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ON TYPICAL COMPACT SUBMANIFOLDS OF EUCLIDEAN SPACE
ITPO TUIIOBI KOMITAKTHI III/IMHOI'OBHU N EBKJIIJOBOT'O ITPOCTOPY

We show that typical compact submanifolds of R™ are nowhere differentiable with integer box dimensions.

IToxa3aHo, 110 THIIOBI KOMIIAKTHI IiIMHOrOBUIH npoctopy R™ Hine He mudepeHuiiioBHI npy mianx po3mipHocTsx MiH-
KOBCBHKOTO.

1. Introduction. A subset Y of a topological space X is called to be comeagre, if there is a countable
collection {W;} of open and dense subsets of X such that ﬂz W; C Y. Complement of a comeagre
subset is called a meagre subset. A meagre subset can be considered as a countable union of nowhere
dense subsets and they are negligible in some sense. So, we say that some property holds for #ypical
elements of X, if it holds on a comeagre subset. Let X be a metric space and C'(X) be the set of all
compact subsets of X. The Hausdorff metric dj is defined on C'(X) by

dg(FE, F) = max < sup inf d(x,y),sup inf d(x, .
H(E, F) {xegyeF( y) yegm( y)}

We will denote by K (X) the set of all connected compact subsets of X. Study of properties of
typical elements of X, C'(X) and K (X) is a classic and interesting part of mathematics. It is proved
in [8] that typical elements of C'(X) have zero Hausdorff dimensions. A well known theorem due
to Banach states that typical elements of the set of all real valued continuous functions defined on
[0, 1] are nowhere differentiable. One can see many other interesting results in [2, 3, 5, 8, 10, 11].
It is proved that a typical element of K (R") consists of a number of slightly blurred line segments.
Typical elements of the set of graphs of all curves in R", starting at a fixed point, have Hausdorff
dimension 1 (see [5]). It is proved in [3] that if M is a compact differentiable manifold with boundary,
imbedded in R™, and S is the set of all deformations of the boundary of M, then typical elements of
S are nowhere differentiable with integer box dimensions. We show in the present paper that similar
results are true on a more general case, for the set of all compact topological submanifolds of R™.
Our main results are Theorems 3.1 and 3.2.

2. Preliminaries. The following notations will be used in the proofs:

(1) Q" ={M: M is a compact topological submanifold of R"}.

(2) DQ" ={M € Q": M is differentiable}.

(3) NDQ" = {M € Q": M is nowhere differentiable}.

(4) B- ={x € R: |z| < e}, Bé“e) = B: X ... X B (k times).

) I =[-1,1],IF =T x I x ... x I (k times).

(6) If M € D)™ and U 1is an open subset of R", then

C(M,U)={f: M — U, f is countinuos}.
(7) DIM,U) ={f € C(M,U): f is differentible}.
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(8) If M € DQ"™, then we will denote by ND(M,U) the set of all nowhere differentiable
members of C'(M,U).

Let M be a bounded subset of R™. We denote by dim (M) the topological dimension of M. For
each number € > 0 put

8c (M) = sup{card{Z}: Z C M and for each z,y € Z, |z — y| > €}.

The upper and lower box dimensions of M are defined by

S 1 M
dimp (M) = lim sup 7Ogﬁ£( ),
es0  —loge
. T log #. (M)
dimp(M) = hglglngg~
1Ogﬁ5(M)

If dimp(M) = dimpz (M), then dimp (M) = lim._,o oo e is the box dimension of M.

Notice 2.1. If M is a differentiable submanifold of R"™ and dim(M) = m, then
(1) dimp(M) = dim(M) = m.
(2) If g: M — R" is a differentiable map and My = g(M ), then

dimp(M,) = dim(M,) € {0,1,...,m}.

If M is a compact manifold, then C'(M, R™) endowed with the following metric d is a complete
metric space

d(f,g) = max|f(z) — g(z)|.

xeM

The following theorem due to Banach is well known.

Theorem 2.1 [1]. Typical elements of C(I, R) are nowhere differentiable.

It is easy to show that Banach’s theorem is also true if we replace C'(I, R) by C(I, B:).

The following lemma is a generalization of Banach’s theorem.

Lemma 2.1. If M is a differentiable compact manifold and € > 0, then typical elements of
C(M, BF) with the above metric d, are nowhere differentiable.

Proof. We give the proof in the following steps.

Step 1. For each k € N, ND(I*, B.) is a comeagre subset of C(I*, B.).

Proof. The claim is true for £ = 1 (Banach’s theorem). Suppose that the claim is true for each
natural number m, m < k. We show that it is true for k + 1. Let h € C(I**!, B.) and t € I. Put

he: I* — B.,
ht(x) = h(x7t)

and let
I ={heCU* B.): Vt € I, h; is nowhere differentiable}.

We show that T is a comeagre subset of C'(I**1, B.).
Consider the set Hte[ C(I*,B.);, C(I*, B.); = C(I*, B.) and put
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o: C(I*', Bo) — [ C(I*, Bo)s,
tel

o(h) = H(ht),

t
W(f k,6)={geCU" B.):d(g,f)<d}, §>0, feCUI" B.).

Let O be an open subset of C(I¥, B.) and put U = [[, Oy, Oy = O. If h € C(I**1, B.), then the
function a: I — O defined by «(t) = h; is continuous. Due to compactness of I, we can find a
number § > 0 such that for all t € I, W (hy, k,8) C O. Then W (h,k+1,6) C o~ *(U). This means
that 0 ~1(U) is open in C(I**1 B.).

By assumption, ND(I*, B.) is a comeagre subset of C'(I*, B.). So, there is a countable collec-
tion {O,,: m € N} of open and dense subsets of C'(I¥, B.) such that

() Om c ND(I*, B.).

meN
Let

Um — H(Om)ta (Om)t — Om
¢
o~ Y(U,,) is open in C(I**!, B.) and we have ﬂ . o 1 (U,,) C T. Also, it is not hard to show
m

that for each m € N, 0= (U,,) is a dense subset of C(I**!, B.). Now, from the fact that I' C
C ND(I**1, B.), we get the result.

Step 2. ND(M, B.) is comeagre in C(M, Be).

Proof. Let k = dim M and for each point p € M consider a chart (O,1) around p such
that I* C (0). Since M is compact then there is a finite collection of this kind of charts, say
{(O1,91), ..., (O1,301)}, such that M C oy (IF) U ... Uy (IF). Put U; = ¢; H(I%), 1 < i < 1,
and for each h € C(M, B;) denote by h; the restriction of h on Uj;, and consider the following
function:

Qi : C(M, Ba) — C(UZ’,Ba), (pz(h) = h;.

Since 1 (U;) = I* then we get from Step 1, that N D(U;, B.) is a comeagre subset of C(U;, B). So
there is a countable collection {W7,: m € N} of open and dense subsets of C(U;, B:) such that

(YW, € ND(U;, B.).

We show that for each i,m € N, ¢; ' (W) is a dense subset of C'(M, B.). Suppose h € C(M, B.)
and let § > 0. Since W}, is dense in C(U;, B.), then there is a function f € W, such that

d(hz,f) < g (2.1)

Let f : M — B. be a continuous extension of f on M. Since h and f are continuous, then by (2.1),
there is an open subset B of M such that U; C B and

r € B=dh(z), f(z)) <. 2.2)
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Now let n: M — [0, 1] be a continuous function such that
n(xz) =1 for x € U; and n(x) =0 for x € M — B.

Put

7(x) = h(z) + n(x)(f(2) - h(z)). (23)
Then X
|h(z) = 7(z)| = [n(@)[f(z) — h(z)| < 0.

Since the image of h is compact and included in B. then for sufficiently small ¢, the image of 7
will be included in B, so 7 € C(M,B;). If € U, then 7(x) = f(z), so i(r) = f. Thus
T € p; }(W). This means that o; ' (W7,) is dense in C'(M, B.). It is easy to show that

N () ¢ (W) C ND(M, By).
meN 1<i<]

Therefore, ND(M, B.) is a comeagre subset of C' (M, B;).
Step 3. Proof of the lemma.
For each h € C(M, B¥) we have h = (h1, ..., hg) such that h; € C(M, B.). Consider the map

¢: C(M,BFy - C(M,B.) x ... x C(M, B.) (k times),

w(h) = (hiy... ki),
1) is a homeomorphism and
Y YND(M,B.) x ... x ND(M,B.)] ¢ ND(M, Bf) 2.4)

Since by Step 2, ND(M, B;) is comeagre in C(M, B.), then ND(M, B.) X ... x ND(M, Be) is
comeagre in C(M, B.) x ... x C(M, B.). Thus v "}[ND(M, B.) x ... x ND(M, B.)] must be
comeagre in C'(M, BY). Now, we get the result by (2.4).

3. Main results.

Theorem 3.1. Typical elements of the set of compact submanifolds of R" are nowhere differ-
entiable.

Proof. Let M be a differentiable compact submanifold of R". If k = n — dim M and p € M,
then R* can be considered as the set of all vectors perpendicular to M at p. For each v € R* denote
by v, the corresponding vector in T, M L. Since M is compact then there is an € > 0 such that the
following map 1), is a diffeomorphism from M x B onto an open neighborhood of M in R™:

¢: M x BF - R, (p,v) =p+uy.
For each g € C(M, B¥) let My = {(¢(z,g(z)): * € M)} and put
AM) = {My: g € C(M, B.)},
ND(AM)) ={My € A\(M): g is nowhere differentiable}.
Consider the following metric d on A\(M):
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d(Mg, Mp,) = sup lg(z) — h(z)|.

By using of Lemma 2.1, we get that typical elements of A\(M ) with the metric d are nowhere
differentiable. Then it is easy to show that typical elements of A\(A/) with the Hausdorff metric are
also nowhere differentiable. Now consider the following subspace of C'(R"™):

AR = | A).

MeDQn
We show that typical elements of A(R™) (with the Hausdorff metric) are nowhere differentiable.
Since for each differentiable submanifold M of R", typical elements of A\(M) are nowhere

differentiable then there is a collection {Osz;): @ € N} of open and dense subsets of A(M) such
that

() Oy € ND(A(DM)). (3.1
iEN

Since A(M) is a subspace of Q" for each i € IV there is a countable collection {U(yy,; ) j € N}
of open subsets of " such that O3y = Uaz,i ) (N A(M) and

sup {dy (Mg, M) € O,y % U(M,i,j)} < ; (3.2)
Now put
Wi ) = Uiy — {7+ @ is a boundary point of Oy in Q" }. (3.3)
We get from (3.2) and (3.3) that
(YWarig) = Owu- (3:4)
J

Let

Wii= U Wariy-
MeDQm

If ND(AR™) = {M € AR™: M is nowhere differentiable}, then by (3.1) and (3.4)

() Wi; € ND(A(R™)).
1,JEN

Since for each i, O(yr;) is dense in A\(M), then for each 7,5, W;; N A(R") is dense in A(R").
Also the set of differentiable submanifolds of R" is dense in 2", so W; ; is dense in Q™. Therefore,
ND(A(R™)) is a comeagre subset of A(R™). Now we get the result from the fact that ND(A(R™)) C
C NDQ™.

Theorem 3.2. Tjypical elements of the set of compact submanifolds of R™ have integer box
dimensions.
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Proof. Suppose M, N € Q" and dy(M,N) < e. Let Oy, ..., Oy () be balls with radius € such
that

NCUOz

For each 1 < i < #.(IV), let 6\1 be the ball of radius 2¢ with the same center as O;. Each 6\@ can be
covered by 4" balls with radius . Thus

fe(M) < 4"4(N).
In a similar way, we can show that f.(N) < 4"§.(M). Then
47" (M) < (N) < 4" (M).

Therefore,
—nlogd +logt.(M) _ logt(N) _ nlog4 + logf (M)
—loge ~ —loge —loge '

710gﬁ5(M) = dimM €
—loge

€{0,1,...,n}. Then for each k € N there is an open neighborhood U}, s of M in Q" such that for
each N € Uy n

If M is differentiable then dimpg(M) is an integer < n. Thus lim._,

1 1 N 1
dim M — L <1088 g L
k —loge k
Put W, = UMeDm Ui m- Since DSY" is dense in " then for any k € N, W}, is dense in 2. Now
put
W = (\Ws.
k

W is comeagre in 2" and for each N € W, dimp NV is an integer number.
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