Krull dimension, and it is a refinement of both flat and Gorenstein flat dimensions. Sharif and Yassemi
[4] studied the behavior of the restricted flat dimension under change of rings, and generalized some
classical results.

Let X be a homologically bounded below complex of R-modules. The restricted projective di-
mension, denoted Rpdp X, of X was defined by Christensen, Foxby and Frankild in [3]. They
showed that this dimension is also finite for any homologically bounded complex over commuta-
tive Noetherian rings of finite Krull dimension. In this paper, we give some new characterizations
of the restricted projective dimension of complexes as follows, which show that the restricted pro-
jective dimension can be computed in terms of the so-called restricted projective resolutions (see
Theorem 2.1).
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ON RESTRICTED PROJECTIVE DIMENSION OF COMPLEXES 937

Theorem A. Let X be a homologically bounded below complex and n € 7. Consider the
following conditions:

(1) Rpdp X <n.

(2) X is equivalent to a bounded complex P of restricted projective R-modules with sup{i €
€ Z | P; # 0} <n;and P can be chosen such that P, = 0 for | < inf X.

(3) H;(RHompg(X,T)) =0 for any i < —n and any R-module T with idg(T) < oo.

(4) sup X < n and C,(P) is a restricted projective R-module whenever P is a bounded below
complex of restricted projective R-modules which is equivalent to X.

(5) —inf(RHom(X,U)) + inf U < n for any non-exact complex U with idgr U < occ.
Then we have (1) & (2) & (3) & (4) < (5). If, furthermore, X is homologically degree-wise finite,
then all the above statements are equivalent.

As applications of the above theorem, we get the following result on the behavior of the restricted
projective dimension under change of rings (see Propositions 2.4 and 2.5).

Theorem B. Let ¢: R — S be a homomorphism of rings and X a homologically bounded
below and degree-wise finite complex of S-modules. Then the following statements hold:

(1) If'Y is a homologically bounded below complex of R-modules with fdrY < oo, then we
have

Rpdp(X @% V) < Rpdg X +Rpdp Y + Rpdy S
and
Rpdg(X ®% Y) < Rpdg X +Rfdg S +supY + dim S.

(2) If'Y is a homologically bounded below complex of S-modules with fdgY < oo, then we
have

Rpdp(X ®§Y) < Rpdg X + Rpdy Y.

1. Preliminaries. We begin with some notations and terminology for use throughout this paper,
which can be found in [2].

X X

1.1. A complex ... — X3 6—1> Xo i> X_1 — ... of R-modules will be denoted by
(X, 0%) or simply X. We frequently (and without warning) identify R-modules with complexes con-
centrated in degree 0. A complex X is bounded above (resp., bounded below, bounded) if X,, = 0
for n > 0 (resp., n < 0, |n| > 0). The nth boundary (resp., cycle, homology) of X is defined
as Imd; | (resp., Kerd;\, Kerd,\ /Im§;’ ;) and it is denoted by B,,(X) (resp., Zn(X), H,(X)).
A complex X is homologically bounded above (resp., homologically bounded below, homologically
bounded) if the homology complex H(X) is bounded above (resp., bounded below, bounded). We
use the notation C,,(X) for the cokernel of the differential 6;\, ;. The soft truncations of X at n are

the complexes
oX oy
Xen=0 — Cp(X) =5 X5 — Xp2 — ...
and
LR Oy
Xon=... — Xpio — Xy — Zp(X) — 0.

The hard truncations of X at n are the complexes
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938 LI LIANG, DEJUN WU

X<n=0 — X, — X501 — Xjo — ...

and
XZnE... — Xn+2 — Xn+1 — X, — 0.

The supremum and infimum of X are given by the following formulas:
sup(X) =sup{i € Z | H;(X) #0}  and inf(X)=inf{i e Z|H;(X)#0}.

For any m € Z, ¥™X denotes the complex with the degree-n term (X X),, = X,,_,, and whose
boundary operators are (—1)"5:X .

1.2. If X and Y are both complexes, then by a morphism oo: X — Y we mean a sequence
an: X, — Y, such that a,, 16X = 6Y a, for each n € Z. A quasiisomorphism, indicated by
the symbol “~” next to their arrows, is a morphism of complexes that induces an isomorphism in
homology. The mapping cone Cone(«) of « is defined as Cone(«),, = Y,, & X,,—1 with nth boundary

N
Cone(a) 5” On—1
operator 0, =

0—d,7,

only if its mapping cone Cone(«) is exact. Two complexes X and Y are equivalent, we write X ~ Y

) . It is well known that a morphism « is a quasiisomorphism if and

if there is the third complex Z and two quasiisomorphisms: X = Z &Y.

1.3. Throughout this paper, all rings are assumed to be commutative Noetherian. The category of
complexes of R-modules is denoted C(R), and we use subscripts J, C, and o to denote boundedness
conditions, and use subscripts (J), (), and (o) to denote homologically boundedness conditions.
For example, C+(R) and C(—)(R) are the full subcategories of C(R) of bounded below and homo-
logically bounded below complexes, respectively. Superscript “(f)” signifies that the homology is
degree-wise finitely generated. Thus, C (5)) denotes the full subcategory of C(R) of homologically
bounded below complexes with finitely generated homology modules.

1.4. A projective (resp., flat) resolution of X € C(5)(R) is a bounded below complex P of
projective (resp., flat) R-modules such that P ~ X, and an injective resolution of a complex ¥ €
C(c)(R) is a bounded above complex I of injective R-modules such that Y =~ I. The projective, flat
and injective dimensions are defined as follows:

pdp X =inf { sup{l € Z | P, # 0} | P is a projective resolution of X },
fdg X = inf {sup{l € Z | F; # 0} | F is a flat resolution of X },

and
idrY =inf {—inf{l € Z | I; # 0} | I is an injective resolution of X }.

We use P(R) (resp., F(R), Z(R)) to denote the full subcategory of C(—)(R) of complexes of finite
projective (resp., flat, injective) dimension, and use Py(R) (resp., Fo(R), Zo(R)) to denote the full
subcategory of R-modules of finite projective (resp., flat, injective) dimension.

We use the standard notations R Homp(—, —) and — ®% — for the derived Hom and derived
tensor product of complexes; they are computed by way of the resolutions defined above.

The next two results can be found in [1] ((4.1)) and [2] ((A.4.21) and (A.4.24)).

Lemma 1.1. Let ¢: R — S be a homomorphism of rings, and let Z € C(S) and X € C(R).
Then

ids(RHompg(Z,Y)) < fdg(Y) +idgr(Y).
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ON RESTRICTED PROJECTIVE DIMENSION OF COMPLEXES 939

Lemma 1.2. Assume that p: R — S is a homomorphism of rings. Then the following state-
ments hold:

(1) Let Z € C—)(S5), Y € C(S) and X € C(=)(R). Then
R Hompz(Z @% Y, X) = RHomg(Z, R Homg(Y, X)).

(2) Let Z € C((g))(S), Y € C((S) and X € C(y(R) with idg X < oco. Then

Z @% RHompg(Y, X) = RHompg(R Homg(Z,Y), X).
L.5. Following from [3], the restricted flat dimension, Rfdg X, of X € C(—)(R) is defined as
Rfdr X = sup { sup(T @F X) | T € Fo(R)}.

There are inequalities sup X < Rfdgp X < sup X +dim R. In particular, Rfdg X = —o0o if and only
if X ~ 0, and if dim R < oo then Rfdgr X < oo if and only if X € C(—(R).

2. Restricted projective modules and restricted projective dimension. We say that an R-
module P is restricted projective if Ext}é(P, T) = 0 for any R-module T of finite injective dimension
and any ¢ > 0.

Lemma 2.1. [f P € C5(R) is an exact complex of restricted projective R-modules and I €
€ Co(R) is a complex of R-modules in Ty(R), then Hompg(P, I) is a exact complex.

Proof. We may assume that [ is non-zero, and let s = sup{i € Z | I; # 0}. We proceed by
induction on s. Without loss of generality, we assume that P, = 0 and I; = 0 for [ < 0.

If s = 0 then I € Zo(R). Note that P € C+(R) is exact and Ext’% (P, I) = 0 for all i > 0 and
[ € Z. One can check, by “Dimension Shift”, that Homp (P, I) is exact.

Let s > 0 and assume that Hom(P, I) is exact for any complex I € C(R) of R-modules in
Zo(R) with sup{i € Z | I; # 0} < s — 1. Consider the degree-wise split exact sequence

0 — Ics 1 — I — X[, — 0

of complexes, then it stays exact after application of Homp (P, —). The complex Hompg(P, I5) and
Homp (P, I<s—1) are exact by the induction base and hypothesis, respectively. Thus Homp (P, I) is
exact.

Lemma 2.2. [f X ~ Pand U ~ I, where P € CH(R) is a complex of restricted projective
R-modules and I € C(R) is a complex of R-modules in Ty(R), then R Hompg(X, U) is represented
by Homp(P, I).

Proof. Take a projective resolution X «+— Q € C+(R), then RHomp(X,U) is represented
by Homp(Q,U). Since Q ~ P, there exists a quasiisomorphism a: Q — P by [1, (1.4.P)], and
hence we have a morphism

Hompg(a, I): Homp(P,I) — Hompg(Q,I).

Since Cone(a) € Co(R) is an exact complex of restricted projective R-modules, we have
Cone(Hompg(a, I)) = %! Hompg(Cone(a),I) is exact by Lemma 2.1, and hence Hompg(a, I) is
a quasiisomorphism. Thus Hompz(Q, U) ~ Hompg(P, I). This implies that R Hompr (X, U) is repre-
sented by Hompg(P, I).
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Lemma 2.3. Let P € CH(R) be a complex of restricted projective R-modules and T' € Ty(R),
and let X be a complex of R-modules such that sup X < n < oo and X ~ P. Then, for any i > 0,
we have

Extp(Cn(P),T) = H_(j1n) (R Hompg (X, T)).

Proof. Since sup P = sup X < n, we have P>, ~ ¥"C,,(P), and hence C,,(P) >~ X7 "P>,,.
Thus by Lemma 2.2, for each ¢ > 0, we have

EXti‘%(Cn(P)aT) = H—i(RHomR(Cn(P)vT)) =
= H_i(HOmR(E_nPZn, T)) = H_Z-(E” HOmR(PZn, T)) =
= H—(i-‘,—n) (HomR(PZn, T)) = H—(i-‘,—n) (HomR(P, T)) =

= H_(j4n)(RHomg(X, T)).
Following from [3], the restricted projective dimension, Rpdg X, of X € C(o)(R) is defined as
Rpdg X = sup {—inf(RHomg(X,T)) | T € Zo(R)}.
It can be checked easily that, for X € Co)(R), Rfdg X < Rpdg X, and there are inequalities
supX < Rpdp X <sup X +dim R.

In particular, Rpdp X = —oo if and only if X ~ 0, and if dim R < oo then Rpdp X < oo if and
only if X € C(m)(R).

The next theorem gives some new characterizations of the restricted projective dimension of
complexes.

Theorem 2.1. Let X € C(o)(R) and n € Z. Consider the following conditions:

(1) Rpdp X <n.

(2) X is equivalent to a bounded complex P of restricted projective R-modules with sup{i €
€ Z | P, # 0} <n; and P can be chosen such that P, = 0 for | < inf X.

(3) Hi(RHompg(X,T)) =0 forany i < —n and any T € Ty(R).

(4) sup X < n and C,(P) is a restricted projective R-module whenever P is a bounded below
complex of restricted projective R-modules which is equivalent to X.

(5) —inf(RHom(X,U)) +inf U < n for any nonexact complex U € Z(R).

Then we have (1) & (2) & (3) & (4) < (5). If, furthermore, X € C((?) (R), then all the above
Statements are equivalent.

Proof. (1) = (4). Obviously, supX < Rpdr X < n. Let P € C5(R) be a complex of
restricted projective R-modules such that P ~ X, and let T € Zy(R). Then, by Lemma 2.3,
Ext%(Cn(P),T) = H_(j4n)(RHompg(X,T)) = 0 for any i > 0 since Rpdp X < n, and so
Cn(P) is an restricted projective R-module.

(4) = (2). Take a projective resolution X «+— P € Co(R) of X with P, = 0 for | < inf X.
Since sup P = sup X < n, we have X ~ P ~ P.,. Obviously, P, is a bounded complex of
restricted projective R-modules.

(2) = (3). Let T € Zy(R). By Lemma 2.2, we have H;(RHompr(X,T)) = H;(Hompg(P,T)).
For i < —n, Homgr(P,T); = [[,c; Homg(P;, Ti4i) = 0 since P, = 0 for ¢ > n, and so
H;(RHompg(X,T)) = 0.
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(3) = (1) and (5) = (3) are trivial.
Finally, we let X € C((g))(R), and let E be a faithfully injective R-module. Then, for any non-
exact complex U € Z(R), we have

—inf(RHomp(X,U)) = sup(RHomgr(RHompg(X,U), E)) =
= sup(X ®F RHompg(U, F)) < Rfdg X + sup(RHomp(U, E)) <

< Rpdp X —inf U,

where the second equality holds by Lemma 1.2(2), the third inequality by [3] (Theorem 2.4(a)) and
the last by [3] (Lemma 5.6). Thus the implication (1) = (5) holds.

Recall, from [5], that an R-module M is strongly torsion free if Torl*(T,M) = 0 for any
T € Fo(R). One can check easily that M is strongly torsion free if and only if Tor?(T, M) = 0 for
any T' € Fy(R) and any ¢ > 0. Using a similar method as proved in Theorem 2.1, we get the next
result.

Proposition 2.1. Let X € C—)(R) and n € Z. Then the following statements are equivalent:

(1) Rfdp X < n.

(2) X is equivalent to a bounded complex F of strongly torsion free R-modules with sup{i €
€ Z | F; # 0} <n;and F can be chosen such that F; = 0 for | < inf X.

(3) Hi(T @% X) =0 for any i > n and any T € Fy(R).

(4) sup X < nand C,(F) is a strongly torsion free R-module whenever F is a bounded below
complex of strongly torsion free R-modules which is equivalent to X.

Let X € Co)(R). We say that P is a restricted projective resolution of X if P is a bounded
below complex of restricted projective R-modules such that P ~ X. A restricted projective resolution
of an R-module M is a sequence

.— PP — ...— P — P — 0
of restricted projective R-modules which is exact at P; for ¢ > 0 and satisfies
Py/Im(P, — Py) = M.
That is, the sequence
.—~ PP —...— P — P — M — 0

is exact.
The next two corollaries are immediate by Theorem 2.1.
Corollary 2.1. If X € C—)(R), then

Rpdp X = inf { sup{l € Z | P, # 0} | P is a restricted projective resolution ofX}.

Corollary 2.2. If X € C((g))

Rpdp X = sup {inf U — inf(RHomp(X,U)) | U € Z(R) AU # 0}.

(R), then

In particular, —inf(R Hompg(X,U)) < Rpdp X —inf U for any X € C(Q (R) and any U € I(R).

em))
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The next lemma can be proved easily.

Lemma 24. Let 0 — M’ — M — M"” — 0 be an exact sequence of R-modules.
Then the following statements hold:

(1) If M" is restricted projective, then M is restricted projective if and only if M’ is so.

(2) If the sequence splits, then M is restricted projective if and only if both M' and M" are so.

Lemma 2.5. Let M be an R-module, and let P € C+(R) be a complex of restricted projec-
tive R-modules such that P ~ M. Then the soft truncated complex P-~q is a restricted projective
resolution of M.

Proof. Since P ~ M, we have inf P = (, and hence P59 ~ P ~ M. Thus we have an exact
sequence

.— Ph — P — Zo(P) — M — 0

of R-modules. In the following we show that Zo(P) is restricted projective. Let i = inf{l € Z | P, #
# 0}, then the sequence

0—)Z0(P)—>P0—>...—>Pi+1—>Pi—>0

of R-modules is exact, and so Zy(P) is restricted projective by Lemma 2.4.

Corollary 2.3. Let M # 0 be an R-module. Then M is restricted projective if and only if
Rpdgy M = 0.

Proof. Immediately by Corollary 2.1 and Lemma 2.5.

Corollary 2.4. Let M be an R-module and n € Ny. Then the following statements are equiva-
lent:

(1) Rpdr M < n.

(2) Thereis an exact sequence0 — P, — ... — P — Py — M — 0 of R-modules
with P; restricted projective for each 0 < i < n.

(3) Exth(M,T) =0 for any i > n and any T € Ty(R).

(4) For any restricted projective resolution ... — P, — Py — M — 0 of M, K,, =
= Ker(P,—1 — P,_2) is a restricted projective R-module, where Ky = M and K|, =
= Ker(Py — M).

Proof. We notice that if the sequence ... — P, — Py — M — 0 is exact, then M is
equivalent to the complex P = ... — P, — Py — 0, and Co(P) = M, Ci(P) =
= Ker(Py — M)and C(P) 2 Z;_1(P) = Ker(P,_1 — PF,_9) forl > 2. In view of Lemma 2.5,
the equivalence of the four conditions now follows from Theorem 2.1.

Similarly, by Proposition 2.1, we get the following result.

Corollary 2.5. Let M be an R-module and n € Ny. Then the following statements are equiva-
lent:

(1) Rfdp M < n.

(2) Thereis an exact sequence 0 — F, — ... — Fy — Fy — M — 0 of R-modules
with F; strongly torsion free for each 0 < i < n.

(3) Tor®(T, M) =0 for all i > n and all T € Fy(R).

(4) For strongly torsion free resolution ... — F; — ... — Fy — M — 0of M, K,, =
= Ker(F,—1 — F,—2) is a strongly torsion free R-module, where Ky = M and K, =
= Ker(Fp — M).
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Recall that a finite R-module M belongs to the G-class G(R) if Extih(M,R) = 0 =
= Exth(Hompg(M, R), R) for i > 0 and the biduality map

5M5 M — HomR(HomR(M, R),R),

defined by dy/(z)(v0) = ¢(z) for v € Homp(M, R) and x € M, is an isomorphism. A complex
G is said to be a G-resolution of X € C((g)) (R) if G is a bounded below complex of R-modules in
G(R) such that G ~ X. The G-dimension, G-dimpX, of X is defined as

G-dimpX = inf {sup{l € Z | G; # 0} | G is a G-resolution of X }.

The next lemma shows that the restricted projective dimension is a refinement of the G-dimension.

Lemma 2.6. [f X € C((g))(R), then Rpdp X < G-dimgX, and the equality hold if
G-dimpX < oo.

Proof. 1f G-dimp X = oo, then the inequality is trivial. If G-dimr X < oo, then, by [2] ((2.4.7)),
G-dimpX = sup{—inf(RHompg(X,T)) | T € Zy(R)} = Rpdy X.

By [3] ((5.17)), Rpdg X < pdy X for any X € C(=(R), and if R is local, X € cg)) (R) and
pdr X < oo, then Rpdp X = pdy X. In the following we see that the condition “R is local” is
superfluous.

Proposition 2.2. If X € Co)(R), then Rpdr X < pdp X, and the equality hold if X €

€ C((g))(R) and pdp X < oo.

Proof. Note that G-dimpX < pdr X for X € C((é))(R) and the equality holds if pdp X < oo
(see [2] (2.3.10)), then we get the desired result by Lemma 2.6.

A complex P is said to be a Gorenstein projective resolution of X € C(—)(R), if P is a bounded
below complex of Gorenstein projective R-modules such that P ~ X. The Gorenstein projective
dimension, Gpdp X, of X is defined as

Gpdr X = inf {sup{l € Z | P, # 0} | P is a Gorenstein projective resolution of X }.

Proposition 2.3. If R is a Gorenstein local ring, then Rpdp X = Gpdr X for any X €
Proof. We first prove Rpdp X < Gpdp X. If Gpdp X = oo then the inequality is trivial. Now
we assume that Gpdp X < oo, then we have

Gpdp X = sup{—inf(RHomp(X,T)) | T € Fo(R)} =
= sup{—inf(RHompg(X,T)) | T € Zy(R)} = Rpdp X,

where the first equality holds by [2] ((4.4.5)), and the second by [2] ((3.3.4)).

Next we show that Gpdr X < Rpdp X. If Rpdp X = oo then the inequality is trivial. Now
we assume that Rpdp X < oo, then X € C()(R). Thus Gpdz X < oo by [2] ((4.4.8)), and so
Gpdr X = Rpdg X as proved above.

Proposition 2.4. Letp: R — S be a homomorphism of rings, X € C((
Then we have the following inequalities:

(1) Rpdg(X @%Y) < Rpdg X + Rpdgr Y + Rpdp S.

(2) Rpdg(X ®%Y) <Rpdg X + Rfdg S +supY +dim S.

f)
3

)(S) andY € F(R).

ISSN 1027-3190. Yxp. mam. xcyphu., 2013, m. 65, Ne 7



944 LI LIANG, DEJUN WU
Proof. (1) Choose T' € Zy(R) such that
Rpdp(X @% V) = —inf(R Homp(X @8 Y, T)) =
= — inf(R Homp((X ®§ 5) @3 Y,T)) =
= —inf(RHomp(X ®% (S@EY),T)) =
= —inf(R Homg (X, R Homp(S @k v, T))) <
< Rpdg X — inf(RHompg(S ®% Y, T)) =
= Rpdg X — inf(RHompg(S, RHomp(Y,T))) <
< Rpdg X + Rpdp S — inf(RHompg(Y,T)) <
< Rpdg X + Rpdp S + RpdpY.
Where the fourth equality holds by Lemma 1.2(1). Since
idg (RHomp(S @1 Y, T)) < fds(S@RY) +idg T < fdgY +idg T < oo
by [1] ((4.1)), the fifth inequality follows from Corollary 2.2. The sixth equality comes from
Lemma 1.2(1), and the seventh inequality holds by Corollary 2.2 since idg(R Hompg(Y,T)) <
<fdrY +idgrT < oo by Lemma 1.1.
(2) Choose T' € Zy(S) such that
Rpdg(X ®%Y) = —inf(RHomg(X @% YV, T)) =
= —inf(RHomg((X % (Sokv), 7)) =
= —inf(R Homg (X, R Homg (S @% Y, 7)) <
< Rpdg X — inf(RHomg(S @% Y, T)) <
< Rpdg X +sup(Y @k S) +ids T <
< Rpdg X + Rfdr S +supY + dim S,
where the third equality holds by Lemma 1.2(1), the fourth inequality by Corollary 2.2 since
idg(RHomg(S ®@% V,T)) < fdg(S ®% V) +idsT < fdgY +idsT < oo by Lemma 1.1, the

fifth by [2] ((A.5.2)), and the last by [3] ((2.4(1))).

Proposition 2.5. Let p: R — S be a homomorphism of rings, X € C((g))(S) andY € F(S).
Then

Rpdyp(X ®%Y) < Rpdg X + Rpd, Y.
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Proof. Choose T € Zy(R) such that
Rpdp(X @%Y) = —inf(RHomp(X @% Y, T)) =
= — inf(R Homg (X, R Homg(Y, T))) <
< Rpdg X — inf(RHompg(Y,T)) < Rpdg X + RpdpY,

where the second equality holds by Lemma 1.2(1), and the third inequality by Corollary 2.2 since
idg(RHomp(Y,T)) <fdgY +idr T < oo by Lemma 1.1.
Corollary 2.6. Let o: R — S be a homomorphism of rings and X € C((g))(S ). Then

Proof. Immediately by Proposition 2.4(1) or 2.5.
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