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DIFFERENTIAL EQUATIONS

MPOBJIEMA MEPECJIIYBAHHA B HECKIHUYEHHIM CUCTEMI
JUOEPEHIIAJIBHUX PIBHAHD JAPYI'OI'O ITIOPAAKY

We study a pursuit differential game problem for an infinite system of second-order differential equations. The control
functions of players, i.e., the pursuer and the evader, are subject to integral constraints.The pursuit is completed if
z(1) = 2(7) = 0 at some 7 > 0, where z(t) is the state of the system. The pursuer tries to complete the pursuit and
the evader tries to avoid this. A sufficient condition is obtained for completing the pursuit in the differential game when
control recourse of the pursuer greater than that of the evader. To construct the strategy of the pursuer we assume that the
instantaneous control employed by the evader is known to the pursuer.

BuBuaetscst mpobiiema nepeciiayBaHHS B AU(epeHialbHii Il g HECKIHYEHHOI cHCTeMH NU(EepeHIiaIbHUX PIBHSIHb
npyroro nopsaky. Kepieui ¢yHkuii rpaBuiB, ToOTO mepeciigyBada Ta MepeciifyBaHOro, MaloTh Jesiki oOMexeHHs. [lepe-
CIIiTyBaHHS 3aBEPLIyeThCS, Komu z(7) = Z(7) = 0 st nesikoro 7 > 0, 1e z(t) — cran cucremu. ITepecifyBad HaMaraeTbest
3aBEpIIUTH IIEPECIIiIyBaHHs, a IepecililyBaHHil HAMaraeThCs IbOr0 YHUKHYTH. BCTaHOBIICHO TOCTATHIO YMOBY 3aBEpIICHHS
nepeciIiyBaHHs B Au(epeHIialbHil Tpi, KOJIH 3BOPOTHE YIPABIIHHS JUIsl IIepeciligyBada Oible, HiX IS TepecIiyBaHo-
ro. JIns moGynoBu crparerii nepeciifyBaia BBaKaeMo, 1110 MUTTEBE KEPyBaHHs, 3aCTOCOBAHE IIE€PECIIilyBaHUM, € BiJOMUM
nepeciiayBady.

1. Introduction. The study of two person zero-sum differential games was initiated by Isaacs [1].
Since then many works with various approaches have been done in developing the theory of dif-
ferential games (see, for example, [1—4]). Control and differential game problems in systems with
distributed parameters were studied by many researchers (see, for example, [5—15]).

Works [12 —15] concerned with the differential game problems described by the following infinite
system of differential equations:

Zi(t) + przi(t) = —ug(t) + vg(t), @))]

where pj are positive numbers, ug, K = 1,2,..., are control parameters of the pursuer, and v,
k=1,2,..., are those of the Evader.

In [15], the numbers py, are assumed to be any positive numbers, and the control functions of
the players are subject to integral constraints. In [12], a differential game described by hyperbolic
equation is reduced to that described by the infinite system of differential equations (1). Here the
numbers iy, are generalized eigenvalues of the elliptic operator

"9 0z
i =1

and satisfy the conditions
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0<u1§,u2§...—>oo.

Authors studied differential game problems with various constraints on control functions of
players.

The general purpose of the present paper is to investigate differential game problem described by
the following infinite system of differential equations:

Ty = —apTr — Beyk — uk1 + k1, 2k(0) =z, 2(0) = xp1,
k=1,2,.... ()

Yk = BrTr — Yk — Up2 + Vk2, yk(0) = Yo, Yk (0) = Yk,

1
where oy, B), are real numbers, xx, Yk, Tro, Ykos This Yk1, Ukl, Uk2, Vi1, Vk2 € R, u = (u11, u12, ua1,
ug2,...) and v = (v11,v12, Vo1, V22, . . .) are control parameters of the pursuer and the evader respec-
tively. Note that the system (2) is obtained if we take

2k = Tk + WYk, pr = oy — B, Up = U1 + U2, Vg = Vg2 + 1k

in (1). In other words, we deal with so-called the complex case of the equation (1).

Pursuit is said to be completed in the game described by the infinite system of differential
equations (2) if xx(7) = 0, yx(7) = 0, 2x(7) = 0, yp(7) = 0, k = 1,2,... at some 7 > 0. In the
literature, such differential game problems are called “soft” landing or “soft” capture problems.

In the case of finite dimensional space, a number of works on this subject have been published
see, €. g., [16—18]. In the work [16], a “soft landing” game problem is studied, where the dynamics
of the players models the motion of different-type objects in a medium with friction. The goal of the
pursuer is the approach of geometric coordinates and the velocities of the players (soft landing) at a
certain finite instant of time. Sufficient conditions on the parameters of the conflict-control process
were obtained under which the “soft landing” problem is solvable at a finite time.

A game problem of pursuit of a controlled object moving in a horizontal plane, by another
object, moving in a three-dimensional space, is studied in [17]. Sufficient conditions on parameters
of a conflict-controlled object were derived, for which the soft landing may be performed.

In the paper [18], a “soft landing” differential game of many pursuers and one evader described
by the generalized Pontryagin example is studied. By definition the evader is said to be captured if
its state, velocity, and acceleration coincide with those of a pursuer. Under the assumption that the
roots of characteristic equation are real, sufficient capture conditions were obtained in terms of initial
states.

2. Statement of problem. Let \;, \o,... be a sequence of positive numbers, and 7 be a fixed
number. We introduce into the consideration the space

17 = {5 = (&,&,..): D _NE < oo}
=1

with the inner product and norm

00 00 1/2
Em =D Nem, &nell, ¢l = (Z X;f?) :
=1

i=1
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1082 G. IBRAGIMOV, F. ALLAHABI, A. KUCHKAROV

From now on A, = \/ai + B2, k=1,2,....

Denote

2(t) = (21(t), 22(0), - ), z(t) = (ze(t), ye(t)), 2| = \/ 2% + v3,

o0

2 12, 2
HzngH = Z)‘ZJF (2% + i),
k=1
20 = (210, 220, - - -) = (Z10, Y10, 20, Y205 - - -)» 2k0 = (Tk0s Yko) >
21 = (211,221, - - -) = (T11, Y11, T21, Y215 - - )5 2k1 = (T, Yk1)-

We assume that zg € I2, 4, 21 € I2.
Let Ly(0,T};12) be the space of functions f(t) = (f1(t), fa(t),...), f: [0,T] — I2, with measu-
rable coordinates fj,(t) = (fr1(t), fr2(t)), 0 < ¢ < T, such that

- T
Hf(')HLQ(o,T;lg) = Z)‘ / fi () + (1)) dt < oo,
k=1

where 7' is any given positive number.
Let pg, p, and o be given positive numbers.
Definition 1. A function w(-) € Ly(0,T;12) subjected to the the condition

is referred to as the admissible control. We denote the set of all admissible controls by S(py).
Definition 2. A function u(-) € S(p) (respectively v(-) € S(0)) is referred to as the admissible
control of the pursuer (the evader).
Definition 3. A function

u(t,v) = (ug(t,v),u2(t,v),...), u: [0, x lz — l?,, ug(t,v) = (ukl(t,v),ukz(t, U)),
of the form

ug(t,v) = v (t) + wi(t), w(-) = (wl(-),wg(-), .. ) € Sp—o), wr(+) = (wkl('),wkg(-)),

where v(-) € S(0), is called a strategy of the pursuer.

Definition 4. [f there exists a strategy u(-) of the pursuer such that z(t) = 0, 2(1) = 0 at
some T, 0 < 7 < 9, for any control of the evader, then we say that differential game (2) can be
completed for the time 9.

The pursuer tries to complete the game as soon as possible while the aim of the evader is
opposite.

ISSN 1027-3190. Vkp. mam. sxcypnu., 2013, m. 65, Ne §



A PURSUIT PROBLEM IN AN INFINITE SYSTEM OF SECOND-ORDER DIFFERENTIAL EQUATIONS 1083

Definition 5. Let w(-) = (wi(-),wa(-),...) € La(0,T,12), wi() = (wr1(-), wra(")). The
function z(t) = (21(t), 22(t),...), 0 < t < T, where each coordinate z(t)

1) is continuously differentiable on (0,T) and satisfies the initial conditions zj,(0) = zo,
2(0) = 21,

2) has the second derivative Z(t) almost everywhere on (0,T) satisfying the equation

. —ar  —PB
Zk(t) = Dpz(t) + wi(t), Dy = :
B  —ag
almost everywhere on [0, T is called the solution of the system
Zi(t) = Drzp(t) + wi(t), 21(0) = 2ko, 2,(0) = 21, k=1,2,.... 3)
Let
. cos(rokt)  — sin(roxt) ik —Tk
Apr(t) = e ; Aga(t) = Apa (1), Ry = ;

sin(roxt) cos(roxt) T2k Tk

At = 5 (Al + A(),  Belt) = SR (A(t) — Ae(),

—ak+1/ai+ﬁg Ozk+\/04i+5;%
™k = s 2k — k 1,2,....

2 2 ’

Clearly, r, = \/T%k +73, = </az + B2 = V.
It can be shown that the matrices Ay (t), Ag2(t) have the following properties:

Ap(t +h) = Ag1 (1) Ak (h) = Agr(h) Ak (t), | A1 (t)zr] = |Afy () 2k] = €75z ],

Akg(t + h) = Akg(t)Akg(h) = Akg(h)Akg(t), ’Akg(t)zk‘ = ‘AEQ(t)Zk} = e_let’ZH,

where A* denotes the transpose of the matrix A, and Es does the identity (2 x 2)-matrix.
It is easy to verify that

A1 (t) = R A (1), Apa(t) = =Ry Apa (1), Ay(t) = REBy(t), By (t) = Ax(t).
By using the properties
Api(t+h) = Ap(t) A (h), Apa(t + h) = Apa(t) Ara(h),

A1 () Aga(h) = A (t = h), A (t) = Aga(—1)

it can be easily proved that

AR (t) — RiBi(t) = Ex, 4
Ag(t)Bi(t — s) — Bi(t) Ag(t — s) = —Bu(s), Q)
Ap(t)Ap(t — 5) — RiBy(t) Bi(t — s) = A(s). (6)
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1084 G. IBRAGIMOV, F. ALLAHABI, A. KUCHKAROV

3. Control problem. Consider the infinite system of differential equations (3). Let C'(0, T';12) be
the space of continuous functions z(t), 0 < ¢t < T, with the values in the space 2. It can be shown
similarly to [19] that the following assertion is true.

Assertion. If {ri;}ren is a bounded above sequence, then the infinite system of differential
equations (3) has a unique solution z(-) € C(0, T2, ) defined by

t
z(t) = Ag(t)zko + Br(t)zr + /Bk(t — s)wi(s)ds, k=1,2,.... (7)
0

It can be verified that

t

54(t) = B2By(t)zo + Ax(t) 2 + / Ag(t — s)wy(s)ds.
0

We transform the system

2(t) = Au(t)zko + Bi(t)z + / Byt — s)wy(s)ds,
0

k=1,2,..., (8)
t
54(t) = REBy(1) 20 + Ax() 20 + / At — )wy(s)ds,
0
by setting
nk(t) Ak(t) — Ry By (t) | | Rizk(t) ko Rizko
&k (1) — Ry By (t) Ag(t) Z(t) Eko 21

Then using (4), (5) and (6), we obtain
ne(t) = R Ak (t)z(t) — ReBi(t)2x(t) =

= Ry (A2 (t) — REBi(1)) 2k + Ry, (Ak(t) Bi(t) — Bi(t) Ax(t)) 2+

4 / Ri (Ap(t)Bi(t — ) — By(t)Ap(t — 5)) wi(s)ds =
0

t t
= Rpzpo — /RkBk(S)wk(S)dS = NKo — /RkBk(S)wk(S)d37
0 0

& (t) = =R B ()21 (t) + Ar(t) 2 (t) =
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= (=RiBi(t) Ak (t) + Ax(t) R{Br(t)) zr0 + (—REBR(t) + AR (1)) zpa+

+/ —RpBi(t)Bi(t — 5) + Ap(t) Ag(t — 5)) wi(s)ds =
0

t

= zp1 + /Ak(s)wk(s)ds = &ro + /Ak(s)wk(s)ds.
0

0

Our goal is to realize ni(t) = 0, &(t) = 0, for all £ = 1,2,..., at some time ¢. They are
equivalent to

ko = /RkBk(S)wk(s)ds,

k=1,2,.... (10)
t
—&po = /Ak(s)wk(s)ds
0
We shall find a condition on 7k, {ko, K = 1,2,..., to be found a control (wl(-),wg(-), .. ) S
€ S(o) guaranteeing (10). To this end we study some properties of the set
9 0
X000 = 0.6) | 1= [ RuBueunds. €= [ Als)un(s)ds, wil) € Safon) p,
0 0
where
-~ 0
d op=0% 0,>0 and  Sy(ox) = { wi(") /\wk(s)\zds <oy
= 0

Let 1, € Xy (9, 0) be any point and e € R* be a unit vector. We find a control wy(-) for that
Y = (K, &) belongs to the boundary of X (1, oy). By using the Cauchy — Schwartz inequality we

get
4
Ry By(s
(Vr, €) << ) w($), €> ds =
0/

9 ¥
:/<Ck(s)wk(s), e) ds:/<wk(s), Ci(s)e)ds <
0 0

1/2

/ Crs)elPds | = onFY2(0,0),
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where
9

_ RkBk(s) . 5 ($)e 2 s
Cr(s) = ( s ) Fk(ﬁ,e)O/}Ck( Je|?ds.

Note that the equality occurs if
Ok

7Fk(197, 5 Cr(s)e, 11

almost everywhere on [0, 9]. It can be shown that the point vy is on the boundary X (9, oy) of the
set Xj (1, ox) whenever the control wy(-) has the form (11).

w(s) =

We obtain
9 [V
Fy (9, €) :/\c;;(s)ey?ds = <e,/ck(s)c;(s)e ds> = (e, Ps(9)e), (12)
0 0
where
C1k 0 Cor  C3k
9
i} 0 Clk  C3k  Cok
&wz/@@%@wz ,
5 Cok C3k  Cak 0
_—Cgk Cok 0 C4k_

1 1
Clp = r Sinh(27"1k19) — T Sil’l<27”2k19), Cok =

sinh?(ry,9),
1k T2k Tk

1 1 1
C3p = 72r2k Sinz(TQk’ﬁ), Cql = Flk Sinh(2’l”1k;?9) + @ sin(27“2k79)-

We study now some properties of eigenvalues and eigenvectors of the matrix Py (19). It is not difficult
to verify that the eigenvalues of the matrix Py (1)) are

1. I L.
m1 (V) = ma(9) = T sinh(2ry;9) — R sinh?® (r,9) + yr sin® (ror19),
1k 2k

1 1 . 1 .
ms () = my(9) = yr. sinh(2rx9) + N smhA‘(rlkﬁ) + 2 sin? (ro19).
1k

2k
Eigenvectors associated with these eigenvalues are
[copmi (V) — carcar ] [ —capmi (V) + capcar |
2 2 2 2
Cop T C3p Co T C3p,
cami (V) — capcar carmi (V) — cancar
e1(¥) = 2 2 er () = 2 2
1( ) Cop —|—C3k ) 2( ) 62k+c3k )
1 0
0 1
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[ corms (V) — capcar | [ —c3xms (V) + carcar ]
) 7 2 2
Cor T C3p, Co 1 C3p
c3pms (V) — carcar corms (V) — cakcar
e3(V) = 3+ Ay ; eq(V) = 2+
1 0

Hence, Py(9)e; () = m;(9)e;(¥), i = 1,2, 3,4. Note that e;(¥), i = 1,2, 3,4, is an orthonormal
system in R*.
Property 1. The eigenvalues of the matrix Py (1) are positive for all 9 > 0.
Proof. 1t is sufficient to show that mq () > 0 for all ¥ > 0.
We have
ma (9)ms(9) = g()h(9),

where

1 1 1 1
g(9) = I sinh(r19) — 3ra sin?(rq19), h(9) = o sinh(r19) + 3 sin(r919).

It 1s obvious that
1
g (M) = 3 (cosh(r1) —sin(2red)) >0, ¥ >0,

since cosh(t) > 1 > sin(t) for all ¢ > 0. As g(0) = 0, ¢'(9) > 0, ¥ > 0, then g(J) > 0, ¥ > 0.
Since g(9¥) > 0, m3(¢) > 0, and h() > 0 for all ¥ > 0, we obtain my () > 0.

Property 2. The set 0Xy(9,01), k € {1,2,...}, is an ellipsoid in R*.

Proof. Let ¢, € 0Xy(9,0r) and e(¥) = Zj_l d;e;(¥), where the numbers d; satisfy the

4
condition § - d? = 1. By (11) we obtain
1=

Ok

9 U
P = O/Ck(s)wk(s)ds = m /Ck(S)CI:(S)dS e(¥) = —==—=——=—=P3(V)e(V).

0

It follows from (12) that

4 4 4
Fr(9,e(9)) = { e(¥), Py(9)e(9)) = < Zdiei(ﬁ), Zmi(ﬁ)diei(ﬁ)> => mi(0)d;. (13)
Hence
Ok 4

Let i (V) = (Yr, ei(¥)), i = 1,2,3,4. Then
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Vi) = 0, e)

Combining this formula with (13) we conclude that

2 4 9
Vit (V) B Zizlmi(ﬁ)di -
Z <0k mi(§)> O E(0,e(9) 1 (14)

i=1

and hence

0Xy (9, o) { k

4 W2 ( 4
D s ) _ =1, 9= Z%k(%%(@}
— ojmi(V _

i=1 =1

so it is an ellipsoid.

Property 3. The eigenvalue mq (V) is bounded above.
Proof. 1t follows from the boundedness of the limit

Y—o0 Y—o0 \ 471 1 5 4rq

lim my(¥) = lim (1 sinh(2r19) — ;\/12 sinh?(r19) + ;sin‘l(mﬁ)) -1

and the fact that m (1) is a continuous function of ¥J.
Proposition 1. [f0 <91 < ¥o, then

X(th,0) C X(93,0),  X@,0)= |J [[Xr® 00,
(o1,02,...) k=1
where union is taken over all the sequences
(01,09,...), 0;>0, i=12 ..., 2‘7}3:‘72‘

k
Proof. Assume that (1,&) = (n1,&1,m2,&2,...) € X(¥1,0). Then there exists an admissible
control w(-) = (w1 (+), wa(-),...), wi(-) € Sy, (ox) such that

’191 '191
(k- &) = /RkBk(S)wk(S)dsv/Ak(s)wk(s)ds € Xp(V1,01), k=1,2,....
0 0

Now define a new control w(-) = (wi(-), Wa(+),...) as follows:

Wk(t), Ogtgﬂlv

w(t) =
0, <t <.
It is obvious that wy(-) € Sy, (o)) and
191 191
(k- &) = /RkBk(s)wk(s)dSa/Ak(s)wk(s)ds =
0 0
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'192 '192
= /RkBk(s)@k(s)ds,/Ak(s)@k(s)ds EXk(ﬂQ,O'k).
0 0
Hence X (91,0) C X (V2,0).
Proposition 2. Let ( = (0,0,(3,(4) € R* satisfy (3 + (2 > M. Then ¢ ¢ Xp(9,0%), k =
=1,2,..., for all ) > 0, where M = supy> a?mq (9).
Proof. Since
Q) = (¢, ea(¥)) = G, G(9) = (¢, e2(V)) = (4,
then
GW)+EW) =G+ > M.
Hence for all ¥ > 0 (recall that mq () = mo(9) and mg(9) = ma())

S0 _ G0 +G0) | GO G0) L G+E | GO)+G0)

> 1.
= opmi Uzml O']%m:), M O'I%mg
Thus ¢ ¢ X (1, 0k). In other words, the point ¢ can not be steered into the origin.
Theorem 1. Let ¢o = (Y10, %20, ), Yko = (Mkos —Sk0)s K =1,2,.... If
o0
w()EX(ﬁ,O'): U HXk(ﬂ,O'k),
(o1,02,...) k=1
where union is taken over all the sequences (01,09,...), 0; > 0,1 = 1,2,..., Z:il a,% = o2

Then there exists a control w(t) = (w1 (t), wa(t),...), 0 <t <9, such that z(9) = 2(9) = 0, for
the state z(t) of the system (3).

Proof. Since 1 = (110, %20, ...) € X(9,0), then there exists a sequence (01,09, ...), o5 > 0,
i=1,2,..., Z:)_l a,% = o2 such that 0 € X3 (9, 0%), k =1,2,.... Hence

9 9
Yro = (Mo, —&ko) = (/ RkBk(s)wk(S)dsa/Ak(s)wk(s)ds)

0 0

for some wy,(-) € Sy(oy). This means

[
Nk (P) = nro — /RkBk(s)wk(s)ds =0,
0

9
(V) =E&ko + | Ar(s)wi(s)ds = 0.
/

Then from (8) and (9) we get 2 () = 2(9) = 0.
Theorem 1 is proved.
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4. Pursuit differential game. In this section, we study the differential game (2). The following
theorem is true.
Theorem 2. Let

boeXWp—0)= | []Xe@ o),
(01,02,...) k=1

where union is taken over all the sequences (01,09,...),0; > 0,i=1,2,..., ZOO or = (p—0)>.
Then pursuit can be completed from the position 1 for the time V.

Proof. As Yy € X(V,p — o), then there exists a sequence (01,02,...), 0; > 0,1 =1,2,...,
Z;l ai = (p — 0)? such that ¢y € Xp(9,0%), k = 1,2,..., for some 6. It follows from

Theorem 1 that there exists a control

k=1

o T
wO(t) = (w(t),wd(t),...), 0<t<d, Zx,;/]wg(s)msg (p—0)?,
k=1 0

such that z(dJ) = 2(¥) = 0 in (3). We show that pursuit can be completed for the time ¥. To this end
we offer to the pursuer the following strategy:

ug(t, v) :Uk(t)_wg(t)v k=1,2,..., (15)

where v(+) is any admissible control of the evader. Then it is clear that z(¢) = 2(¢) = 0 for the
system (2) (see the proof of Theorem 1).

What is left is to show the admissibility of the strategy (15). It can be shown by using the
Minkowski inequality as follows:

1/2 1/2

S [luttolar ) = [ S°x [ ) - whiofae | <

1/2 1/2

9
o
+ ZA’,;/ng(t)\th <o+p—o=p.
k=1 0

0o ¥
< | 0N [ futor

Theorem 2 is proved.
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