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EVALUATION FIBRATIONS AND PATH-COMPONENTS
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ОЦIНОЧНI РОЗШАРУВАННЯ I КОМПОНЕНТИ ЛIНIЙНОЇ ЗВ’ЯЗНОСТI
ПРОСТОРУ ВIДОБРАЖЕНЬ M(Sn+k, Sn) ПРИ 8 ≤ k ≤ 13

Let M(Sm, Sn) be the space of maps from the m-sphere Sm into the n-sphere Sn with m,n ≥ 1. We estimate the

number of homotopy types of path-components Mα(Sn+k, Sn) and fiber homotopy types of the evaluation fibrations

ωα : Mα(Sn+k, Sn) → Sn for 8 ≤ k ≤ 13 and α ∈ πn+k(Sn) extending the results of [Mat. Stud. – 2009. – 31, № 2. –

P. 189 – 194]. Further, the number of strong homotopy types of ωα : Mα(Sn+k, Sn) → Sn for 8 ≤ k ≤ 13 is determined

and some improvements of the results from [Mat. Stud. – 2009. – 31, № 2. – P. 189 – 194] are obtained.

Нехай M(Sm, Sn) — простiр вiдображень iз m-сфери Sm в n-сферу Sn з m,n ≥ 1. Ми оцiнюємо число типiв

гомотопiї для компонент лiнiйної зв’язностi Mα(Sn+k, Sn) та типiв гомотопiй шарiв для оцiночних розшарувань

ωα : Mα(Sn+k, Sn) → Sn при 8 ≤ k ≤ 13 та α ∈ πn+k(Sn), узагальнюючи результати з [Mat. Stud. – 2009. – 31,

№ 2. – P. 189 – 194]. Крiм того, визначаємо число типiв сильних гомотопiй ωα : Mα(Sn+k, Sn)→ Sn при 8 ≤ k ≤ 13

та отримуємо деякi покращення результатiв з [Mat. Stud. – 2009. – 31, № 2. – P. 189 – 194].

1. Introduction. Given spaces X and Y, let M(X,Y ) be the mapping space of all continuous maps
ofX into Y equipped with the compact-open topology. The spaceM(X,Y ) is generally disconnected
and its path-components are in one-to-one correspondence with the set [X,Y ] of (free) homotopy
classes of maps of X into Y.

Given x0 ∈ X, consider the evaluation map

ω : M(X,Y )→ Y

defined by ω(f) = f(x0) for f ∈ M(X,Y ). Let Mα(X,Y ) be the path-component of M(X,Y )

which contains all maps in α ∈ [X,Y ]. By [13, p. 83] (Theorem III.13.1), the evaluation map
ωα : Mα(X,Y ) → Y obtained by restricting ω to Mα(X,Y ) is a Hurewicz fibration provided X is
locally compact. Then, the natural classification problems arise:

(1) divide the set of path-components of M(X,Y ) into homotopy types;

(2) divide the set of evaluation fibrations ωα : Mα(X,Y ) → Y into fibre- and strong fibre-
homotopy types for α ∈ [X,Y ].

Conditions for when two path-components of M(X,Y ) are homotopy equivalent are presented
in [16] provided that spaces X and Y are connected and countable CW -complexes.

Let now Sn be the n-sphere. To study coincidences of fiberwise maps between sphere bundles
over S1, the set of fiberwise homotopy classes of those maps has been considered in [7]. But, the set
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of fiberwise maps between the trivial bundles S1 × Sm and S1 × Sn over S1 coincides with the free
loop space LM(Sm, Sn) = M(S1,M(Sm, Sn)).

Certainly, for the space M(Sm, Sn) with m,n ≥ 1, the path-components can be enumerated
by the homotopy group πm(Sn). In view of [10] (Theorem 4.1), there is a strong relation between
evaluation fibrations ωα : Mα(Sm,Sn)→ Sn for α ∈ πm(Sn) and the Whitehead product [ιn, α]. This
was used in [10] (Theorems 5.1, 5.2) to tackle a complete homotopy classification of path-components
of M(Sm,Sn) for m = n, n + 1 and compute the order of the homotopy group πn−1(Mα(Sn,Sn)).

Homotopy properties of various Mα(Sm,Sn) have been studied in [1, 14, 20].

The purpose of this note is to extend the results of [6] for m = n+ k with 8 ≤ k ≤ 13.

Section 1 summarizes [10, 11] and follows [16] to connect in Theorem 1.1 these classification
problems for M(Sm, Sn) with the m-th Gottlieb group Gm(Sn) considered in [8, 9] and then studied
in [5].

Section 2 makes use of [5] to take up the systematic study of the quotient sets πn+k(Sn)/ ±
± Gn+k(Sn) with 0 ≤ k ≤ 13. Then, our basic results stated in Propositions 2.1 – 2.6 estimate
the number of homotopy types of path-components of M(Sn+k,Sn) and fibre-homotopy types of
evaluation fibrations ωα : Mα(Sn+k, Sn)→ Sn with 0 ≤ k ≤ 13. Further, the number of strong fibre-
homotopy types of ωα : Mα(Sn+k,Sn)→ Sn with 0 ≤ k ≤ 13 is determined. Corollary 2.1 concludes
a list of evaluation fibrations ωα : Mα(Sn+k,Sn)→ Sn which are fibre-homotopy equivalent but not
strong fibre-homotopy equivalent for some 0 ≤ k ≤ 13.

Those results are applied in Section 3 to estimate the number of homotopy types of path-
components of M(S(n+1)d+k−1,FPn) and (strong) fibre-homotopy types of evaluation fibrations
ωα : Mα(S(n+1)d+k−1,FPn) → FPn with 0 ≤ k ≤ 13 for the n-projective spaces FPn for
F = R,C,H. Further, we deduce that path-components of M(Sm,KP 2) have the same homotopy
type for m ≤ 21, where KP 2 is the Cayley projective plane.

The last Section 4 makes use of [4, 18] to present the rational homotopy type of M(Sm, Sn) and
path-components of M(M(A,m),Sn) for a Moore spaceM(A,m).

1. Prerequisites. Given x0 ∈ X and y0 ∈ Y, write M(X,Y )∗ for the space of all continuous

pointed maps of X into Y. This leads to the Hurewicz fibration M(X,Y )∗ → M(X,Y )
ω→ Y,

provided X is locally compact. Recall that on the set [X,Y ]∗ of homotopy classes of pointed maps

there is an action of π1(Y, y0) and [X,Y ]∗/π1(Y, y0) = [X,Y ] [21] (Chapter I, (1.11)).

In particular, for π1(Y, y0) = 0 we get [X,Y ]∗ = [X,Y ], e.g., πm(Sn) = [Sm,Sn]∗ = [Sm,Sn],

for n > 1. Further, there is the Hurewicz fibration

M(Sm, Sn)∗ →M(Sm, Sn)
ω→ Sn.

A fibration p : E → B with a fibre F means a Hurewicz fibration together with a fixed homotopy

equivalence i : F → p−1(b0) over the base point b0 ∈ B. Recall that for fibrations p1 : E1 → B and

p2 : E2 → B a based map f : E1 → E2 is:

1) a fibre homotopy equivalence (fhe) if there exists g : E2 → E1 such that g ◦ f and f ◦ g are

homotopic to the respective identities by based homotopies F and G satisfying p1◦F (e1, t) = p1(e1)

and p2 ◦G(e2, t) = p2(e2) for e1 ∈ E1, e2 ∈ E2 and t ∈ [0, 1];
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2) a strong fibre homotopy equivalence (sfhe) if it is a fibre homotopy equivalence and i′2 ◦ f ◦ i1
is homotopic to the identity map idF , where i′2 is an arbitrary homotopy inverse of i2.

Let X be a connected and pointed space. The m-th Gottlieb group Gm(X) [8, 9] of a space X is

the subgroup of the m-th homotopy group πm(X) containing all elements which can be represented

by a map f : Sm → X such that f ∨ idX : Sm ∨ X → X extends (up to homotopy) to a map

F : Sm ×X → X. Observe that Gm(X) = πm(X) provided X is an H-space.

Given α ∈ πm(Sn) we have deduced in [5] that α ∈ Gm(Sn) if and only if the Whitehead product

[ιn, α] = 0, where ιn denotes the homotopy class of idSn . In other words, Gm(Sn) = ker [ιn,−] for

the map [ιn,−] : πm(Sn) → πm+n−1(Sn) with m ≥ 1. Write ]g for the order of the element g in a

group G. Then, by [5] (Section 2), from this interpretation of Gottlieb groups of spheres, we obtain

Gm(Sn) = (][ιn, α])πm(Sn),

if πm(Sn) is a cyclic group with a generator α. It follows thatGm(Sn) = πm(Sn) (resp.Gm(Sn) = 0)

provided ][ιn, α] = 1 (resp. ][ιn, α] =∞) for α ∈ πm(Sn). Furthermore, because of H-structures on

the spheres Sn for n = 1, 3, 7, it holds Gm(Sn) = πm(Sn) for any m ≥ 1.

Given a group G and its subgroup G′ < G, write G/±G′ for the quotient set of G by the relation

∼ defined as follows: for x, y ∈ G, x ∼ y if and only if xy ∈ G′ or xy−1 ∈ G′. Observe that if

G′i < Gi, i = 1, 2, then there is a surjection

φ : (G1 ×G2)/± (G′1 ×G′2)→ (G1/±G′1)× (G2/±G′2)

defined by (g1, g2) 7→ (g1, g2), which is not injective in general, where ḡ states for the appropriate

abstract class determined by g.

Example 1.1. (1) If G1 = G2 = Z and G′1 = G′2 = 3Z for the infinite cyclic group Z, then

|(Z×Z)/±(3Z×3Z)| = 5 and |Z/±3Z|2 = 4. Let Zn be the cyclic group with order n. If G1 = Z3,

G2 = Z6, G
′
1 = 0 and G′2 = Z2 then |(Z3 × Z6)/± (0× Z2)| = 5 and |Z3/± 0||Z4/± Z2| = 4.

(2) If G′1 = G1 then the bijection holds easily.

Writing ' for the homotopy equivalence relation, [10] (Theorems 1, 2) and [11] (Theorem 2.3)

lead to:

Theorem 1.1. Let m,n ≥ 1. Then, there are surjections:

πm(Sn)/±Gm(Sn) −→ {Mα(Sm, Sn); α ∈ πm(Sn)}/ ', (1.1)

πm(Sn)/±Gm(Sn) −→ {ωα : Mα(Sm,Sn)→ Sn; α ∈ πm(Sn)}/ fhe (1.2)

and there is a bijection

πm(Sn)/Gm(Sn)
∼=−→ {ωα : Mα(Sm, Sn)→ Sn; α ∈ πm(Sn)}/ sfhe. (1.3)

We point out that a generalization of the results above has been stated in [16]. As a consequence,

using the surjections (1.1) and (1.2), it is possible to obtain an upper bound for the number of

homotopy types of path-components for the mapping space M(Sn+k, Sn) and to the number of
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evaluation fibrations ωα : Mα(Sn+k,Sn)→ Sn, for α ∈ πn+k(Sn), up to fibre-homotopy equivalence

(fhe), respectively. In addition, the bijection (1.3) gives the exactly number of evaluation fibrations,

up to strong fibre-homotopy equivalence (sfhe).

Remark 1.1. By [11] (Theorem 4.1) we have Mα(Sm,Sn) ' M0(Sm,Sn) if and only if

[ιn, α] = 0, if and only if α ∈ Gm(Sn). Thus if Gm(Sn)  πm(Sn) then there are at least two

path-components which are not homotopy equivalent, that is, |πm(Sn)/±Gm(Sn)| ≥ 2, and there is

only one if and only if Gm(Sn) = πm(Sn).

We close this section with the following fact (on the relation ∼ defined above) useful in the

sequel. First, given reals x, y, write

χ(x, y) =

⌈
(x− 1)(y − 1)

2

⌉
+

⌈
x− 1

2

⌉
+

⌈
y − 1

2

⌉
+ 1,

where dre = min{k ∈ Z; k ≥ r} for any real r.

Lemma 1.1. For positive integers m,m′, n, n′ with m | n, m′ | n′ and n, n′ ≥ 1, let Zm ×
× Zm′ < Zn × Zn′ , mZ × Zm′ < Z × Zn′ and mZ × m′Z < Z × Z be the obvious inclusions.

Then

|(Zn × Zn′)/± (Zm × Zm′)| = χ

(
n

m
,
n′

m′

)
, (1.4)

|(Z× Zn′)/± (mZ× Zm′)| = χ

(
m,

n′

m′

)
, (1.5)

|(Z× Z)/± (mZ×m′Z)| = χ
(
m,m′

)
. (1.6)

In particular, |(Zn × Zn′)/± (Zm × Zn′)| = |Zn/± Zm| = χ
( n
m
, 1
)
.

Proof. For any (a, b) ∈ Zn × Zn′ , (a, b) ∼ (c, d) where 1 ≤ c ≤ n

m
, 1 ≤ d ≤ n′

m′
. Furthermore,

for c 6= n

m
and d 6= n′

m′
, (c, d) ∼

(
n

m
− c, n

′

m′
− d
)

for 1 ≤ d ≤ n′

m′
− 1 and then we have⌈

1

2

( n
m
− 1
)( n′
m′
− 1

)⌉
nonequivalent elements. In addition,

( n
m
, d
)
∼
(
n

m
,
n′

m′
− d
)

for 1 ≤

≤ d ≤ n′

m′
−1 and

(
c,
n′

m′

)
∼
(
n

m
− c, n

′

m′

)
for 1 ≤ c ≤ n

m
−1. So, we obtain more

⌈
1

2

( n
m
− 1
)⌉

+

+

⌈
1

2

(
n′

m′
− 1

)⌉
nonequivalent elements. Finally, since that the trivial element is

(
n

m
,
n′

m′

)
, the

equation (1.4) follows.

To prove (1.5) and (1.6), just replace
n

m
by m and

n

m
,
n′

m′
by m,m′ respectively.

Lemma 1.1 is proved.

2. Main results. We make use of [5] and Lemma 1.1 to estimate the cardinality

|πn+k(Sn)/±Gn+k(Sn)| (2.1)

for 8 ≤ k ≤ 13. We first recall the results from [6] for 0 ≤ k ≤ 7 and make some improvements of

the cardinality (2.1).
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Proposition 2.1. The cardinality |πn+k(Sn)/±Gn+k(Sn)| for 0 ≤ k ≤ 7 is, respectively:

one, if n = 1, 3, 7; two, if n 6= 1, 3, 7 is odd; |Z| if n is even;

one, if n = 1, 2, 6 or n ≡ 3 (mod 4); two, otherwise;

one, if n = 1, 5 or n ≡ 2, 3 (mod 4); two, otherwise;

ten, if n = 4; one, if n ≡ 7 (mod 8) or n = 2i − 3 for i ≥ 3; two, if n ≡ 1, 3, 5 (mod 8) and

n ≥ 9 and n 6= 2i − 3; seven, if n ≡ 2 (mod 4) and n ≥ 6 or n = 12; thirteen, if n ≡ 0 (mod 4)

and n ≥ 8 and n 6= 12;

one, for all n ≥ 1;

one, if n 6= 6; two, otherwise;

one, if n ≡ 4, 5, 7 (mod 8) or n = 2i − 5 for i ≥ 4; two, otherwise;

one, if n = 5, 11 or n ≡ 15 (mod 16); two, if n is odd and n ≥ 9, unless n = 11 and n ≡ 15

(mod 16); eight, if n = 4; thirty one, if n = 6; ninety one, if n = 8; one hundred twenty one, if n is

even and n ≥ 10.

2.1. The case k = 8. Making use of the Gottlieb groups Gn+8(Sn) computed in [5] (Proposi-

tion 6.3) we estimate |πn+8(Sn)/±Gn+8(Sn)|.
For n = 1, 2, 6, 10 or n ≡ 3 (mod 4), the cardinality (2.1) is one.

For n ≡ 0, 1 (mod 4) and n 6= 8, 9, or n ≡ 22 (mod 32) and n ≥ 54, Gn+8(Sn) = 0 and then

(2.1) is equal to |πn+8(Sn)/ ± 0|, that is: two, if n = 4, 5, since that πn+8(Sn) = {εn} ∼= Z2; four,

if n ≥ 12, since that πn+8(Sn) = {ν̄n, εn} ∼= (Z2)2.

For n ≡ 2 (mod 8) and n ≥ 18, Gn+8(Sn) = {εn} ∼= Z2 and πn+8(Sn) = {ν̄n, εn} ∼= (Z2)2.

So the cardinality (2.1) is two. But [ιn, ν̄n] 6= 0 and then ων̄n is not fibre-homotopy equivalent to ω0

(which is fibre-homotopy equivalent to ωεn).

For n = 22, or n ≡ 14 (mod 16), or n ≡ 6 (mod 32) and n ≥ 14, Gn+8(Sn) = {ηnσn+1} ∼=
∼= Z2 and πn+8(Sn) = {ν̄n, εn} ∼= (Z2)2. Thus, the cardinality (2.1) is two. In view of [17] (Lemma

6.4), it holds ηnσn+1 = ν̄n + εn ∈ Gn+8(Sn) for n ≥ 9 and the bilinearity of the Whitehead product

yields [ιn, ν̄n] = −[ιn, εn]. By [10] (Theorem 2.3), ων̄n and ωεn are fibre-homotopy equivalent as

well as ω0 and ων̄n+εn .

For n = 8, the Gottlieb group is G16(S8) = {(Eσ′)η15, σ8η15 + ν̄8 + ε8} ∼= (Z2)2 and the

homotopy group is π16(S8) = {(Eσ′)η15, σ8η15, ν̄8, ε8} ∼= (Z2)4. We replace the generator σ8η15 ∈
∈ π16(S8) by the sum σ8η15 + ν̄8 + ε8 and then (2.1) is four.

For n = 9, G17(S9) = {[ι9, ι9]} ∼= Z2 and π17(S9) = {σ9η16, ν̄9, ε9} ∼= (Z2)3. Although the

generators for n = 9 are different from that ones for n = 8, but (2.1) is four as well.

We can summarize the results above and estimate the number of homotopy types of path-

components of the mapping space M(Sn+8,Sn) and fibre-homotopy equivalence types of evaluation

fibrations ωα : Mα(Sn+8,Sn)→ Sn for α ∈ πn+8(Sn).

Proposition 2.2. The cardinality |πn+8(Sn)/±Gn+8(Sn)| is:
one, if n = 1, 2, 6, 10 or n ≡ 3 (mod 4);

two, if n = 4, 5, 22, or n ≡ 2 (mod 8) and n ≥ 18, or n ≡ 14 (mod 16), or n ≡ 6 (mod 32)

and n ≥ 14;

four, if n ≡ 0, 1 (mod 4) and n ≥ 8, or n ≡ 22 (mod 32) and n ≥ 54.
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2.2. The case k = 9. In view of [5] (Proposition 6.4), we estimate the cardinality

|πn+9(Sn)/±Gn+9(Sn)|.

For n = 1, 2, 6 or n ≡ 3 (mod 4), |πn+9(Sn)/±Gn+9(Sn)| = 1.

For n ≡ 0 (mod 8) and n ≥ 16, Gn+9(Sn) = 0 and then (2.1) is

|πn+9(Sn)/± 0| = |(Z2)3/± 0| = 8.

For n ≡ 2 (mod 4) and n ≥ 14, or n = 2i − 7 with i ≥ 5, or n ≡ 5 (mod 8) and n 6≡ 53

(mod 64), Gn+9(Sn) ∼= (Z2)2 and πn+9(Sn) ∼= (Z2)3 and then (2.1) is two.

For n ≡ 4 (mod 8), or n ≡ 53 (mod 64) and n ≥ 117, or n ≡ 1 (mod 8) and n ≥ 17 and

n 6= 2i − 7, Gn+9(Sn) ∼= Z2 and πn+9(Sn) ∼= (Z2)3. So (2.1) is four.

For n = 8, G17(S8) = {(Eσ′)η2
15, σ8η

2
15 +ν3

8 +η8ε9} ∼= (Z2)2 and π17(S8) = {(Eσ′)η2
15, σ8η

2
15,

ν3
8 , µ8, η8ε9} ∼= (Z2)5. Replacing the generator σ8η

2
15 ∈ π17(S8) by the sum σ8η

2
15 + ν3

8 + η8ε9, (2.1)

is |{ν3
8 , µ8, η8ε9}/± 0| = |(Z2)3/± 0| = 8.

For n = 9, the Gottlieb group is G18(S9) = {σ9η
2
16, ν

3
9 , η9ε10} ∼= (Z2)3 and the homotopy group

is π18(S9) = {σ9η
2
16, ν

3
9 , µ9, η9ε10} ∼= (Z2)4. In a similar way we conclude that (2.1) is two.

Finally, for n = 10, G19(S10) = {3[ι10, ι10], ν3
10, η10ε11} ∼= 3Z ⊕ (Z2)2 and π19(S10) =

= {∆(ι21), ν3
10, µ10, η10ε11} ∼= Z ⊕ (Z2)3. So (2.1) is |(Z ⊕ (Z2)3)/ ± (3Z ⊕ (Z2)2)| = 4, by

Lemma 1.1.

Then, we summarize the results above as follows:

Proposition 2.3. The cardinality |πn+9(Sn)/±Gn+9(Sn)| is:
one, if n = 1, 2, 6, or n ≡ 3 (mod 4);

two, if n = 9, or n ≡ 2 (mod 4) and n ≥ 14, or n = 2i − 7 with i ≥ 5, or n ≡ 5 (mod 8) and

n 6≡ 53 (mod 64);

four, if n = 10, or n ≡ 4 (mod 8), or n ≡ 53 (mod 64) and n ≥ 117, or n ≡ 1 (mod 8) and

n ≥ 17 and n 6= 2i − 7;

eight, if n ≡ 0 (mod 8).

2.3. The cases k = 10,11. Following the same ideas as above and making use of Lemma 1.1,

we can also compute the appropriate quotient set to estimate its cardinality to state the next results:

Proposition 2.4. The cardinality |πn+10(Sn)/±Gn+10(Sn)| is:
one, if n = 1, 2, 5, or n ≡ 3 (mod 4);

two, if n ≡ 2 (mod 4), or n ≡ 1 (mod 4) and n ≥ 9;

four, if n ≡ 0 (mod 4).

Proposition 2.5. The cardinality |πn+11(Sn)/±Gn+11(Sn)| is:
one, if n ≡ 1 (mod 2) and n 6≡ 115 (mod 128);

two, if n ≡ 115 (mod 128) and n ≥ 243;

twenty two, two hundred fifty-four, seven hundred fifty seven, if n = 4, 8, 12 respectively;

two hundred fifty-three, if n ≡ 0 (mod 4) and n ≥ 16;

one hundred twenty-seven, if n ≡ 2 (mod 4) and n ≥ 6.
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2.4. The cases k = 12,13. Following [5] (Section 6), we have Gn+12(Sn) = πn+12(Sn) for

n 6= 10 and Gn+13(Sn) = πn+13(Sn) for n = 2 or n odd. So the cardinality (2.1) is one. For

k = 12, n = 10 or k = 13, n even and n 6= 2, 4, 14, the cardinality (2.1) is two. For k = 13, n = 4,

the cardinality (2.1) is four and for k = 13, n = 14 it is five.

In resume:

Proposition 2.6. The cardinality |πn+k(Sn)/±Gn+k(Sn)| is:
one, for k = 12 and n 6= 10, or k = 13 and n = 2 or n odd;

two, for k = 12 and n = 10, or k = 13 and n even, n 6= 2, 4, 14;

four, for k = 13 and n = 4;

five, for k = 13 and n = 14.

Remark 2.1. We observe that the cases k = 9, n = 53 and k = 11, n = 115 are missing

because the Gottlieb groups G62(S53) and G126(S115) are unknown. On the other hand, the 2-primary

component of the homotopy group π126(S115) is π115
126 = {ζ115} [19] (Theorem 7.4) and in view of

[15] (Theorem 3.1) the Kervaire invariant θ6 exists in the stable homotopy group πs126 if and only if

[ζ115, ι115] = 0.

We recall that in [10] (Example 1), two fhe evaluation fibrations ωα : Mα(S2 ∨ S2,S2)→ S2 and

ωβ : Mβ(S2 ∨ S2,S2)→ S2 for α, β ∈ [S2 ∨ S2, S2] not being sfhe are constructed. From the results

above, we get:

Corollary 2.1. There are evaluation fibrations ωα : Mα(Sn+k, Sn)→ Sn for some α ∈ πn+k(Sn)

and 0 ≤ k ≤ 13 being fhe and not sfhe.

At the end of this section, we notice that:

Remark 2.2. The procedure above leads to an estimation of the number of homotopy types of

path-components of M(Sn+k,Sn)∗ and fibre-homotopy types of evaluation fibrations ωα : Mα(Sn+k,

Sn)∗ → Sn with 0 ≤ k ≤ 13.

3. Applications to projective spaces.. Let R and C be the fields of real and complex numbers,

respectively and H the skew R-algebra of quaternions. In this section we apply the results above to

study the path-components of M(Sm,FPn) for F = R,C,H and M(Sm,KP 2), where K denotes

the Cayley algebra.

Denote by FPn the n-projective space over F. Put d = dimR F, write im,n : FPm ↪→ FPn,
m ≤ n, for the inclusion map, γn = γn,F : S(n+1)d−1 → FPn for the quotient map and set iF =

= i1,n : FP 1 = Sd ↪→ FPn. Let EX be the suspension of a space X and denote by E : πm(X) →
→ πm+1(EX) the suspension homomorphism. Next, write ∆ = ∆FP : πm(FPn) → πm−1(Sd−1)

for the connecting map. By [3] (Theorem (2.1)) it holds:

∆(iF∗E) = idπm−1(Sd−1)

and

πm(FPn) = γn∗πm(Sd(n+1)−1)⊕ iF∗Eπm−1(Sd−1).

Hence, πm(RP 1) ∼= πm(S1) and πm(CP 1) ∼= πm(S2) for m ≥ 0. Further, for n > 1, we derive
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πm(RPn) =


0, if m = 0,

Z2, if m = 1,

γn∗πm(Sn), if m > 1,

and

πm(CPn) =


0, if m = 0, 1,

Z, if m = 2,

γn∗πm(S2n+1), if m > 2.

The path-connected components of M(Sm,FPn) are in one-to-one correspondence with the

set [Sm,FPn] of (free) homotopy classes. Because CPn and HPn are 1-connected, [Sm,RPn] ∼=
∼= πm(RPn)/π1(RPn) and [Sm,CPn] ∼= πm(CPn), [Sm,HPn] ∼= πm(HPn).

By [2] (Corollary (7.4)) and [3] ((4.1) – (4.3)), we obtain a formula:

Lemma 3.1. Let h0α ∈ πm(S2n−1) be the 0-th Hopf – Hilton invariant for α ∈ πm(Sn). Then

[γnα, iR] =

0 for odd n;

(−1)mγn(−2α+ [ιn, ιn] ◦ h0α) for even n.

Let τη(ξ) ∈ πm(X) be the operation of η ∈ π1(X) on ξ ∈ πm(X). Then, in view of [21]

(Chapter X, (7.6)), it holds

[ξ, η] = (−1)m(τη(ξ)− ξ).

Hence, by Lemma 3.1, the action of π1(RPn) on πm(RPn) is trivial for odd n and we get

[Sm,RPn] ∼= πm(RPn) = γn∗πm(Sn). Further, the map γn : S(n+1)d−1 → FPn leads to com-

mutative diagrams of surjective maps

πm(Sn)/±Gm(Sn) −→ {Mα(Sm,Sn); α ∈ πm(Sn)}/ '
↓ ↓

πm(RPn)/± γn∗Gm(Sn) −→ {Mα(Sm,RPn); α ∈ πm(RPn)}/π1(RPn)/ '

and

πm(S2n+1)/±Gm(S2n+1) −→ {Mα(Sm, S2n+1); α ∈ πm(S2n+1)}/ '
↓ ↓

πm(CPn)/± γn∗Gm(S2n+1) −→ {Mα(Sm,CPn); α ∈ πm(CPn)}/ ' .

Further, πm(HPn) = γn∗πm(S4n+3) ⊕ iH∗Eπm−1(S3). Because Gm(S3) = πm(S3), the path-

components Mα(Sm,HPn) for α ∈ iH∗Eπm−1(S3) have the same homotopy type. This yields the

next commutative diagram of surjective maps

πm(S4n+3)/±Gm(S4n+3) −→ {Mα(Sm,S4n+3); α ∈ πm(S4n+3)}/ '
↓ ↓

πm(HPn)/± γn∗Gm(S4n+3) −→ {Mα(Sm,HPn); α ∈ πm(HPn)}/ ' .
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Consequently, the main result presented in Section 2 leads to estimations of |{Mα(S(n+1)d−1+k,

FPn)}/ ' | for k ≤ 13 and F = R,C,H. Then, the results [9] (Theorems 1, 2) and [10] (Theo-

rem 2.3) lead also to:

Remark 3.1. There are estimations of fibre-homotopy types of evaluation fibrations ωα:

Mα(S(n+1)d−1+k,FPn) → FPn and their strong fibre-homotpy types for k ≤ 13 and F = R,C,H
as well.

Next, write KP 2 = S8 ∪σ8 e16 for the Cayley projective plane and iK : S8 ↪→ KP 2 for the

inclusion map, where σ8 : S15 → S8 is the Hopf map. Then, in view of [17], it holds πm(KP 2) =

= iK∗Eπn−1(S7) ∼= πm−1(S7) for m ≤ 21. Because Gm(S7) = πm(S7), all path-components of

M(Sm,KP 2) have the same homotopy type for m ≤ 21.

4. Miscellanea on mapping spaces. Homotopy properties of various path-components

Mα(Sm, Sn) have been studied in [1, 14, 20] and then some homotopy groups πk(Mα(Sm,Sn))

computed. However, the rational type of M(Sm, Sn) and M(Sm,Sn)∗ has been fully described in

[4, 18] as follows:

Theorem 4.1. (i) For n odd and any m:

M(Sm,Sn) ∼=Q


Sn ×K(Z, n−m), if n > m,∐∞

k=1
Sn, if n = m,

Sn, if n < m,

M(Sm,Sn)∗ ∼=Q


K(Z, n−m), if n > m,∐∞

k=1
∗, if n = m,

∗, if n < m.

(ii) For n even and any m:

M(Sm,Sn) ∼=Q



Y, if n > m,

Sn ×K(Z, 2n−m− 1)
∐∞

k=1
S2n−1, if n = m,

Sn ×K(Z, 2n−m− 1), if n < m < 2n− 1,∐∞

k=1
Sn, if m = 2n− 1,

Sn, if m > 2n− 1,

where Y is given by the fibration Sn ×K(Z, n−m)→ Y → K(Z, 2n−m− 1);
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M(Sm, Sn)∗ ∼=Q



K(Z, n−m)×K(Z, 2n−m− 1), if n > m,∐∞

k=1
K(Z, 2n−m− 1), if n = m,

K(Z, 2n−m− 1), if n < m < 2n− 1,∐∞

k=1
∗, if m = 2n− 1,

∗, if m > 2n− 1.

Now, let A be an abelian group and n ≥ 1. A spaceM(A, n) such that

H̃i(M(A, n)) =

A, if i = n,

0, otherwise

is called a Moore space of type (A, n). If A = Zk is a cyclic group of order k then such space can

be constructed from the n-sphere Sn by attaching an (n + 1)-cell en+1 via a map f : Sn → Sn of

degree k.

Proposition 4.1 ([12], Proposition 4H.2). For any n > 1, and any abelian group A and a

pointed space X there are natural short exact sequences

0→ Ext(A, πn+1(X))→ [M(A, n), X]∗ → Hom(A, πn(X))→ 0. (4.1)

Notice that for A = Zk, we get

Ext(Zk, πn+1(X)) ∼= Zk ⊗ πn+1(X) ∼= πn+1(X)/kπn+1(X)

and

Hom(Zk, πn(X)) = kπn(X) = {α ∈ πn(X); kα = 0}.

Hence, the sequence (4.1) leads to

0→ πn+1(X)/kπn+1(X)→ [M(Zk, n), X]∗ → kπn(X)→ 0,

which we use to compute [M(Zk, n), Sm]∗ (in fact [M(Zk, n),Sm]) for some m,n.

The case m = 1 is simple: if n = 1 then kπn(S1) = 0 and πn+1(S1) = πn(S1) = 0 for n > 1.

Thus, we have [M(Zk, n),S1]∗ = [M(Zk, n),S1] = 0.

From now on, we assume that m > 1. So, π1(Sm) = 0 and [M(Zk, n),Sm]∗ = [M(Zk, n), Sm].

Case 1. If n+ 1 < m, then πn(Sm) = πn+1(Sm) = 0. So, [M(Zk, n),Sm] = 0.

Case 2. If n+ 1 = m, then πn+1(Sm) ∼= Z and πn(Sm) = 0 which imply that [M(Zk, n), Sm] ∼=
∼= Zk.

Case 3. If n + 1 > m, then n = m + l − 1, for some l > 0. Now we study the short exact

sequences below for l > 0

0→ πm+l(Sm)/kπm+l(Sm)→ [M(Zk,m+ l − 1),Sm]→ kπm+l−1(Sm)→ 0. (4.2)
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First, if l = 1, then kπm+l−1(Sm) = 0 and we have to consider the cases m = 2 and m > 2

separately, since π3(S2) ∼= Z and πm+1(Sm) ∼= Z2, respectively. More precisely,

[M(Zk,m), Sm] ∼= πm+1(Sm)/kπm+1(Sm) ∼=


Zk, if m = 2,

Z2, if m > 2 and k is even,

0, if m > 2 and k is odd.

Next, if l = 2, then πm+l(Sm) ∼= Z2 and πm+l−1(Sm) ∼= Z for m = 2 and πm+l−1(Sm) ∼= Z2

for m > 2. If m = 2, then the sequence (4.2) yields

[M(Zk, 3), S2] ∼= Z2/kZ2
∼=

Z2, if k is even,

0, if k is odd.

If m > 2, then (4.2) becomes 0 → Z2/kZ2 → [M(Zk,m + 1), Sm] → kZ2 → 0 and if k is odd,

then [M(Zk,m+ 1), Sm] = 0, while if k is even, then 0→ Z2 → [M(Zk,m+ 1),Sm]→ Z2 → 0.

So, we get |[M(Zk,m+ 1),Sm]| = 4.

Further, if l = 3, then

πm+3(Sm) ∼=


Z2, if m = 2,

Z12, if m = 3,

Z⊕ Z12, if m = 4,

Z24, if m ≥ 5,

and πm+2(Sm) ∼= Z2. Since kZ2 = 0 for any odd k, we obtain

[M(Zk,m+ 2), Sm] ∼=



0, if m = 2,

Z4, if m = 3 and 3 | k,

0, if m = 3 and 3 - k,

(Z⊕ Z12)/k(Z⊕ Z12), if m = 4,

Z24/kZ24, if m ≥ 5.

If k is even, then kZ2 = Z2 and in view of (4.2) we get

0→ πm+3(Sm)/kπm+3(Sm)→ [M(Zk,m+ 2),Sm]→ Z2 → 0

which leads to the value of |[M(Zk,m + 2), Sm]|. Following the procedure above and using the

homotopy groups πm+l(Sm) (see, e.g., [19]), it is possible to determine |[M(Zk,m + l), Sm]| for

other values of l > 3 as well.
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7. Gonçalves D., Koschorke U., Libardi A., Neto O. M. Coincidences of fiberwise maps between sphere bundles over

the circle // Proc. Edinburgh Math. Soc. (to appear).
8. Gottlieb D. A certain subgroup of the fundamental group // Amer. J. Math. – 1965. – 87. – P. 840 – 856.
9. Gottlieb D. Evaluation subgroups of homotopy groups // Amer. J. Math. – 1969. – 91. – P. 729 – 756.

10. Hansen V. L. Equivalence of evaluation fibrations // Invent. math. – 1974. – 23. – P. 163 – 171.
11. Hansen V. L. The homotopy problem for the components in the space of maps of the n-sphere // Quart. J. Math. –

1974. – 25. – P. 313 – 321.
12. Hatcher A. Algebraic topology. – Cambridge: Cambridge Univ. Press, 2002.
13. Hu S. T. Homotopy theory // Pure and Appl. Math. – New York; London: Acad. Press, 1959. – Vol. 8.
14. Koh S. S. Note on the homotopy properties of the components of the mapping space XSp

// Proc. Amer. Math. Soc. –
1960. – 11. – P. 896 – 904.

15. Lam K. Y., Randall D. Block bundle obstruction to Kervaire invariant one // Contemp. Math. – 2006. – 407. –
P. 163 – 171.

16. Lupton G., Smith S. B. Criteria for components of a function space to be homotopy equivalent // Math. Proc.
Cambridge Phil. Soc. – 2008. – 145, № 1. – P. 95 – 106.

17. Mimura M. The homotopy groups of Lie groups of low rank // J. Math. Kyoto Univ. – 1967. – 6. – P. 131 – 176.
18. Murillo A. Rational homotopy type of free and pointed mapping spaces between spheres // Brazilian-Polish Topology

Workshop. – Toruń, Warsaw, 2012.
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