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ON THE BEHAVIOR OF SOLUTIONS
OF A THIRD-ORDER NONLINEAR DYNAMIC EQUATION ON TIME SCALES *

PO MOBEJIHKY PO3B’S3KIB HEJIIHIMHOTO ITUHAMIYHOI'O PIBHSIHHA
TPETBOT'O HOPAJAKY HA HACOBUX HIKAJIAX

The objective of this paper is to study oscillatory and asymptotic properties of the third-order nonlinear dynamic equation

K%(t) ((7“11(15)mA(t)>m)A>w]A + f(t,z7(t)) =0, teT.

By using the Riccati transformation, we present new criteria for the oscillation or certain asymptotic behavior of solutions
of this equation. We suppose that the time scale T is unbounded above.

Mertoto 1i€i cTaTTi € BUBUCHHSA OCLWIALIMHUX Ta aCUMITOTHYHHMX BIACTHBOCTEH HENIHIHHOTO ITUHAMIYHOTO PiBHSIHHSA

TPETHOrO MOpSIKY o
{(Tl(t)«%(t)ﬁ(t))%) )72] +f(t,2%(t) =0, teT.

3a JOnmOMOTOI0 MIepeTBOpeHHs PikKaTi OTprEMaHO HOBI KpUTEPii OCIIIIALIT Ta IEBHOT aCHMIITOTHYHOT IIOBEIHKH PO3B’SI3KiB
uporo piBHsHHS. Yacosa mikaia T BBaKaeThCsl HEOOMEIKEHOIO 3BEPXY.

1. Preliminaries and notation. Much recent attention has been given to dynamic equations on
time scales, or measure chains, and we refer the reader to the landmark paper of S. Hilger [1] for
a comprehensive treatment of the subject. Since then, several authors have expounded on various
aspects of this new theory; see the survey paper by Agarwal, Bohner, O’Regan and Peterson [2].
A book on the subject of time scales by Bohner and Peterson [3] also summarizes and organizes
much of the time scale calculus. The various type oscillation and nonoscillation criteria for solutions
of ordinary and dynamic equations have been studied extensively in a large cycle of works (see
[4-12)).

In [4], the authors have considered third-order nonlinear dynamic equation (1.1) for v, = v = 1.
They have studied asymptotic behavior that equation. Yu and Wang [5] have considered the third-
order nonlinear dynamic equation

(1/(az(O)(((1/(ar (D) (@ (8))*)>)2)> + q(t) f(x(1)) = 0,

where a1 and a9 are quotient of odd positive integers. They have supposed that a1, as and ¢ are
positive, real-valued, rd-continuous functions defined on time scale T.

f € C(R,R) is assumed to satisfy xf(z) > 0 (z # 0), and for £ > 0, IM = M > 0,
f(z)

== > M, |z| > k. The authors have studied the asymptotic behavior of solution of above equation.

v A time scale T is an arbitrary nonempty closed subset of the real numbers R. The forward and
the backward jump operators on any time scale T are defined by o(t) := inf{s € T: s > t},
p(t) :=sup{s € T: s <t}. Apointt € T, t > inf T, is said to be left-dense if p(t) = ¢, right-dense
ift <supT and o(t) = t, left-scattered if p(t) < ¢ and right-scattered if o(t) > ¢. The graininess
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function p for a time scale T is defined by u(t) := o(t) — ¢. For a function f: T — R the (delta)
derivative is defined by

flo(t) = f(#)

o0 ==

if f is continuous at ¢ and ¢ is right-scattered. If ¢ is not right-scattered, then the derivative is defined
by

) = tim 20D =S SO = )

sott  o(t)—s sott  t—s

provided this limit exists. A function f: [a,b] — R is said to be right-dense continuous if it is right
continuous at each right-dense point and there exists a finite left limit at all left-dense points, and f
is said to be differentiable if its derivative exists. A useful formula dealing with the time scale is that

F7 = fo() = F(&) + u(t) f2 ().

We will make use of the following product and quotient rules for the derivative of the product fg
and the quotient f/g (where gg” # 0) of two differentiable functions f and g

(o)™ = fRg+ f79% = fg™ + [24°,

<f>A I et
g 99°

The integration by parts formula is

b b
/fA(t)g(t)At = f(b)g(b) — f(a)g(a) — /f”(t)gA(t)A(t)-

The function f: T — R is called rd-continuous if it is continuous at the right-dense points and if the
left-sided limits exist in left-dense points. Not only does the new theory of the so-called “dynamic
equations” unify the theories of differential and difference equations, but also extends these classical
cases to cases “in between”, e.g., to the so-called g-difference equations when T = ¢ = {qt: t € Ny
for ¢ > 1} (which has important application in quantum theory).

We will study the asymptotic behavior or oscillation of solutions of third-order nonlinear dynamic

Kr;@) (&0 “”UAm)m)A)

Lsx(t) + f(t,2°(t)) =0, teT, (1.2)

equation

v274A

Ff(ta"(t) =0 teT, (1.1)

or for short,

where T is a time scale,

Listt) = (- a:%))“,

r1(t)
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=y (o)) )

Lz (t) = [Loz(t)]>.

In the sequel we will assume:
(H1) rp(t) are positive, real-value, rd-continuous functions defined on the time scales such that

o0
/rn(s)As =00, n=1,2;
To

(H2) vy, is a quotient of odd positive integers, n = 1,2;
(H3) f: T x R — R is continuous function, there exists & > 0 such that uf(¢t,u) > 0, u # 0,
f(t,u)

u
A solution z(t) of equation (1.1) is said to be oscillatory if it is neither eventually positive nor

> q(t), |u| > k. q(t) is positive, real-valued, rd-continuous function defined on time scales.

eventually negative, otherwise it is nonoscillatory.

2. Main results. We need the following lemmas which play an important role in the proof of
main results.

Lemma 2.1. Assume (Hy)—(Hs3) hold, x(t) is an eventually positive solution of (1.1). Then
there exists a Ty € [Ty, 00) such either:

(i) z(t) > 0, Liz(t) > 0, Lax(t) > 0, t € [T1,0),
or

(i1) x(t) > 0, le(t) <0, Lgx(t) >0,t€ [Tl, OO)

Proof. Let x(t) be a eventually positive solution of (1.1), then there exists 77 € [Ty, o) such
that z(t) > 0 for ¢t € [T1,00). Since z7(t) > z(t) > 0, f(t,2(t)) > 0 for t € [T1,00) and from
(1.1) we have

Lsx(t) = —f(t,z°(t)) <0, te[T1,00),

which implies that Loz(t) is strictly decreasing on t € [T7, 00). We claim that Lox(t) > 0. Otherwise,
there exists a T» € [T, 00) such that

Lgl‘(t) < LQI‘(TQ) <0, te [TQ,OO),

that is,
Y2

[r;(t) ((TII@#(@%)A] < Loa(Ty) <0, t€ [Th,00).

(Lya(t)™ < ro(t) (Low(T2)) 2 @.1)

Hence we have

which implies that L;xz(t) is strictly decreasing on [T, c0). Integrating (2.1) from T to ¢, we obtain
t
1
Lll‘(t) < Lll‘(TQ) + (LQLE(TQ))'YQ /T‘Q(S)AS.
T>

Letting ¢ — oo, we have Lix(t) — —oo. Thus, there exists T3 € [T, 00) such that
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le(t) < le(Tg) <0, te [Tg,OO),

that 1s,

1 Y1

( :EA(t)) < Liz(T3) <0, t€[T3,00).
(&) (t)

It follows that L

l‘A(t) < (le(Tg))Vl Tl(t), t e [Tg, OO)

Integrating from 73 to ¢, we have
¢
1
x(t) < x(T3) + (Liz(T3))m /rl(s)As.
T3

Letting t — oo, we have z(t) — —oo, which is a contradiction with the fact that z:(¢) > 0. Hence
Lox(t) > 0, t € [I1,00). This implies that Lix(t) is strictly increasing on [T7, 00). It follows that
either Lyz(t) > 0 or L1z(t) < 0.

Lemma 2.1 is proved.

o0
Lemma 2.2. Assume (Hy)-(Hs) and/ q(s)As = oo hold. If x(t) is a solution of (1.1)
To
that satisfies Case (ii) in Lemma 2.1, then lim;_,o z(t) = 0.

Proof. Suppose that x(t) be solution of (1.1) satisfying case (ii) in Lemma 2.1. Then from
Lix(t) <0, we get

<T11(t) xA(t)>’Yl <0, t>T.

So, z2 (t) < 0fort > T and lim;_,oc 2(t) = b > 0. We claim that b = 0. Assume not, that is, let be
x(t) >b>0,t>Ty. With k = b, from (Hs3) and z7(t) > z(t),

Law(t) = —f(t,2% (1)) < —q(Da” (1) < —q()alt) < —ba(t), t=Ti.
Letting y(t) := Loxz(t) > 0, t > T1, then
yA(t) = Lax(t) < —q(t)b, t>Ty.

Integrating the last inequality from 7} to ¢, we have
t
y(0) <y(1) ~b [ ats)ss
Ty

Letting ¢ — oo, we have y(t) — —oo, which is a contradiction. Therefore, b = 0, that is,
Lemma 2.2 is proved.
Lemma 2.3. Suppose that (Hy)—(H3) hold. If x(t) is a solution of (1.1) satisfying Case (i)
of Lemma 2.1, then there exists T\ € [Ty, o) such that

Lyz(t) > R(t, Ty)(Lax(t))
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or
1

P () > () (R(E, T1)) 7 (Lax(t)) 72

Lqix(t t
and 1o (t) is decreasing on (1T, 00), where R(t,T) = / ra(s)As.
R(t,Ty) 7

Proof. Let x(t) be a solution of (1.1) satisfying case (i) of Lemma 2.1. Then from (1.1) we
have Lsz(t) < 0 for ¢t € [T1,00), so Lox(t) strictly decreasing on [T7,00). From Lox(t) =

— <T21(t) <(r11(t) q;A(t)>V1> A) : , we obtain

(L ()™ = ra(t)(Laa(t)) .

Then for ¢ > T3, we have

t

/(le(s))AAs = Liz(t) — Lx(T)) =

T
_ / ro(s)(Loz(s)) 2 As > (Loz(t)) / ra(s)As.
Ty T

It follows that

< L a:A(t)>m = Liz(t) > Lua(Th) + R(t, T (Lo ()52 >
7’1(75)

> R(ET))(Lox(t))72, t2 Ty, (22)

so, we get
2A() > ()R T)) 7 (Low(t)) 2, ¢ > T,

Liz(t
We claim that 3:

12
R(t,T1)

( Lix(t) )A _ (Liz(1)2R(t,Ty) — Liz(t)(R(t, Th))A
R(t7T1) B R(taTI)R(U(t)>T1)

is decreasing on (7, 00). For t > T7, from (2.2) we get

2|~

ra()(Lox(t) 2 R(t, T) — Lna(t)ra(t) _ ra(t)(Liz(t) — Liz(t))

) B
R(L, T R(o (1), Th) R(LTOR@W.T)

1 (1)
R(t,T1)
Lemma 2.3 is proved.

Theorem 2.1. Suppose that (H1)—(Hs) and y1v2 = 1 hold, and assume that there exists a
A is rd-continuous on [Ty, o), we have

Hence, is decreasing on (77, 00).

positive function z(t) such that z
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P  4B(s,T1)

To

lim sup / [z(s)q(s) (ZA(S))T As=oo, t>T >Th, 23)

. t

where B(t,T1) = z(t)r1(t)(R(¢t,T1)) ", R(t,T1) = / r2(s)As. Then every solution z(t) of (1.1)
T

is either oscillatory or lim;_,o x(t) exists. '

Proof. Let x(t) be a nonoscillatory solution of (1.1). Assume that x(¢) is eventually positive
(the case when z(t) < 0 is similar). By Lemma 2.1 we see that x(¢) satisfies either case (i) or (ii).
We claim that case (i) of Lemma 2.1 is not true. Assume not, there exists 77 € [T, c0), such that
x(t) > 0, Liz(t) > 0, Lax(t) > 0 for t > T. Consider the Riccati substitution

>0, te [Ty, o0). (2.4)

From (1.1) we obtain

o _ 2(t)

a(t)

[t 27()).

L
=
(@]
N
8
>
=
~
\Y
=
8
Q
=
~—
V
8
—~
~
~—
o
=
o,
h
[\
8
=
~
v
—~
h
no
8
=
)
~
v
=3
o
=]
o,
—
[¢]
=
=
o
N
&
£
[¢)]
(0)]
[¢]
—

(Laz(1))”
w?(t) < ZA(t)W

f(t27(1) _

) .
(Lar(1))” = =)= ™ <

w ri()(R(E, T1)) 7 Loa(t)(Laz(t))°
< —2(t)q(t) + 240 S — 2 (0 NFZ O A

w? w? (t))?
(t) —B(t:Tﬁ((zg((;)))z _

(=2(1)°

hence we have Ans
2=(t
wto) < - [s(at0 - 12105 @5)
Integrating (2.5) from 75 to ¢, we find that

t

wlt) ~ w(T) < - [ [+(s)ate) -

T
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that is

Al ))2
[ [0 - S5 s < i,
T
which is contradiction with (2.3). Hence, case (i) of Lemma 2.1 is not true. If case (ii) of Lemma 2.1
holds, then clearly lim;_, o (%) exists.
Theorem 2.1 is proved.

Corollary 2.1. Suppose that (Hy)—(Hs) and 17y, = 1 hold. If

o

/q(s)As = 0, (2.6)

To

then every solution x(t) of (1.1) is either oscillatory or lim;_, x(t) = 0.

Proof. If we take z(t) = 1 in Theorem 2.1, by the proof of Theorem 2.1 we have that every
solution z(t) of (1.1) is either oscillatory or lim;_,~, z(t) exists. For the last case, by Lemma 2.2 we
obtain limy_, o, (t) = 0.

Corollary 2.2. Suppose that (Hy)—(H3) and 17y, = 1 hold. If

t

limsup/ [sq(s) — ! — | As = o0, (2.7)
4s7rq

e g (s)(R(s, T1)) "

then every solution x(t) of (1.1) is either oscillatory or lim;_,~ x(t) exists.

Proof. 1f we take z(t) = t in Theorem 2.1, by the proof of Theorem 2.1 we have that every
solution x(t) of (1.1) is either oscillatory or lim;_, o, (%) exists.

Corollary 2.2 is proved.

Example 2.1. Consider the equation

39 A

1\ A
1 3 1
((ﬁA@) ) + o) =0 8
1
where 1 € T=qf}, g0 > 1, ma(t) = 1, ra(¥) = 1/t and £ (¢, 27 (1)) = 1/tla"(1)] a(6) > 5, m = 1/3,
~v2 = 3. For sufficient large 717,
t
R(t,Tl) = /AS =t —T1
T
and for T > T7,
t t
. 1 . 1 1
lim sup sq(s) — — | As = limsup S—— 13 | As =00
t—s00 7, dsry(s)(R(s, T1)) " t—00 s 4sc(s—T1)

T

We get that all conditions of Corollary 2.2 are satisfied and then every solution x(¢) of (2.8) is either
oscillatory or limy_,, z(t) exists.
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Corollary 2.3. Suppose that (Hy)—(H3) and 172 = 1 hold. If there is o > 1 such that

, o ((5%)2)?
limsup [ |s%q(s) — + | As = o0, (2.9
tmroe g 4s®ri(s)(R(s,T1)) ™
then every solution x(t) of (1.1) is either oscillatory or lim;_,~ x(t) exists.

Proof. We take z(t) = t®, o > 1 in Theorem 2.1, by the proof of Theorem 2.1 we have that
every solution x(t) of (1.1) is either oscillatory or lim;_, o, () exists.

Corollary 2.3 is proved.

Theorem 2.2. Assume (Hi)—(Hs) and y17y2 = 1 hold. If there exist m > 1 and a positive
function z(t) such that z* is rd-continuous on [Ty, c0) such that

/ 25 (s))?
lim sup tim /(t —s)™ [z(s)q(s) - ‘M} As = oo, (2.10)

t—o00
To

. t

where B(t,T1) = z(t)r1(t)(R(¢t,Th)) ", R(t,T1) = / ro(s)As. Then every solution x(t) of (1.1)
T

is either oscillatory or lim;_,~ x(t) exists. '

Proof. Proceeding as in Theorem 2.1, we suppose that (1.1) has a nonoscillatory solution. Let
be z(t) > 0, t > T. Multiplying (2.5) by (¢t — s)™ (with ¢ replaced by s) and then integrating from
T tot (t > T > T1), we have

t t

/ (t —s)"w™(s)As < — / (t—s)™ [Z(s)q(s) - M} As.

Ts Ts

An integrating by parts of left-hand side leads to

/t(t — 5)™w?(s)As = (t — s)™w(s) tT — /t((t — 5)™)Asw(o(s))As
T Pn
Let be h(t, s) := ((t — s)™)s. Since
—m(t — )", p(s) =0,
e B e R

and when m > 1 for t > o(s), it follows that

[t =5t s) =~ - T ()
T>

or

ISSN 1027-3190. Yxp. mam. xcypu., 2013, m. 65, Ne 7



1004 M. T. SENEL

¢
1 (22(s))? t—To\"™
— t—s)™ -2 As < [ —= Ts) < w(1:
o [ o [zt - T as< (S5 i) < wim),

2
a contradiction with (2.10). Thus, case (i) in Lemma 2.1 is not true. If case (ii) in Lemma 2.1 holds,
then as before, lim;_, o x(t) exists.

Theorem 2.2 is proved.

Corollary 2.4. Suppose that (Hy)—(Hz) and v17y2 = 1 hold. If there exist m > 1,

¢
1
lim sup o /(t —5)"q(s)As = o0,

t—o00
To

then every solution x(t) of (1.1) is either oscillatory or lim;_, x(t) = 0.

Proof. 1f we take z(t) = 1 in Theorem 2.2, by the proof of Theorem 2.2 we have that every
solution x(t) of (1.1) is either oscillatory or lim;_,~, x(¢) exists. For the last case, by Lemma 2.2 we
obtain limy_, o, (t) = 0.

Corollary 2.4 is proved.
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