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EVALUATION FIBRATIONS AND PATH-COMPONENTS
OF THE MAPPING SPACE M (S"+*,S") FOR 8 < k < 13*

OLITHOYHI PO3IIAPYBAHHS I KOMIIOHEHTH JIHIAHOI 3B’SI3HOCTI
MPOCTOPY BIIOBPAJKEHB M (S"+*,S™) IIPU 8 < k < 13

Let M(S™,S™) be the space of maps from the m-sphere S™ into the n-sphere S™ with m,n > 1. We estimate the
number of homotopy types of path-components M, (S"**,S™) and fiber homotopy types of the evaluation fibrations
Wa: Mo (S™TF,S™) — S™ for 8 < k < 13 and & € 7,44 (S™) extending the results of [Mat. Stud. — 2009. — 31, Ne 2. —
P. 189—194]. Further, the number of strong homotopy types of wa : M (S"T*,S™) — S™ for 8 < k < 13 is determined
and some improvements of the results from [Mat. Stud. — 2009. — 31, Ne 2. — P. 189 —-194] are obtained.

Hexait M (S™,S™) — mpocrip Bimobpaxens i3 m-chepu S™ B n-chepy S™ 3 m,n > 1. Mu OLIHIOEMO FHCIO THITB
rOMOTOIII JUIsi KOMIIOHEHT JIiHIMHOI 3B’A3HOCTI Ma(S"*k, S™) Ta TuniB romMoTONIl WIAPIB IS OLIHOYHUX PO3LIAPYBAHB
Wa: Mo (S"T*,S™) — S" npu 8 < k < 13 1a @ € T, 4(S™), y3aransuiooun pesynsrard 3 [Mat. Stud. — 2009. — 31,
Ne 2. — P. 189—-194]. KpiM TOro, BU3HAYaEMO YHCJIO THITIB CHIILHUX TOMOTOMIN wq : My (S"J“k, S”) —S"mpu8 < k <13
Ta OTPUMYEMO JIesiKi TIOKpalieHHs pe3ynbrariB 3 [Mat. Stud. — 2009. — 31, Ne 2. — P. 189-194].

1. Introduction. Given spaces X and Y, let M (X,Y") be the mapping space of all continuous maps
of X into Y equipped with the compact-open topology. The space M (X, Y) is generally disconnected
and its path-components are in one-to-one correspondence with the set [X, Y] of (free) homotopy
classes of maps of X into Y.

Given x¢ € X, consider the evaluation map

w: M(X,Y) =Y

defined by w(f) = f(xg) for f € M(X,Y). Let My(X,Y) be the path-component of M (X,Y)
which contains all maps in a € [X,Y]. By [13, p. 83] (Theorem III.13.1), the evaluation map
wa: Mo (X,Y) — Y obtained by restricting w to M, (X,Y) is a Hurewicz fibration provided X is
locally compact. Then, the natural classification problems arise:

(1) divide the set of path-components of M (X,Y") into homotopy types;

(2) divide the set of evaluation fibrations wy: M, (X,Y) — Y into fibre- and strong fibre-
homotopy types for a € [X,Y].

Conditions for when two path-components of M (X,Y") are homotopy equivalent are presented
in [16] provided that spaces X and Y are connected and countable C'WW -complexes.

Let now S™ be the n-sphere. To study coincidences of fiberwise maps between sphere bundles
over S!, the set of fiberwise homotopy classes of those maps has been considered in [7]. But, the set
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of fiberwise maps between the trivial bundles S! x S™ and S' x S over S' coincides with the free
loop space LM (S™,S") = M (S, M(S™,S")).

Certainly, for the space M (S™,S™) with m,n > 1, the path-components can be enumerated
by the homotopy group 7,,(S™). In view of [10] (Theorem 4.1), there is a strong relation between
evaluation fibrations wy, : M, (S™,S™) — S™ for a € 7,,,(S™) and the Whitehead product [¢y,, ). This
was used in [10] (Theorems 5.1, 5.2) to tackle a complete homotopy classification of path-components
of M(S™,S™) for m = n,n + 1 and compute the order of the homotopy group m,_1(M,(S™,S")).
Homotopy properties of various M (S™,S™) have been studied in [1, 14, 20].

The purpose of this note is to extend the results of [6] for m =n + k with 8 < k£ < 13.

Section 1 summarizes [10, 11] and follows [16] to connect in Theorem 1.1 these classification
problems for M (S™,S™) with the m-th Gottlieb group G,,,(S™) considered in [8, 9] and then studied
in [5].

Section 2 makes use of [5] to take up the systematic study of the quotient sets m,, 1 (S"™)/ +
+ Gp4+k(S™) with 0 < k < 13. Then, our basic results stated in Propositions 2.1-2.6 estimate
the number of homotopy types of path-components of M (S"+* S") and fibre-homotopy types of
evaluation fibrations we, : M (S, S™) — S™ with 0 < k < 13. Further, the number of strong fibre-
homotopy types of wy : My (S"F,8") — S™ with 0 < k < 13 is determined. Corollary 2.1 concludes
a list of evaluation fibrations we, : M, (S™"1*,S") — S™ which are fibre-homotopy equivalent but not
strong fibre-homotopy equivalent for some 0 < k < 13.

Those results are applied in Section 3 to estimate the number of homotopy types of path-
components of M (S(”+1)d+k_1,FP”) and (strong) fibre-homotopy types of evaluation fibrations
Wa: My (SHDd+k=1 Fpny _y FP" with 0 < k < 13 for the n-projective spaces FP™ for
F = R, C, H. Further, we deduce that path-components of M (S™, KP?) have the same homotopy
type for m < 21, where KP? is the Cayley projective plane.

The last Section 4 makes use of [4, 18] to present the rational homotopy type of M (S™,S™) and
path-components of M (M (A, m),S™) for a Moore space M (A, m).

1. Prerequisites. Given zo € X and yy € Y, write M (X,Y"), for the space of all continuous
pointed maps of X into Y. This leads to the Hurewicz fibration M(X,Y), — M(X,Y) & Y,
provided X is locally compact. Recall that on the set [X, Y], of homotopy classes of pointed maps
there is an action of m1 (Y, yo) and [ X, Y]./m1 (Y, y0) = [X, Y] [21] (Chapter 1, (1.11)).

In particular, for m1 (Y, y0) = 0 we get [X,Y]. = [X,Y], e.g., mn(S™) = [S™,S"], = [S™,S"],
for n > 1. Further, there is the Hurewicz fibration

M(S™,S"), — M(S™,S") % s”,

A fibration p: EE — B with a fibre F' means a Hurewicz fibration together with a fixed homotopy
equivalence i: F' — p~!(bg) over the base point by € B. Recall that for fibrations p;: E; — B and
p2: Eo — B abased map f: Fy — FEo is:

1) a fibre homotopy equivalence (fhe) if there exists g: Fo — Ej such that g o f and f o g are
homotopic to the respective identities by based homotopies F' and G satisfying p; o F'(e1,t) = pi(e1)
and po o G(ea,t) = pa(es) fore; € Fy, e9 € Ey and t € [0, 1];
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2) a strong fibre homotopy equivalence (sthe) if it is a fibre homotopy equivalence and i}, o f 0 iy
is homotopic to the identity map idr, where i/, is an arbitrary homotopy inverse of 5.

Let X be a connected and pointed space. The m-th Gottlieb group G,,(X) [8, 9] of a space X is
the subgroup of the m-th homotopy group ,,(X) containing all elements which can be represented
by a map f: S™ — X such that f Vidx: S™ V X — X extends (up to homotopy) to a map
F:S™ x X — X. Observe that G, (X) = m, (X)) provided X is an H-space.

Given « € 7,,(S™) we have deduced in [5] that o € G,,,(S") if and only if the Whitehead product
[tn, @] = 0, where ¢,, denotes the homotopy class of ids». In other words, G, (S™) = ker [¢,,, —| for
the map [tn, —]: T (S™) = Tmtn—1(S™) with m > 1. Write fg for the order of the element ¢ in a
group G. Then, by [5] (Section 2), from this interpretation of Gottlieb groups of spheres, we obtain

Gm(S") = (8[tn, a])mm (S"),

if m,,,(S™) is a cyclic group with a generator «. It follows that G,,,(S") = 7,,,(S") (resp. G, (S™) = 0)
provided f[tp,, o] = 1 (resp. f[in, @] = 00) for a € 7, (S™). Furthermore, because of H-structures on
the spheres S™ for n = 1, 3,7, it holds G,,(S™) = 7,,(S™) for any m > 1.

Given a group G and its subgroup G’ < G, write G/ + G’ for the quotient set of G by the relation
~ defined as follows: for z,y € G,  ~ y if and only if zy € G’ or zy~! € G’. Observe that if
G, < G;, i = 1,2, then there is a surjection

¢: (G1 x Go)/ £ (G x GY) — (G1/ £ GY) x (G2/ £ GY)

defined by (g1, g2) — (g1, g2), which is not injective in general, where g states for the appropriate
abstract class determined by g.

Example 1.1. (1) If G = Gy = Z and G} = G, = 3Z for the infinite cyclic group Z, then
(ZxZ)]+£(3Zx3Z)| = 5and |Z/£3Z|? = 4. Let Z,, be the cyclic group with order n. If G; = Z3,
Gy =Z¢, G} =0 and G}, = Zy then |(Z3 x Zg)/ £ (0 x Z3)| = 5 and |Z3/ £ 0||Z4/ £ Zs| = 4.

(2) If G, = G} then the bijection holds easily.

Writing ~ for the homotopy equivalence relation, [10] (Theorems 1, 2) and [11] (Theorem 2.3)
lead to:

Theorem 1.1. Let m,n > 1. Then, there are surjections:
TS/ £ Gn(S") — {Ma(S™,S"); @ € (S} ~, (L.1)
Tm(S")) £ G (S") — {wa: Ma(S™,S") — S"; a € m1,(S™)}/ the (1.2)
and there is a bijection
Tm(S™) /G (S™) = {wa: My(S™,S") = S™; a € 7, (S™)}/ sthe. (1.3)

We point out that a generalization of the results above has been stated in [16]. As a consequence,
using the surjections (1.1) and (1.2), it is possible to obtain an upper bound for the number of
homotopy types of path-components for the mapping space M (S"** S") and to the number of
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evaluation fibrations we, : M (S"1*,S") — S, for o € 7,,4.%(S™), up to fibre-homotopy equivalence
(fhe), respectively. In addition, the bijection (1.3) gives the exactly number of evaluation fibrations,
up to strong fibre-homotopy equivalence (sthe).

Remark 1.1. By [11] (Theorem 4.1) we have M,(S™,S") ~ My(S™,S") if and only if
[tn,a] = 0, if and only if & € G, (S™). Thus if G, (S") & 7 (S™) then there are at least two
path-components which are not homotopy equivalent, that is, |7, (S")/ £ G, (S™)| > 2, and there is
only one if and only if G,,,(S") = 7, (S™).

We close this section with the following fact (on the relation ~ defined above) useful in the

sequel. First, given reals x, y, write

=[] [ 2]

where [r| = min{k € Z; k > r} for any real r.

Lemma 1.1. For positive integers m,m/,n,n’ with m | n, m’ | n' and n,n’ > 1, let Z, x
X Lot < Loy X Logyty, MT X Loy < 7o X Loy and mZ x m'7Z < 7 x 7 be the obvious inclusions.
Then

(Zy X Zot )/ £ (Zo X Loy :X<T?:LT7:LI> (1.4)
(2 % Zow)] £ (T % Zow)| = X (m jj;) , (15)
(Z x 7)) + (mZ x m'Z)| = x (m,m') . (1.6)

!/

In particular, |(Zpn, X L) £ (Zy X Zoy)| = |ZLn) £ Zpn| = X (ﬁ, 1) .
m
n

3

Proof. For any (a,b) € Zn X Zy, (a,b) ~ (c,d) where 1 < ¢ < —, 1< d < —,. Furthermore,
m m
!/ !/ /
for ¢ # " and d # n—/, (c,d) ~ <n—c,n/—d> for1 < d < n—, — 1 and then we have
m m m m m
1 / /
- (2 — 1) o 1 nonequivalent elements. In addition, (£,d> ~ ﬁ, o d) for 1 <
2 \m m/ m m’ m/
!/ / / 1
<d< l—1 and c,l ~( - c,n— forl <e¢< 2—1. So, we obtain more | — (2 — 1> +
m/ m/ m m/ m 2 \m
1/ . . . . . (n
+ | = [ — — 1) | nonequivalent elements. Finally, since that the trivial element is | —, — | , the
2 \m/ m’ m/
equation (1.4) follows.
/
To prove (1.5) and (1.6), just replace n by m and E, K/ by m, m’ respectively.
m m’ m
Lemma 1.1 is proved.
2. Main results. We make use of [5] and Lemma 1.1 to estimate the cardinality
|7Tn+k(Sn)/ + Gn+k(Sn)| (2.1)

for 8 < k < 13. We first recall the results from [6] for 0 < k£ < 7 and make some improvements of
the cardinality (2.1).
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Proposition 2.1. The cardinality |7, ,(S™)/ £ Gnir(S™)| for 0 < k < 7 is, respectively:

one, if n =1,3,7; two, if n # 1,3,7 is odd; |Z| if n is even;

one, if n =1,2,6 or n = 3 (mod 4); two, otherwise;

one, if n = 1,5 or n = 2,3 (mod 4); two, otherwise;

ten, if n = 4; one, if n = 7 (mod 8) or n = 2¢ — 3 for i > 3; two, if n = 1,3,5 (mod 8) and
n > 9andn # 2° — 3; seven, if n = 2 (mod 4) and n > 6 or n = 12; thirteen, if n = 0 (mod 4)
andn > 8 and n # 12;

one, for alln > 1;

one, if n # 6; two, otherwise;

one, if n =4,5,7 (mod 8) or n = 2° — 5 for i > 4; two, otherwise;

one, if n = 5,11 or n = 15 (mod 16); two, if n is odd and n > 9, unless n = 11 and n = 15
(mod 16); eight, if n = 4; thirty one, if n = 6; ninety one, if n = 8; one hundred twenty one, if n is
even and n > 10.

2.1. The case k = 8. Making use of the Gottlieb groups G, +8(S™) computed in [5] (Proposi-
tion 6.3) we estimate |m,4+3(S")/ £ Gp1s(S")|.

Forn =1,2,6,10 or n = 3 (mod 4), the cardinality (2.1) is one.

Forn =0,1 (mod 4) and n # 8,9, or n = 22 (mod 32) and n > 54, G,,18(S™) = 0 and then
(2.1) is equal to |m,48(S™)/ & 0], that is: two, if n = 4,5, since that 7,,5(S") = {e,} = Zo; four,
if n > 12, since that 7,4 8(S") = {Dn, en} = (Z2)%

For n = 2 (mod 8) and n > 18, G,,4s(S") = {en} = Zy and 7, 45(S") = {Un,en} = (Zo)2.
So the cardinality (2.1) is two. But [iy,, 7] # 0 and then wy,, is not fibre-homotopy equivalent to wy
(which is fibre-homotopy equivalent to we,, ).

Forn =22, orn = 14 (mod 16), or n = 6 (mod 32) and n > 14, G,,43(S") = {npopt+1} =
& Zs and 7,18(S™) = {Un, en} = (Z2)?. Thus, the cardinality (2.1) is two. In view of [17] (Lemma
6.4), it holds 1,011 = U, + €y, € Gp48(S™) for n > 9 and the bilinearity of the Whitehead product
yields [tn, Un] = —[in,en]. By [10] (Theorem 2.3), wp, and w,, are fibre-homotopy equivalent as
well as wp and wy, 1., .

For n = 8, the Gottlieb group is G16(S®) = {(Eo')ms, 08ms + Us + €3} = (Z2)? and the
homotopy group is m16(S®) = {(Ec")n15, 08m1s, Vs, €8} = (Z2)*. We replace the generator ognys €
€ m16(S®) by the sum ogny5 + s + £ and then (2.1) is four.

For n = 9, G17(S%) = {[to, 0]} = Zo and m17(S?) = {0916, 70,0} = (Z2)3. Although the
generators for n = 9 are different from that ones for n = 8, but (2.1) is four as well.

We can summarize the results above and estimate the number of homotopy types of path-
components of the mapping space M (S"+8, S™) and fibre-homotopy equivalence types of evaluation
fibrations wq,: My (S"8,8") — S for a € m,48(S™).

Proposition 2.2. The cardinality |mp4+8(S™)/£Gris(S™)| is:

one, if n =1,2,6,10 or n = 3 (mod 4);

two, if n = 4,5,22, or n = 2 (mod 8) and n > 18, or n = 14 (mod 16), or n = 6 (mod 32)
and n > 14;

Sour, if n=0,1 (mod 4) and n > 8, or n = 22 (mod 32) and n > 54.
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2.2. The case k = 9. In view of [5] (Proposition 6.4), we estimate the cardinality

|Tn49(S")/ & Gnio(S")].

Forn =1,2,6 orn =3 (mod 4), |Tp4+9(S")/£Gpn19(S")| = 1.
Forn =0 (mod 8) and n > 16, G,,+9(S™) = 0 and then (2.1) is

|Tnr9(8")/ £0] = |(Z2)*/ £0] = 8.

Forn =2 (mod 4) and n > 14, orn = 2 — 7T withi > 5 orn = 5 (mod 8) and n # 53
(mod 64), Gy 9(S™) 22 (Z2)? and 7,1 9(S™) = (Z2)? and then (2.1) is two.

For n = 4 (mod 8), or n = 53 (mod 64) and n > 117, or n = 1 (mod 8) and n > 17 and
n #2087, Guio(S") = Zg and m,19(S™) = (Z2)3. So (2.1) is four.

Forn = 8, G17(S%) = {(Bo" ks, osnfs + V8 + e} = (Z2)? and mr(S%) = { (B’ ), o,
Z/g, s, Ms€o} = (Z2)®. Replacing the generator 0'877%5 € m17(S®) by the sum 0877%5 + Vg’ +ngeg, (2.1)
is [ {08, s, mseo}/ £ 0] = |(Z2)3/ £ 0] = 5.

For n = 9, the Gottlieb group is G15(S?) = {o9nis, V3, m9e10} = (Z2)3 and the homotopy group
is m15(SY) = {o9nis, v, k9, moc10} = (Z2)*. In a similar way we conclude that (2.1) is two.

Finally, for n = 10, G19(S'°) = {3[t10, t10], ¥y, moc11} = 3Z @ (Z2)? and mo(S0) =
= {A21), ¥y, 0, moc11} = Z @ (Za)*. So (2.1) is [(Z @ (Z2)*)/ £ 3Z ® (Z2)*)| = 4, by
Lemma 1.1.

Then, we summarize the results above as follows:

Proposition 2.3. The cardinality |mp49(S")/£Gri9(S™)| is:

one, ifn =1,2,6, or n =3 (mod 4);

two, ifn=9,0rn=2 (mod 4) andn > 14, or n =2 — T withi > 5, orn =5 (mod 8) and
n # 53 (mod 64);

Sour, if n =10, or n = 4 (mod 8), or n = 53 (mod 64) and n > 117, or n = 1 (mod 8) and
n>1Tandn # 2" —T;

eight, if n =0 (mod 8).

2.3. The cases k = 10,11. Following the same ideas as above and making use of Lemma 1.1,
we can also compute the appropriate quotient set to estimate its cardinality to state the next results:

Proposition 2.4. The cardinality |mp1+10(S")/£Gry10(S™)| is:

one, if n =1,2,5, orn =3 (mod 4);

two, if n =2 (mod 4), or n =1 (mod 4) and n > 9;

Sour, if n =0 (mod 4).

Proposition 2.5. The cardinality |mp411(S™)/£Gr111(S™)] is:

one, if n =1 (mod 2) and n # 115 (mod 128);

two, if n = 115 (mod 128) and n > 243,

twenty two, two hundred fifty-four, seven hundred fifty seven, if n = 4,8, 12 respectively;

two hundred fifty-three, if n = 0 (mod 4) and n > 16;

one hundred twenty-seven, if n =2 (mod 4) and n > 6.
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2.4. The cases k = 12,13. Following [5] (Section 6), we have G}, +12(S™) = 7,412(S™) for
n # 10 and G,413(S") = mp413(S™) for n = 2 or n odd. So the cardinality (2.1) is one. For
k=12, n=10or k = 13, n even and n # 2,4, 14, the cardinality (2.1) is two. For k = 13, n = 4,
the cardinality (2.1) is four and for k = 13, n = 14 it is five.

In resume:

Proposition 2.6. The cardinality |7, 11 (S™)/ £G4k (S™)| is:

one, for k =12 and n # 10, or k = 13 and n = 2 or n odd,

two, for k =12 and n = 10, or k = 13 and n even, n # 2,4, 14;

Sfour, for k =13 and n = 4;

five, for k =13 and n = 14.

Remark 2.1. We observe that the cases k = 9, n = 53 and k£ = 11, n = 115 are missing
because the Gottlieb groups Gga(S®3) and G126(S''?) are unknown. On the other hand, the 2-primary
component of the homotopy group m126(S*'%) is 7132 = {¢115} [19] (Theorem 7.4) and in view of
[15] (Theorem 3.1) the Kervaire invariant 6 exists in the stable homotopy group 77,4 if and only if
[C115, t115] = 0.

We recall that in [10] (Example 1), two the evaluation fibrations w,,: M4 (S? Vv S?,S?) — S? and
wg: Mg(S? v $2,S?) — S? for a, B8 € [S? V S2,S?] not being sthe are constructed. From the results
above, we get:

Corollary 2.1. There are evaluation fibrations ws: My (S"F,S™) — S™ for some o € 7,41 (S™)
and 0 < k < 13 being fthe and not sthe.

At the end of this section, we notice that:

Remark 2.2. The procedure above leads to an estimation of the number of homotopy types of
path-components of M (S"+*, S"), and fibre-homotopy types of evaluation fibrations we, : M (S" 1,
S™) — S™ with 0 < k£ < 13.

3. Applications to projective spaces.. Let R and C be the fields of real and complex numbers,
respectively and H the skew R-algebra of quaternions. In this section we apply the results above to
study the path-components of M (S™, FP") for F = R,C,H and M (S™, KP?), where K denotes
the Cayley algebra.

Denote by FP" the n-projective space over F. Put d = dimgr [F, write 4y, ,,: FP™ — FP",
m < n, for the inclusion map, v, = Y, p: S"TV4~1 — FP" for the quotient map and set ip =
= i1,: FP1 = S% < FP". Let EX be the suspension of a space X and denote by E: m,,,(X) —
— Tm1(EX) the suspension homomorphism. Next, writt A = App: 7 (FP") — 7 1(ST1)
for the connecting map. By [3] (Theorem (2.1)) it holds:

A(’L[F*E) == idTrm71(Sd*1)

and
T (FP™) = 4 o7 (ST DY) @ i, By (ST71).

Hence, 7, (RP') 2 7,,,(SY) and 7, (CP') = 71,,,(S?) for m > 0. Further, for n > 1, we derive
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0, if m =0,
Tm(RP"™) = < Zo, ifm=1,
YnsTm(S™), ifm > 1,

and
0, ifm=20,1,
mm(CP") =< Z, ifm =2,
Yrs T (SEEL), it m > 2.

The path-connected components of M (S™,FP™) are in one-to-one correspondence with the
set [S™,FP"] of (free) homotopy classes. Because CP" and HP™ are 1-connected, [S™, RP"]| =
> 71 (RP™) /7 (RP™) and [S™, CP"] & 7, (CP™), [S™, HP"] = m,, (HP™).

By [2] (Corollary (7.4)) and [3] ((4.1)—(4.3)), we obtain a formula:

Lemma 3.1. Let hoa € m,,(S?*" 1) be the O-th Hopf - Hilton invariant for o € 7, (S™). Then

0 for odd n;
[rynaaiR] =
(=)™ (=2 + [tn, tn] © hoat)  for even n.
Let 7,(§) € mm(X) be the operation of n € 7 (X) on { € my,(X). Then, in view of [21]
(Chapter X, (7.6)), it holds
[€,m] = (=1)" (7 (&) = &)
Hence, by Lemma 3.1, the action of m1(RP™) on m,(RP™) is trivial for odd n and we get
[S™ RP"] 2 7,,(RP") = Y (S"). Further, the map v,: S®+D4=1 — FP" leads to com-

mutative diagrams of surjective maps

Tm(S")/ £ G (S") — {Ma(S™,8"); a € mp(S")}/ ~
! \
Tm(RP™/ £ 3G (") —  {Ma(S™, RP"); a € mm(RP™)}/my (RP™)/ =~

and

7Tm(52n+1)/ + Gm(S2n+1) N {Ma(Sm, 82n+1); o= Wm(82n+1)}/ ~

1 !
Tim(CP")/ £ 9uGin (S")  — {Ma(S™,CP"); o € mpn(CP™)}/ =~

Further, 7, (HP™) = e (S3) @ iy Emn—1(S?). Because Gy (S?) = 7, (S?), the path-
components M, (S™, HP™) for o € iy, Em,—1(S?) have the same homotopy type. This yields the
next commutative diagram of surjective maps

Tom (S4n+3)/ + Gm(S4n+3) N {Ma (Sm’ S4n+3); a € Ty, (S4n+3)}/ ~

{ {
Tn(HPY)/ £ s Gra(S743)  — {Mo(S™,HP"); @ € my (HP")}/ .
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Consequently, the main result presented in Section 2 leads to estimations of |{ M, (S +1)d—1+k,
FP™)}/ ~ | for k < 13 and F = R, C, H. Then, the results [9] (Theorems 1, 2) and [10] (Theo-
rem 2.3) lead also to:

Remark 3.1. There are estimations of fibre-homotopy types of evaluation fibrations wgy:
M, (Str+hd=1+k ppn)y _ FP" and their strong fibre-homotpy types for k& < 13 and F = R, C, H
as well.

Next, write KP? = S8 U,, !0 for the Cayley projective plane and ix: S® — KP? for the
inclusion map, where og: S'° — S® is the Hopf map. Then, in view of [17], it holds m,,(KP?) =
= g B, 1(ST) 2 71, 1(S7) for m < 21. Because G, (S7) = 7,,(S7), all path-components of
M (S™, KP?) have the same homotopy type for m < 21.

4. Miscellanea on mapping spaces. Homotopy properties of various path-components
M, (S™,S™) have been studied in [1, 14, 20] and then some homotopy groups 7 (M, (S™,S™))
computed. However, the rational type of M (S™,S™) and M (S™,S™), has been fully described in
[4, 18] as follows:

Theorem 4.1. (i) For n odd and any m:
S™ x K(Z,n —m), ifn>m,

M(Sm, Sn) g@ H:il Sn’ ljfn =m,

Sr, ifn <m,

K(Z,n—m), ifn>m,
ME" 8. =g [[ »  im=m,

*, if n < m.

(ii) For n even and any m:

p

Y, ifn>m,

S" x K(Z,2n —m — 1) H;:SQ"”, ifn=m,
M(S™,S") =g { S" x K(Z,2n —m — 1), ifn<m<2n—1,

szlS ) ifm=2n—1,

Sn, ifm>2n —1,

where Y is given by the fibration S™ x K(Z,n —m) - Y — K(Z,2n —m — 1);

ISSN 1027-3190. Yxp. mam. xcypnu., 2013, m. 65, Ne 8



1032 M. GOLASINSKI, THIAGO DE MELO

K(Z,n—m) x K(Z,2n —m —1), ifn>m,
k_llC(Z,Qn—m—l), ifn=m,
M(S™,8"). =g { K(Z,2n —m — 1), ifn<m<2n-—1,
szl *, ifm=2n-—1,

\

Now, let A be an abelian group and n > 1. A space M (A, n) such that

- A, ifi =
M) =4 T

0, otherwise

is called a Moore space of type (A, n). If A = Zj, is a cyclic group of order k then such space can
be constructed from the n-sphere S" by attaching an (n + 1)-cell e”*! via a map f: S* — S" of
degree k.

Proposition 4.1 ([12], Proposition 4H.2). For any n > 1, and any abelian group A and a

pointed space X there are natural short exact sequences
0 — Ext(A, mp+1(X)) = [M(A,n), X]. — Hom(A, m,(X)) — 0. 4.1
Notice that for A = Zj, we get
Ext(Zg, mni1(X)) = Zi @ mpg1 (X) = 71 (X) kg1 (X)

and
Hom(Zy, mp (X)) = xmn(X) = {a € mp(X); ko = 0}.

Hence, the sequence (4.1) leads to
0 = g1 (X)) /kmpi1(X) = [M(Zg,n), X = pmn(X) =0,

which we use to compute [M(Zg,n),S™], (in fact [M(Z,n),S™]) for some m,n.

The case m = 1 is simple: if n = 1 then 7, (S*) = 0 and 7,,41(S') = 7,(S!) = 0 for n > 1.
Thus, we have [M(Zy,n),S'], = [M(Z,n),S'] = 0.

From now on, we assume that m > 1. So, m1(S™) = 0 and [M(Zg, n),S™]« = [M(Zy,n),S™].

Case 1. If n + 1 < m, then m,(S™) = m,+1(S™) = 0. So, [M(Z,n),S™] = 0.

Case 2. If n+1 = m, then 7,41 (S™) = Z and 7, (S™) = 0 which imply that [M(Zj,n),S™] =
= 7.

Case 3. 1f n+1 > m, then n = m + [ — 1, for some [ > 0. Now we study the short exact
sequences below for [ > 0

0 = T (S™) kTt (S™) = [M(Zgs, m+1—1),S™] = kTp1-1(S™) — 0. (4.2)
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First, if [ = 1, then ;m;,17-1(S™) = 0 and we have to consider the cases m = 2 and m > 2
separately, since 73(S?) 2 Z and 7,4 1(S™) 2 Zs, respectively. More precisely,

Zy, ifm =2,
M(Zy;, m),S™] = W1 (S™) k41 (S™) = Zy, if m > 2 and k is even,
0, ifm > 2 and k is odd.

Next, if [ = 2, then 7,4 (S™) = Zo and 7p,1—1(S™) = Z for m = 2 and 7,11 (S™) = Zo
for m > 2. If m = 2, then the sequence (4.2) yields

Zo, if k is even,

[M(Zy,3),S%] =2 7y | kZy = o
0, if kis odd.

If m > 2, then (4.2) becomes 0 — Zy/kZy — [M(Zg,m + 1),S™| — xZo — 0 and if k is odd,
then [M(Zy, m + 1),S™| = 0, while if & is even, then 0 — Zy — [M(Zy, m + 1),S™| — Zs — 0.
So, we get |[M(Zg,m +1),S™]| = 4.

Further, if [ = 3, then

Za, ifm =2,

Z12, ifm= 3,
Ty 5(S™) & !

7 ® Zia, ifm =4,

Ly, ifm > 5,

and 7, +2(S™) & Zs. Since Z2 = 0 for any odd k, we obtain

0, ifm =2,

Zy, ifm=3and 3|k,
IM(Zy,,m +2),S™] = <0, ifm=3and 31k,

(Z&® Zn2) [ K(Z ® Z12), ifm =4,

Loy k724, if m > 5.

If k is even, then Zo = Zs and in view of (4.2) we get
0 = Tim+3(S™)/kmmy3(S™) — M(Zg,m +2),S™] — Zo — 0

which leads to the value of |[M(Zj, m + 2),S™]|. Following the procedure above and using the
homotopy groups 7, +;(S™) (see, e.g., [19]), it is possible to determine |[M(Zy, m + 1),S™]| for
other values of [ > 3 as well.
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